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First, we present the development of the mathematical model for
the dynamic behavior of a nonlinear plate undergoing deformation
both in transverse and axial directions using a Hamiltonian
approach. We will end up with a system of coupled partial
differential equations that equate to the fluid forces acting on the
wing.
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Kinematics

We use the Kirchhoff hypothesis for the deformation (u;) of the
plate.

Assumptions

. . Equation
@ straight lines normal to the

U = U — X3Wx,
Up =V — X3Wy,
us = w

mid-surface remain straight
after deformation

4

@ straight lines normal to the

mid-surface remain normal to Terms

the mid-surface after u = axial displacement in the
deformation x1 direction
v = axial displacement in the
@ the thickness of the plate does xa direction
not change during a w = transverse displacement )

deformation

James Cameron Mathematical Modeling of Large Deformations on a Non-Linear



Visualization

This is an example from a beam model, which we will ultimately

compare our model against:
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[Hickman (2010)]
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Visualization

This is what we are actually working with:

u is axial
displacement in x,
direction.

v 1s axial
displacement in x,
direction.

W 1S transverse
displacement.
dw

0=

2
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Strain-Displacement

We use the Green strain tensor to relate strain (E;;) and
displacement as follows:

. 1¢0y; 8“_/ Oum Oum
Ej=3(5¢ + o + o 0c)

Ell = %(2(UX1 - X3WX1X1) + W)%l)
E22 — %(2(VX2 _— X3WX2X2) + W32)

1
E12 = E2l - i(uxg + VX1 - 2X3WX1X2) + WX1 WXQ)
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Stress-Strain

We use the a materially linear formulation to relate stress (;;) and
strain using Young's modulus (Y) and a Poisson ratio (v) as
follows:

o1 = (1_7\/1,2)(511 + vEp»)
o2 = r\/l,Q)(EZQ + vEn)

1y Y
012 = 021 = 5" 7oy F12
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Kinetic Energy

For a homogeneous plate density p, to account for all the mass T
takes the form of an integral over the area. We also drop the
inertial term.

T =3m||VI|J

e gp 8”12 8U22 8u32
T= (Hr + 5+ 5 )ddxed
/o/o/ZhZ 8t+at+3t)X3X2X1

/ / (U2 + v + w?)dxadx
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Potential Energy

The remaining potential energy is similar to a compressed spring,
as follows:

h
a a 3 1
v / / /,, 2(611E11 022E22+012512)dX3dx2dX1
0 0 _2

Y o[ L 2y2 L 512
= a=/, Js h((uX1+§WX1) +(VX2+§WX2)
1—v

+ T(uxz + Vi + Wy, WX2)2)

h3
2 2
o (W Wy, A+ Wi Wi, + Wi Wi, ) dxodxy

12
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Potential Energy of External Applied Forces

The potential energy of the external applied forces will be defined
as the negative of the work done by fluid forces acting on the
plate, where K is a damping constant.

A=u(fi — Kue) + v(fr — Kvi) + w(fz — Kw)
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Hamiltonian Method

According to Hamilton's principle, the progression of all physical
systems minimizes the time integral of the Lagrangian, which is to
say the variation of the Lagrangian will always be zero, i.e.

6/tl[(T— U) + Aldt = 0

Expanding this integral, we obtain the governing equations.
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Hamiltonian, continued

0 = (5/ // (u? 4 v2 4+ w?)
to

1 1
- m((uxﬁzw )+ (v + 5w)®
1—v
+ T(UX2 + Vxq + Wiy WX2)2)
Yh3

m(wn + W, Wy + Wiy W5, )

u(f — Kut) + v(f — Kvt) + w(fz — Kw)dxodxq dt
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Calculus of Variation

Using integration by parts to handle each term, the variation and
the first spacial and temporal derivatives of the variation are zero
at the limits of integration, therefore each boundary term is
cancelled. After collecting all of the terms with contain éu, dv,
dw, we can separate the integral into three parts as follows:
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Calculus of Variation - du component

/ I [ st b+ sl + 592

+ [ux2 + Vi + Wy Wi |x,) + Kur + 1) dxodx dt
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Calculus of Variation - v component

/ L [ ovtphve + st + il

+ [uX2 + Vi + Wiy Wiy |5q ) + KVt + ) dxodxy dt
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Calculus of Variation - éw component

0 = / //(5W( phwtt—l—( Yh )([WX1(UX1+;WX1)]X1

1-—
[WX2(VX2 + 5 2 WX2)]X2 T[WX1(UX2 + Vxy + Wiy WX2)]X2

[Way (U + Vag + Waq Wiy )]xy)
Yh3

m(wxlxlxlxl + Wiospxae T 2Wapxaxax:)

Kw; + f3)dX2dX1dt

+ o+ o+ 4
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Final Model

1
i = up+ Cur — Difuy, + E(WX1)2]X1 — Efux, + Vi + Wi Wi, |5,
1
fp = v+ Cve — Dl[VX2 + E(WX2)2]X2 - E[uxz T Vg Wiy WX2]X1
f3 = Wit + CWt' + D[WX1X1X1X1 + 2WX:[X]_X2X2 + WX2X2X2X2]
1 1
_Dl[le(uxl + E(WX1)2)]X1 - Dl[sz(VXz + E(WX2)2)]X2

_E[le(uxz + Vg + Wiq W, )]X2 - E[WXQ(UXQ + Vx, + Wi, WXQ)]XI

where C, D, E, and D; are all constants depending on the system.
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We will show for any transversal force f3 the energy of the system
changes proportionally to the force. In other words, our choice of
initial conditions won't cause the system to experience flutter or
other disastrous instabilities. This will be proven for a class of
boundary conditions by my collaborator, Charles Daly, though you
can email us for the theorem, corollaries, and their respective
proofs.
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We now want to reduce our coupled model to an uncoupled model,
to make discretizing it and analyzing it numerically much simpler.
We will conclude by discussing a model for the transversal force f3,
as before.
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1
hl(t) = Ug + E(le)z

1
h2(t) = Vgt E(WX2)2
h3(t) = Uxy Vg T W Wy,

[Ferguson 2006]
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Consequences for Axial Forces

The axial forces are symmetric, so we will only consider f;.

1
fi = ug~+ Cur — Difug + E(WX1)2]X1 — Efux, + vy + Wiy Wi,
fi = ux+ Cur— Dl[hl(t)]X1 - E[h3(t)]><2
f]_ = Uy =+ CUt

The damping term should reduce the fluid force to zero as time

goes to infinity.
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Consequences for Transverse Force

f3 = Wit + CWt' + D[WX1X1X]_X1 + 2WX]X]_X2X2 + WX2X2X2X2]

D, (o + 5 (w5 )2 )b — Dl (v, + 5 (i),

_E[le(uxz + Vxy + Wi Wxy )]Xz - E[sz(uxz + Vg + Wx, WX2)]X1

fi’) = Wet + CWI' + D[WX1X1X1X1 + 2WX1X1X2X2 + WX2X2X2X2]
_Dl[lehl(t)]Xl - Dl[WX2h2(t)]X2
_E[WX1h3(t)]X2 - E[WX2h3(t)]X1
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Consequences for Transverse Force

We assume we can rearrange the mixed partial derivatives because
the system is symmetric.

f3 = Wy + CWt + D[WX1X1X1X1 + 2WX1X1X2X2 + Wx2x2x2x2]
_Dlhl(t)[WX1X1 - D1h2(t)[WX2X2] - 2Eh3(t)[WX1X2]
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@ Continue numerical validation using finite difference method
and finite element method

Error convergence
Nonlinear material constitutive law
Approximation of other nonlinearities

Parameter identification studies to validate the model

Allow fi and f> to be nontrivial
t
o Allow / ||f3||i2d7' to be bounded or constant
0

@ Couple the structural model to a fluid model
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Contact Information

For further questions on this presentation, contact us at the
following email addresses:

James Cameron - jcameroa@masonlive.gmu.edu
Charles Daly - cday4@masonlive.gmu.edu

Dr. Padmanabhan Seshaiyer - pseshaiy@gmu.edu
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