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Part 1: The Model

First, we present the development of the mathematical model for
the dynamic behavior of a nonlinear plate undergoing deformation
both in transverse and axial directions using a Hamiltonian
approach.
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Kinematics

We use the Kirchhoff hypothesis for the deformation (u;) of the
plate.

Assumptions

. . Equation
@ straight lines normal to the

U = U — X3Wx,
Up =V — X3Wy,
us = w

mid-surface remain straight
after deformation

4

@ straight lines normal to the

mid-surface remain normal to Terms

the mid-surface after u = axial displacement in the
deformation x1 direction
v = axial displacement in the
@ the thickness of the plate does xa direction
not change during a w = transverse displacement )

deformation
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Visualization

This is an example from a beam model, which we will ultimately

compare our model against:
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[Hickman (2010)]
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Visualization

This is what we are actually working with:

u is axial
displacement in x,
direction.

v 1s axial
displacement in x,
direction.

W 1S transverse
displacement.
dw

0=

2
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Strain-Displacement

We use the Green strain tensor to relate strain (E;;) and
displacement as follows:

. 1¢0y; 8“_/ Oum Oum
Ej=3(5¢ + o + o 0c)

Ell = %(2(UX1 - X3WX1X1) + W)%l)
E22 — %(2(VX2 _— X3WX2X2) + W32)

1
E12 = E2l - i(uxg + VX1 - 2X3WX1X2) + WX1 WXQ)
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Stress-Strain

We use the a materially linear formulation to relate stress (;;) and
strain using Young's modulus (Y) and a Poisson ratio (v) as
follows:

o1 = (1_7\/1,2)(511 + vEp»)
o2 = r\/l,Q)(EZQ + vEn)

1y Y
012 = 021 = 5" 7oy F12
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Kinetic Energy

For a homogeneous plate density p, to account for all the mass T
takes the form of an integral over the area. We also drop the
inertial term.

T =3m||VI|J

e gp 8”12 8U22 8u32
T= (Hr + 5+ 5 )ddxed
/o/o/ZhZ 8t+at+3t)X3X2X1

/ / (U2 + v + w?)dxadx
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Potential Energy

The remaining potential energy is similar to a compressed spring,
as follows:

h
a a 3 1
v / / /,, 2(611E11 022E22+012512)dX3dx2dX1
0 0 _2

Y o[ L 2y2 L 512
= a=/, Js h((uX1+§WX1) +(VX2+§WX2)
1—v

+ T(uxz + Vi + Wy, WX2)2)

h3
2 2
o (W Wy, A+ Wi Wi, + Wi Wi, ) dxodxy

12

James Cameron Mathematical Modeling of Large Deformations on a Non-Linear



Potential Energy of External Applied Forces

The potential energy of the external applied forces will be defined
as the negative of the work done by fluid forces acting on the
plate, where K is a damping constant.

A=u(fi — Kue) + v(fr — Kvi) + w(fz — Kw)
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Hamiltonian Method

According to Hamilton's principle, the progression of all physical
systems minimizes the time integral of the Lagrangian, which is to
say the variation of the Lagrangian will always be zero, i.e.

6/tl[(T— U) + Aldt = 0

Expanding this integral, we obtain the governing equations.
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Hamiltonian, continued

0 = (5/ // (u? 4 v2 4+ w?)
to

1 1
- m((uxﬁzw )+ (v + 5w)®
1—v
+ T(UX2 + Vxq + Wiy WX2)2)
Yh3

m(wn + W, Wy + Wiy W5, )

u(f — Kut) + v(f — Kvt) + w(fz — Kw)dxodxq dt
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Calculus of Variation

Using integration by parts to handle each term, the variation and
the first spacial and temporal derivatives of the variation are zero
at the limits of integration, therefore each boundary term is
cancelled. After collecting all of the terms with contain éu, dv,
dw, we can separate the integral into three parts as follows:
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Calculus of Variation - du component

/ I [ st b+ sl + 592

+ [ux2 + Vi + Wy Wi |x,) + Kur + 1) dxodx dt
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Calculus of Variation - v component

/ L [ ovtphve + st + il

+ [uX2 + Vi + Wiy Wiy |5q ) + KVt + ) dxodxy dt
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Calculus of Variation - éw component

0 = / //(5W( phwtt—l—( Yh )([WX1(UX1+;WX1)]X1

1-—
[WX2(VX2 + 5 2 WX2)]X2 T[WX1(UX2 + Vxy + Wiy WX2)]X2

[Way (U + Vag + Waq Wiy )]xy)
Yh3

m(wxlxlxlxl + Wiospxae T 2Wapxaxax:)

Kw; + f3)dX2dX1dt

+ o+ o+ 4
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Final Model

1
i = up+ Cur — Difuy, + E(WX1)2]X1 — Efux, + Vi + Wi Wi, |5,
1
fp = v+ Cve — Dl[VX2 + E(WX2)2]X2 - E[uxz T Vg Wiy WX2]X1
f3 = Wit + CWt' + D[WX1X1X1X1 + 2WX:[X]_X2X2 + WX2X2X2X2]
1 1
_Dl[le(uxl + E(WX1)2)]X1 - Dl[sz(VXz + E(WX2)2)]X2

_E[le(uxz + Vg + Wiq W, )]X2 - E[WXQ(UXQ + Vx, + Wi, WXQ)]XI

where C, D, E, and D; are all constants depending on the system.
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Part 2: Analytic Stability

We will show for any transversal force f3 the energy of the system
changes proportionally to the force. In other words, our choice of

initial conditions won't cause the system to experience flutter or
other disastrous instabilities.
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Opening Move

Multiply the first equation by u; and aCu, the second by v; and
aCv, and the third by w; and aCw; where 0 < a < 1.

After this, add the resulting equations. For example, the first
equation becomes:

1 a

3 [ue]? + Cuf + aCugeu + §C2 [v], =
1 1

Dl[le + §W31]x1 ut +aby CuX1 +5 le]Xl u+

Eluy, + Vi + Wiq Wi, |, Ut + aEC[uX2 + Vyy Wi Wi, |5 U+
fi(us + aCu)
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The overall goal of what we are doing is to reduce our now more
complicated system into a (relatively) simple ordinary differential
equation. Using integration by parts and some algebra tricks, this
is possible, though it takes a lot of work. If you want the full
derivation, email me.
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Ordinary Differential Equation

L L
G
Mle+ Mz = [ [ B+ 25 ) dade

0 0

L L
a a a 1-a 1-a
Ml://i ut + Cu)? E(Vt+CV)2+Z(Wt+CW)2+ 2
0

0
1 a Dy 1 2 Dy 1 2
+ (5 - *) Wt2 + 7 (le + E(Wx1)2> + ? Vs, + E(sz)z

E

D
E(L’XZ + Vx + Wxq WX2)2 + E(WEIXI + 2W31x2 + w, ngg)dxld)Q

LL
= // (1—a)Cu? + (lfa)(:vter(lfg)Cw,r2
00

1 1 2
+aChy (U)q + E(Wx1)2> +aCh, <VX2 + E(WXQ)2>

aCD
+aEC(ux, + vy + Wy, WX2)2 + 5 ( X21><1 + 2WX1X2 + wg ., )dxidxo

><2 X2
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Bounding the Equation

L L
aCw
[Mi]e + M, = //@(Wt+ 22 Yo
0 0
One thing to notice is this equation looks a lot like,

SO+ x(1) = (1)

And if we can get that to look like,
1+ y(t) < £(z)

[ey ()] < f(t)e

<o)

d

dt
/

eTy(T)—y(O)g/ F(t)etdt
0

;
y(T) <y(0)e T+ e*T/O f(t)etdt
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What To To With M,

LL
G
[Ml]t+M2://f3(Wt+azW)dX1dX2
00

It would be ideal to find a function M3 so that M3 is bounded
above by some factor of M; because that would provide us with
the inequality we seek. Thus we begin our search for the elusive
M5 by repeatedly throwing inequalities at our differential equation.
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Constructing M3

Using Young's Inequality and the Poincaré Inequality we get,

LoL
1
[I\/h]t—&—C//lfaut 1fa)vf+§(1fg)wt2
00

2

1 z 1
+aD, (uxl + E(le)z) + aD; (vx2 + i(wxz)z)

aD
4

L L
S//ﬂ Wt+ )dX1dX2
0 0

or setting M5 to be the terms in red,

+3E(Ux2 + Vxq + Wiy xo )2 + — (lexl + 2Wx1><2 + szxz) XmdX2

]e + b <5 | —+ — ) dadx
Mmoo <2 (2C 1 1Y axd
881 42

Goal: We will use My as the energy function to bound changes in the solutions

in order to prove our stability result.
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By Construction

M3 <2M;

1—a 1—a
Ut

a D 1 > D 1 :
— Z) Wt2 + ?1 (Ux1 + §(WX1)2> + 71 (sz + E(WX2)2>

D
(UXQ + Vxq + Wx WX2)2 + 5(W31X1 + 2W31><2 + szxz)dxldXQ

L L

M1://g(ut+Cu)2+g(vt+Cv)2+Z(wt+Cw)2+

0 0
(L
2
E
2

L L
M 2 2, 1 a, 2
2://(l—a)ut—k(l—a)vt—I—E(l—E)Wt
0 0

2

1 : 1
+aD; (uxl + 5(WX1)2) + aD; (vx2 + i(wxz)z)

aD
(Wi 2w, + wl,,) dxadx

+3E(U><2 + Vxq + Wiy xo )2 + 4
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First Order Linear Differential Equation

L L
[Ml]t + M2 = // W + 7)dX1dX2
0 0

L

M: My < f

[Mi]e + CM; _// (851 452>dX1dX2
0

%M;( t) — My (0 +C/M2 (r)dr < <—+—)/|If3HL2dT
M;‘(t)+2c/M2*(r)dT§2M1(o)+ (—+ —) /Ilfa\IdeT

t
% [e2Ct/M2*(T)dT] < 2M;(0)e®“ + & (— + —) /Hf3 |7,dT
0
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For any non-linear plate and any transversal force, f3, the energy
measure, M3, satisfies the following inequality for any given time.

T

T t
[ wiyar < O [ eer]yeaer [2€ 4 L] o | [siar | ar
0 0

41 ' 2e,
0

L L
where M;://(1—a)uf+(1—a)v3+%(1—i)wf
0 0

1 2 1 2
+aD; (uX1 + 2(WX1)2) + aDy (vx2 + E(sz)z)

aD
> (
where u, v, are axial displacements and w is transverse
displacement, €1, 2, C, M1(0) are real numbers dependent on the
system.

+aE(Ux2 + Vxq + Wx1x2)2 +

2 2 2
Wx1x1 + 2Wx1x2 + WX2X2) dX1 dX2
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Part 3: Numerical Stability

The next step, now that we have proven the system to be
analytically stable, is to show numerical stability and use parameter
identification studies to validate our model using an explicit FTCS
finite difference method. At the moment, we are working on proofs
of stability similar to the classic "Von Neumann stability” to get
convergence results.
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@ Continue numerical validation using finite difference method
and finite element method

Error convergence
Nonlinear material constitutive law
Approximation of other nonlinearities

Parameter identification studies to validate the model

Allow fi and f> to be nontrivial
t
o Allow / ||f3||i2d7' to be bounded or constant
0

@ Couple the structural model to a fluid model
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Contact Information

For further questions on this presentation, contact us at the
following email addresses:

James Cameron - jcameroa@masonlive.gmu.edu
Charles Daly - cday4@masonlive.gmu.edu

Dr. Padmanabhan Seshaiyer - pseshaiy@gmu.edu
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