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Part 1: The Model

A quick summary of the development of the mathematical model
for the dynamic behavior of a nonlinear beam undergoing
deformation both in transverse and axial directions using a
Hamiltonian approach.
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Kinematics

We use the Kirchhoff hypothesis for the deformation (ui ) of the
beam.

Assumptions

straight lines normal to the
mid-surface remain straight
after deformation

straight lines normal to the
mid-surface remain normal to
the mid-surface after
deformation

the thickness of the beam does
not change during a
deformation

Equations

u1 = u − ywx

u2 = w
u3 = 0

Terms

u = axial displacement in the x
direction
w = transverse displacement
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Visualization

1 Introduction

Micro Air Vehicles have become popular in recent years primarily because recent advances photographic
technology has made it possible create cameras that are small and light enough to be mounted on these tiny
aerial platforms. As a result many institutions are currently working on research to understand exactly how
these minute vehicles function and cope with external conditions such a wind, smoke, rain and even extreme
heat.

Figure 1: Various MAV Designs both Rigid and Non-Rigid/Flexible Wing Types [7,4,6]

Many of these groups have looked to Mother Nature for inspiration simply because it seems that nature
has done a pretty good job so far at creating very light, maneuverable and especially durable air craft such
as birds, bats and small insects. These insights however have required researchers to change the way they
previously envisioned fight by turning their attention from a fixed rigid wing design to a more dynamic
flexible winged devises as depicted in Fig-1. One of the most interesting aspects of the potential utilization
of MAV’s lies in the fact that one could design them in such a way that they could essentially communicate
with each other and work together as a swarm just as insects would. This would require a hive of sorts where
each individual MAV could receive instruction and could stop to recharge when necessary.

2 Derivation of Equations

Figure 2: Orthogonal System

In order to study the problem effectively it is nec-
essary to set up a coordinate system which can be
used as a stationary frame of reference in relation to
the beam’s deformations. This will be demonstrated
primarily through the picture inserted to the right
as well as the other inserted below. Also note that
the origin is taken at the point that the mid line of
the beam attaches to the wall to make the problem
as simple as possible. The primary goal of the fol-
lowing section will be to derive the coupled system
of PDE’s using energy considerations.

2.1 Defining Displacement Functions

Figure 3: Displacement Diagram [1]

Our interest in this problem lies solely in de-
termining the axial (horizontal) and the trans-
verse(vertical) deformations of the beam as a
function of the horizontal variable x and time
t. To do this three functions (u1, u2, u3) are
created as defined below to represent the to-
tal displacement that the beam experiences at
any given point in the (x, y, z) directions. Us-
ing the Kirchhoff hypothesis as a guide it
can easily be shown that the displacement
of the beam in each of the coordinate di-
rections is defined by the following functions

1

[Hickman (2010)]
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Strain-Displacement

We use the geometrically nonlinear Green strain tensor to relate
the strain tensor(Eij ) to displacement as follows:

Eij = 1
2 (∂ui
∂xj

+
∂uj

∂xi
+ ∂um

∂xi

∂um
∂xj

)

Exx = 1
2 (2(ux − ywxx ) + w2

x )
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Stress-Strain

We use a materially linear elasticity tensor to relate stress (σij ) and
strain using Young’s modulus (Y) and a Poisson ratio (ν) as
follows:

σxx = Y
(1−ν2)

Exx

James Cameron A Stability Estimate for a Nonlinear Beam



Virtual Kinetic Energy

δK = ρ
∫ L

0

∫ h
2
−h
2

[u1]tδ[u1]t + [u2]tδ[u2]t + [u3]tδ[u3]t dx

Terms

u1 = u − ywx

u2 = w
u3 = 0

δK =
∫ L

0 ρh(utδut + wtδwt) + ρh3

12 (wxtδwxt) dx
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Virtual Potential Energy

δU =

∫ L

0

∫ h
2

−h
2

σxx δExx dx

δU =
E

1− ν2

∫ L

0
(h(ux +

1

2
w2

x )δux + (
h3

12
wxx )δwxx

+ (h(wx (ux +
1

2
w2

x )))δwx dx
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Virtual Work

δV =

∫ L

0
(f1 − kut)δu + (f2 − kwt)δw dx
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Hamilton’s Principle for Deformable Bodies

∫ T

0
−δK + δU dt =

∫ T

0
δU dt
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Final Model

f1 = ρhutt + kut −
Eh

1− ν2
[ux +

1

2
w2

x )]x

f2 = ρhwtt + kwt −
Eh

1− ν2
[wx (ux +

1

2
w2

x )]x +
Eh3

12(1− ν2)
wxxxx

James Cameron A Stability Estimate for a Nonlinear Beam



Part 2: A prioi bounds and stability

Assumptions:

f1 = 0

f2 = f
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Opening Move

Divide both equations by ρh, so that we have:

0 = utt + K1ut − D1[ux +
1

2
w2

x )]x

q = wtt + K1wt − D1[wx (ux +
1

2
w2

x )]x + D2wxxxx
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Momentum Equations

Multiply the first equation by ut and aK1u and the second by wt

and aK1w ; where 0 ≤ a ≤ 1.

0 = uttut + K1u
2
t − D1[ux +

1

2
w2

x )]xut

0 = aK1uttu + aK 2
1 utu − aK1D1[ux +

1

2
w2

x )]xu

qwt = wttwt + K1w
2
t − D1[wx (ux +

1

2
w2

x )]xwt + D2wxxxxwt

aK1qw = aK1wttw + aK 2
1wtw − aK1D1[wx (ux +

1

2
w2

x )]xw

+ aK1D2wxxxxw
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Momentum Equations

Sum the previous equations, together with the following relations:

uttut + K1u
2
t + aK1uttu + aK 2

1 utu

=
1

2
[u2

t ]t + K1u
2
t + aK1uttu +

aK 2
1

2
[u2]t

=
a

2
[(ut + K1u)2]t +

1− a

2
[u2

t ]t + (1− a)K1u
2
t

wttwt + K1w
2
t + aK1wttw + aK 2

1wtw

=
1

2
[w2

t ]t + K1w
2
t + aK1wttw +

aK 2
1

4
[w2]t

=
a

4
[(wt + K1w)2]t + (

1

2
− a

4
)[w2

t ]t + (1− a

2
)K1w

2
t
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Momentum Equation

Then integrate with respect to x, and use integration by parts to
get:

d

dt

∫ L

0

a

2
((ut + K1u)2) +

a

4
(wt + K1w)2)

+
1− a

2
(u2

t ) + (
1

2
− a

4
)(w2

t )

+
D1

2
(ux +

1

2
(w2

x ))2 +
D2

2
w2

xxdx

+

∫ L

0
(1− a)K1u

2
t + (1− a

2
)K1w

2
t

+aK1D1(ux +
1

2
(w2

x ))2 +
aK1D2

2
w2

xxdx

=

∫ L

0
q(

aK1w

2
+ wt)dx
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ODE

V1(t) =

∫ L

0

a

2
((ut + K1u)2) +

a

4
(wt + K1w)2)

+
1− a

2
(u2

t ) + (
1

2
− a

4
)(w2

t )

+
D1

2
(ux +

1

2
(w2

x ))2 +
D2

2
w2

xxdx

V2(t) =

∫ L

0
(1− a)K1u

2
t + (1− a

2
)K1w

2
t

+ aK1D1(ux +
1

2
(w2

x ))2 +
aK1D2

2
w2

xxdx
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Proposition 1

[V1]t + V2 =

∫ L

0
q(

aK1w

2
+ wt)dx

Propostion 1: For a = 0 the rate of change of the sum of the
beam kinetic and potential energies (ρh[V1]t) plus the dissipated
power (ρhV2) equals the flux of the energy given to the beam
system from the fluid flow.
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Big Picture

d

dt
y(t) + x(t) = f (t)

Goal:

d

dt
[y(t)] + y(t) ≤ f (t)

d

dt
[ety(t)] ≤ f (t)et

eT y(T )− y(0) ≤
∫ T

0
f (t)etdt

y(T ) ≤ y(0)e−T + e−T

∫ T

0
f (t)etdt
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Cauchy Inequality

Cauchy’s Inequality: ∀ε > 0, we have ab ≤ εa2 + b2

4ε

q(
aK1w

2
+ wt) ≤ aK1

2
(
q2

4ε1
+ ε1w

2) +
q2

4ε2
+ ε2w

2
t
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Cauchy Inequality

[V1]t +

∫ L

0
(1− a)K1u

2
t + ((1− a

2
)K1 − ε2)w2

t

+ aK1D1(ux +
1

2
(w2

x ))2 + (
aK1D2

2
w2

xx −
aK1ε1

2
w2)dx

≤
∫ L

0
q2(

aK1

8ε1
+

1

4ε2
)dx
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Poincaré Inequality

Poincaré Inequality: Assume that 1 ≤ p ≤ ∞ and that Ω is a
bounded connected open subset of the n-dimensional Euclidean
space Rn with a Lipschitz boundary (i.e., Ω is a Lipschitz domain).
Then there exists a constant C, depending only on Ω and p, such
that for every function u in the Sobolev space W 1,p(Ω):

||u − uΩ||Lp(Ω) ≤ CΩ,p||∇u||Lp(Ω)
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Poincaré Inequality

C 2
F

∫ L

0
w2dx ≤

∫ L

0
w2

xxdx

Since we are in R, we can set CF = 1
L2 .
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Cauchy Inequality

Let ε1 = D2
2L4 =

C 2
F D2

2 :

[V1]t +

∫ L

0
(1− a)K1u

2
t + ((1− a

2
)K1 − ε2)w2

t

+ aK1D1(ux +
1

2
(w2

x ))2 + (
aK1D2

2
w2

xx )dx

≤
∫ L

0
q2(

aK1

8ε1
+

1

4ε2
)dx

James Cameron A Stability Estimate for a Nonlinear Beam



Final Inequality

V ∗2 ≤ 2V1

therefore

∫ T

0
V ∗2 (t)dt ≤ V1(0)

K1
(1− e−2K1T )

+ 2(
aK1

8ε1
+

1

4ε2
)e−2K1T

∫ T

0
e2K1T

∫ t

0
||q||2L2dτdt
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Theorem

Theorem: Let the nonlinear beam be excited by a distributed
transversal load q, then the energy functional V ∗2 satisfies the
above inequality.
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Stability Results

Remark 1: Assume ||q||L2 to be bounded by C for all time, then:

∫ T

0
V ∗2 (t)dt ≤ V1(0)

K1
(1− e−2K1T )

+ (
aK1

8ε1

C

K1
(T + e−2K1T − 1)

≤ C0 + C1T

Additionally, if limt→∞ V ∗2 (t) = A, then A <∞.
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