
Tunable topological transitions in the frustrated magnet HoAgGe

Hari Bhandari,1, 2, 3, ∗ Po-Hao Chang,3, 4 Resham Babu Regmi,1, 2 Bence Gábor
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The kagome lattice, known for its strong frustration in two dimensions, hosts a
variety of exotic magnetic and electronic states. A variation of this geometry, where
the triangular motifs are twisted to further reduce symmetry, has recently revealed
even more complex physics. HoAgGe exemplifies such a structure, with magnetic and
electronic properties believed to be driven by strong in-plane anisotropy of the Ho
spins, effectively acting as a two-dimensional spin ice. In this study, using a combina-
tion of magnetization, Hall conductivity measurements, and density functional theory
calculations, we demonstrate how various spin-ice states, stabilized by external mag-
netic fields, influence the Fermi surface topology. More interestingly, we observe sharp
transitions in Hall conductivity without concurrent changes in magnetization when
an external magnetic field is applied along a particular crystallographic direction, un-
derscoring the role of strong magnetic frustration and providing a new platform for
exploring the interplay between magnetic frustration, electronic topology, and crys-
talline symmetry. These results also highlight the limitations of a simple spin-ice
model, suggesting that a more sophisticated framework is necessary to capture the
subtle experimental nuances observed.

I. INTRODUCTION

Magnetic frustration is widely known to give rise to
a variety of exotic phases, such as quantum spin liquids
and spin ice states, which host novel particles such as Ma-
jorana fermions and magnetic monopoles [1–3]. Among
highly frustrated systems, kagome magnets stand out [4].
In a kagome lattice, corner-sharing equilateral triangles
form perfect hexagons. When these triangles are rotated
with respect to each other, they create what is called
“twisted kagome lattice” [5, 7], reducing symmetry and
increasing in-plane anisotropy. Additionally, in systems
involving rare earth elements, the crystal field splitting
introduces an additional energy scale [9]. In scenarios
where the electronic bands near the Fermi energy are de-
rived from the rare earth, there is a unique opportunity
to tune magnetism by manipulating anisotropies through
external parameters such as magnetic fields. This tuning
becomes even more compelling if the electronic bands ex-
hibit topological features, such as flat bands and Dirac
or Weyl points–key areas of interest in condensed matter
physics.

HoAgGe features a twisted kagome net formed by a
rare earth element Ho [9]. It has a non-centrosymmetric
crystal structure P 6̄2m, with alternating layers of Ho3Ge
and Ag3Ge2 along the [001] direction (Fig. 1(a)). The
equilateral triangles in the lattice are rotated by ≈ 15.6◦
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around the c-axis [8], forming the twisted kagome net-
work shown in Fig. 1(b). Previous studies have revealed
that HoAgGe undergoes two successive antiferromagnetic
transitions at 11 K (TN1), and 7 K (TN2) [8–12]. Below
TN1, the spins in Ho atoms partially order, while a fully
ordered magnetic state emerges below TN2 [8].

Given the large single-site magnetic anisotropy en-
ergy (MAE) of the f-electrons, the low-temperature

ground state has been interpreted as a
√
3×

√
3 kagome

spin ice, as shown in Fig. 1(c) [7]. There are three dis-
tinct types of Ho spins: Ho1 with spins along [120], Ho2
with a positive projection along [120], and Ho3 with a
negative projection along [120] as labelled in Fig. 1(c).

We refer to the ground-state phase, based on the ori-
entation of the Ho1 spins, as the up-down-down (UDD)
phase. When an external field is applied along the [120]
direction, the flipping of the two down-oriented Ho1 spins
results in the UUD, and UUU phases, as shown in Figs.
1(d) and 1(e). As the magnetic field increases further,
Ho2 spins flip, leading to the UUU(1) phase in Fig. 1(f)].
These phases were identified as the 1-in-2-out or 2-in-
1-out spin ice states in Ref. [8], where each spin flip
causes a magnetization jump, creating 1/3 magnetiza-
tion plateaus.

Additionally, it has been shown [7] that within the
first (1/3), and the second (2/3) plateaus, time-reversal-
like meta-stable ice-rule states — exhibiting identical
magnetization but differing in magnetotransport prop-
erties — are stabilized, presumably due to the twisting
of the Ho-kagome-net. To the best of our knowledge, the
magnetic phases developed under an external field along
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FIG. 1 : Crystal and magnetic structures of HoAgGe. a) A sketch of the crystal structure of HoAgGe. b) A view
along the c-axis, highlighting the twisted kagome network of Ho atoms in the ab-plane. (c - f) The low-temperature magnetic
structure of HoAgGe under different magnetic fields applied along the [120] crystallographic direction. The [120] direction,
relative to the crystal plane, is indicated by the black arrow. Solid lines represent the crystallographic unit cells. Red arrows in
panels c-f denote teh spin directions. ”U”, and ”D” refer to up, and down spins, respectively. Panel (c) shows the the ground
state (B = 0) UDD structure. The numbers 1, 2, 3 correspond to Ho1, Ho2, and Ho3 atoms, as defined in the main text.
At a small magnetic field B1, one down spin (D) of Ho1 flips, leading to the UUD structure (panel d). As the magnetic field
increases to B2, another Ho1 down spin flips, resulting in the UUU structure (panel e). At the saturated field, B3, spins of all
Ho3 atoms flip, producing the UUU(1) structure (panel f). These magnetic structures were determined in a previous study [8].
The green dashed lines represent the magnetic unit cell.

the [100] direction have not been previously studied, de-
spite crystallographic differences between the two cases.
Furthermore, the validity of the spin-ice model with infi-
nite MAE has never been put to quantitative tests. There
has also been no microscopic explanation proposed for
the coupling of the these metastable states or for the ap-
pearance of the narrow (1/6) and (5/6) phases, identified
in Ref. [8].

In this article, we investigate the impact of an in-
plane magnetic field on the electronic band structure us-
ing magnetization, Hall effect measurements, and density

functional theory (DFT) calculations. We find that the
twisted kagome geometry leads to topologically nontriv-
ial features such as quasi-2D bands, which have very nar-
row dispersion along a particular high-symmetry path in
the Brillouin zone, and kagome Dirac crossings. Magnetic
ordering into the ground state

√
3 ×

√
3 supercell state

results in folding of these bands, leading to a change in
Fermi surface topology. External magnetic field-induced
spin flipping that does not alter the supercell structure
has little effect on the electronic structure, even with a
substantial change in magnetization. However, when a
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spin flip transforms the supercell into the 1×1 structure,
a significant change in Fermi surface topology occurs,
causing an abrupt reversal in the Hall conductivity sign
thereby regaining the quasi-2D and Dirac bands closer to
the Fermi energy and with a significant spin polarization,
a much-anticipated outcome of band structure manipula-
tion by an external magnetic field. Even more intriguing,
when the external magnetic field is aligned along the crys-
tallographic a-axis, the Hall conductivity exhibits signif-
icant changes in Fermi surface topology without a corre-
sponding change in magnetization. This anomalous be-
havior is attributed to magnetic field-induced frustration
caused by the distortion of the perfect kagome geometry.
These findings highlight the twisted kagome lattice as an
important platform for exploring the interplay between
magnetism and band topology.

II. RESULTS AND DISCUSSION

0 1 0 0 2 0 0 3 0 00

1 0 0

2 0 0

3 0 0

4 0 0

T  ( K )

 

��
(µΩ

 cm
)

� 0 0 1

� 1 0 0
� 1 2 0

0 1 0 0 2 0 0 3 0 00 . 0

0 . 5

1 . 0

0 5 1 0 1 5 2 0- 0 . 0 5
0 . 0 0
0 . 0 5
0 . 1 0

T  ( K )

 

��
(cm

3 /m
ol-

F.U
.)

� 0 0 1
� 1 0 0� 1 2 0

T  ( K )

 

d�
�/d

T (
cm

3 /m
ol-

F.U
. K

-1 )

T N 1

T N 2
� 1 2 0

� 1 0 0

( a )

( b )

FIG. 2 : Physical properties characterization of
HoAgGe. a) Magnetic susceptibility measured with an ex-
ternal magnetic field of 0.1 T along [100], [120], and [001]
directions using the field-cooled protocol. b) Electrical re-
sistivity as a function of temperature, ρ(T ), measured with
current applied along [100], [120], and [001] directions. The
yellow lines represent linear fits to ρ(T ) above 30 K. The in-
set shows an optical image of a polished crystal, illustrating
crystallographic directions within the ab-plane.

A. Magnetic susceptibility and resistivity

The magnetic susceptibility (χ) and longitudinal re-
sistivity (ρ) along the three crystallographic directions
[100], [120] and [001] are shown in Fig. 2. A clear anti-
ferromagnetic transition at 11 K (TN1) is observed in χ100

and χ120, while χ001 shows a steady increase down to 1.8
K, the lowest temperature measured [Fig. 2(a)]. Never-
theless, TN1 is detected in the resistivity along all three
directions [Fig. 2(b)]. Furthermore, both TN1 and TN2

are evident in the derivative of susceptibility [see the inset
of Fig. 2(a)] and of resistivity (Supplementary Fig. S1).
This is consistent with previous studies [8–12]. The in-
plane resistivities both along [100] (ρ100) and [120] (ρ120)
are almost identical, and in the entire temperature range
larger than the out-of-plane resistivity ρ001, suggesting
an anisotropic Fermi surface [13]. Additionally, in the
non-magnetic state, resistivity in either direction above
30 K is approximately linear in temperature, shown by
the yellow lines in Fig. 2(b).

B. Magnetization and Hall conductivity

In this study, we focus on comparing Hall conduc-
tivity with magnetization, particularly in the magnetic
states below TN2. Figure 3(a) shows the magnetiza-
tion (M , in blue), and Hall conductivity (σxz, in red)
for B||[120] at 1.8 K. Here σxz is measured with cur-
rent I along [100] and Hall voltage along [001]. The
magnetization curve exhibits three major jumps at the
fields B1 = 0.8 T, B2 = 2.1 T, and B3 = 3.2 T, corre-
sponding to metamagnetic transitions from ground state
UDD to UUD, UUU, and UUU(1) states, forming the
1/3 plateaus, as depicted in Figs. 1(c-f). Importantly, it
does not fully saturate above B3, but keeps increasing at
a sizeable rate of approximately 0.15 µB/T, suggesting
that the assumed Ising MAE is large, but not dominant.

In addition, two smaller jumps in M appear just
above B1 and B2 corresponding to 1/6 and 5/6 magneti-
zation plateaus, also observed previously [7, 8]. Regard-
ing Hall conductivity, σxz shows a positive slope below
B3, with slight changes corresponding to each of the M
jumps. At B3, σxz abruptly changes sign and decreases
by about 1600 S/cm before levelling off. Notably, σxz(B)
is not linear like M in the saturated [UUU(1)] state. In
the UUD and UUU states, the plateaus in σxz are clearly
split, while those in M are not. This hysteretic behavior
in Hall conductivity has been attributed in Ref. [8] to
time-reversal-like metastable toroidal spin-ice structures
with opposite chirality, although the microscopic mech-
anism of coupling toroidicity with the magnetic field is
unclear.

When the field is applied along the [100] direction,
which is qualitatively different from [120] (see Fig. 3(b)),
three main magnetization steps are again observed at
B1 = 0.9 T, B2 = 2.1 T, and B3 = 2.6 T. Notably, be-
tween B = 0 and B2, the magnetization along [100], and
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FIG. 3 : Magnetization and Hall Conductivity measured with magnetic field B and current I applied along
different crystallographic directions. (a-c) Hall conductivity (red curve, plotted on the left axis) and magnetization (blue
curve, plotted on the right axis) as a function of magnetic field for magnetic field B||[120] and I||[100] (a), B||[100] and I||[120]
(b), and B||[001] and I||[120] (c). (d-f) Hall conductivity as a function of magnetic field at various temperatures for B||[120]
and I||[100] (d), B||[100] and I||[120] (e), and B||[100] and I||[001] (f). Dashed lines and shaded regions of different colors serve
as guides for the eye, indicating transitions at the magnetic fields B1, B2, and B3 observed in the magnetization measurements.

[120] overlaps (see supplementary Fig. S3(a)). However,
B3||[100] is approximately 0.6 T lower than B3||[120],
and the magnetization along [100] is about 0.4 µB per
F.U. less than that along [120], consistent with the net x
and y projection ratio in the twisted kagome geometry,

2/
√
3 ≈ 1.15. Meanwhile, the differential susceptibility

dM/dT above B3 is the same for both the [100] and [120]
direction.

The Hall conductivity σyz presented in Fig. 3(b)
shows a positive slope below B2, similar to that of σxz,
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and drops sharply above B2, resembling the behavior of
σxz at B3. While |σxz| continues to increase steadily
after the drop at B3, |σyz| initially increases similarly
to σxz after the drop at B2, up to about B ≈ 5 T, at
which point it rises sharply. There is no corresponding
feature in magnetization for this sharp rise in σxz, high-
lighting a complete decoupling between Hall conductivity
and net magnetization. This behavior resembles the σxz

plateaus in the UUD and UUU states [7], but in this
case, the change in σyz without any alteration in magne-
tization is far more pronounced, pointing to a new and
significant magnetism effect on the electronic band struc-
ture without any effect on magnetization. To the best of
our knowledge, such a drastic change in Hall conductiv-
ity without any change in the M response has not been
reported in any other materials.

Finally, when B is applied along [001] direction, the
magnetization (M) increases steadily, with a very large
slope at small fields, dM/dT ≈ 1.6µB/T. Around 3 T the
slope gradually changes, reaching a similar slope to the
in-plane response only near 9 T. The implications of this
behavior, which are inconsistent with the spin-ice model,
are presented below in the Discussion section. The Hall
conductivity σyx maintains a positive slope across the
entire field range from 0 to 9 T, with only a slight slope
change near 3 T as depicted in Fig. 3(c). It is worth not-
ing that the slope magnitude of σxz, σyz, and σyx below
2 T remain fairly consistent, ranging from ∼ 120 to 160
S/cm-T, suggesting that carrier concentration remains
nearly constant in these cases.

To get a deeper insight into the various features ob-
served, particularly in σxz and, σyz, we analyzed their
temperature dependence for different directions of I and
B. Figure 3(d) illustrates the behavior of σxz as the tem-
perature decreases from 16 K to 1.8 K. At 16 K, σxz ex-
hibits an overall negative slope, indicating that electrons
are the dominant carriers. Just below TN1, σxz exhibits
a slight positive slope, suggesting that holes have become
the primary charge carriers, as seen in the 8 K data (addi-
tional temperatures are provided in Supplementary Fig.
S4). However, at B3, σxz drops sharply, and returns to
a negative slope, similar to the behavior observed at 16
K data. This trend in σxz continues as the temperature
decreases to 1.8 K. Above B3, the magnitude of σxz in-
creases progressively as the temperature decreases from
TN2 to 4 K. Nevertheless, a significant increase in this
magnitude is observed between 4 K and 1.8 K, indicat-
ing the emergence of an additional Hall signal at 1.8 K.

The temperature dependence of σyz is depicted in
Fig. 3(e). After the B2 drop, the magnitude of σyz at 1.8
K does not exceed its value at 16 K, which corresponds
to the non-magnetic state. Between B2 and 5 T at 1.8 K,
σyz tracks the 16 K data. However, above 5 T, the 1.8 K
data turns sharply followed by a curving off. This upturn
and subsequent curving off are observed on warming up
to 5 K, but disappear at 6 K. At and above 6 K, |σyz|
shows a monotonic increase with the magnetic field after
the initial drop. Notably, σyz does not display hysteresis

at 1.8 K, although significant hysteresis is observed at 4 K
during the initial upturn and the subsequent downturn,
centered at around 3.2 and 7 T, respectively. At 5 K, the
hysteresis is observed only after the first upturn. Similar
Hall conductivity behavior is observed when current and
voltage directions are reversed, with the magnetic field
aligned along [100] (σzy) as depicted in Fig. 3(f). The
behavior below B2 remains consistent, but above B2, the
sharp slope changes in σzy shift slightly toward higher B.

In summary, Hall conductivity measurements reveal
four notable features: (1) The Hall conductivity, which
shows electron-like behavior in the non-magnetic state,
shifts to hole-like behavior with magnetic ordering be-
low B2 and B3 for magnetic fields aligned along the [100]
and [120] directions, respectively. (2) At B2||[100] and
B3||[120], there is an abrupt sign change in Hall conduc-
tivity, reverting to electron-like behavior. (3) A signif-
icant enhancement in Hall conductivity is observed im-
mediately after the B3 sign change, particularly below 4
K, when B is applied along the [120] direction. (4) Below
TN2, Hall conductivity below 5 K measured with B along
[100] exhibits multiple changes after the B2 drop without
any corresponding change in magnetization.

C. Electronic band structure calculations

To understand the microscopic origins of these Hall
conductivity features, we performed electronic band
structure calculations, as depicted in Fig. 4. These calcu-
lations were conducted in three states: the non-magnetic
state, the magnetic UUD state, and the UUU(1) state.
As shown in Figs. 1(c-e), the UDD, UUD, and UUU

states share the same
√
3×

√
3 magnetic unit cell. How-

ever, in the UUU(1) state, the magnetic unit cell is re-
duced to 1 × 1, the same as in the non-magnetic state,
but with ordered spins.

The band structure in the non-magnetic state,
shown in Fig. 4(a), reveals a large electron pocket along
the hexagonal first Brillouin zone boundary, and two
smaller hole pockets located along Γ − A. The electron
pockets generate the electron-like Hall conductivity, es-
pecially for in-plane measurements. Fig. 4(a) shows,
∼ 150 meV above the Fermi energy, these quasi-2D bands
hardly changing along MK but highly dispersive along
M − Γ, and K − Γ, forming a Dirac-like crossing at K.

With the onset of antiferromagnetic ordering, in the
UUU state, as shown in Fig. 4(b), the band structure
becomes considerably more complex due to band fold-
ing from the tripled unit cell. The individual pockets,
first of all, the electron donuts in Fig. 4(d), reconnect
and the topology of the Fermi surface changes dramati-
cally — even though the band’s dispersion changes only
moderately. Experimental evidence of hole-like conduc-
tivity in this state suggests that the reconnection of the
electron pockets makes them hole-like, which, although
challenging to quantify, is reflected in the band struc-
ture. The small spikes observed in Hall conductivity at
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FIG. 4 : Calculated electronic structure of HoAgGe (a) Band structure in the non-magnetic state. (b) Electronic
structure in

√
3 ×

√
3 magnetic state UUD. (c) Electronic structure in 1 × 1 [UUU(1)] stae. (d) Fermi surface in the UUU(1)

state. In the nonmagnetic state Fermi surface is very similar, with the main difference being that the orange donuts are
disconnected, though they retain the electron character. The colors correspond to those in panel (c).

B1 and B2 correspond to spin flips at these magnetic
fields. However, these spin flips do not significantly alter
the magnetic unit cell, resulting in minimal changes to
the sign and magnitude of the Hall conductivity. This is
further supported by the overall positive slope of σyx in
Fig. 3(c) where the magnetic unit cell does not change.

In the UUU(1) state, the magnetic unit cell reduces
to 1×1, eliminating band folding and resulting in a Fermi
surface similar to the non-magnetic state, shown in Fig.
4(c). The magnetic ordering induces spin splitting, push-
ing the quasi-2D bands and Dirac-like crossings to the
Fermi energy, which makes the orange donuts touch but
does not change their character, restoring the electron-
like Hall conductivity. Consequently, above B3, where
the UUU(1) magnetic structure stabilizes, the sign of the
hole conductivity changes.

A more rigorous verification of the calculated band
structure, particularly the Fermi surface, comes from
the longitudinal transport. We calculated the plasma
frequency in the paramagnetic state and found that
ω2
pz ≈ 3.2ω2

px. Using the basic Drude model, where

σα = ω2
pατα/4π (with τα representing the anisotropic re-

laxation time), we observed that the resistivity shown
in Fig. 2, is almost identical for the [120] and [100] di-
rections, as expected. Additionally, above ∼ 30 K, it
follows a perfectly linear trend, indicating that the pri-
mary scattering mechanisms are spin fluctuations with

energy ≲ 4 × 30kB ∼ 10 meV. This agrees with the
exchange coupling estimate from Ref. [8], and our
first-principles calculations presented in detail in the
Supplementary Information section S1. The resistivity
in this range is well described by ρx(T )=70.6+0.82T,
ρz(T )=30.1+0.25T µΩ·cm (see Fig. 2(b)). The ratio
of the slopes is 3.28, in excellent agreement with DFT,
confirming the accuracy of the calculated Fermi surface.
Note that the ratio of the constant terms above is smaller,
2.34, indicating that scattering off defects is anisotropic,
with τx about 30% smaller than τz.

D. Discussion

The experimentally reported magnetic structures for
B||[120] account for most of the observed features in the
Hall conductivity σxz, including small spikes during tran-
sitions into the UUD and UUU phases, and the abrupt
sign reversal in the UUU(1) phase. While these changes
in the transport and magnetic properties are clearly asso-
ciated with discontinuous spin reorientations, suggested
in Ref. [8], several qualitative effects remain unexplained
/cannot be explained by the ideal spin-ice model with
infinite MAE. Thus, obtaining experimental estimates of
both the exchange coupling and the MAE is crucial. To
this end, we analyzed magnetization data above B3 for
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in-plane fields and over the full range for out-of-plane
fields. The details are provided in the Supplementary
Material section S2, where we used slopes and magnetiza-
tion values in all three directions to find that the in-plane
magnetic anisotropy can be described by the lowest-order
term K|| cos

2 ϕ (with ϕ representing the deviation from
the easy axis), and K|| ≈ −5.6 ± 0.6 meV, substantial
compared to the exchange coupling but not overwhelm-
ingly larger.

Interestingly, the out-of-plane anisotropy cannot be
described as K⊥ cos2 θ (θ characterizes tilting away from
the plane). Instead, it requires higher order terms such
as K ′

⊥ cos4 θ and K ′′
⊥ cos6 θ, as seen in similar studies

on RMn6Sn6 compounds [9]. Moreover, the lowest-order
term for out-of-plane anisotropy is anomalously soft, with
K⊥ ≈ 1 meV, suggesting very strong spin-canting fluc-
tuations. Thus, the ideal spin-ice model is insufficient,
and the unexplained features seen in this and previous
studies likely arise from deviations from this model.

For B||[100], the magnetic structure remains un-
known. However, the Hall conductivity in this configu-
ration suggests that, similar to B||[120], a change in the
magnetic unit cell leads to a sign reversal of σyz. The sign
change of σyz in the UUU(1) phase, where magnetization
increases linearly with B, is unexpected and intriguing.
We tentatively attribute it to ordering processes in the
Ho1 sublattice. In the limit K ≫ MBx (K representing
the in-plane anisotropy and M the Ho moment), the Ho1
spins are perpendicular to x and do not contribute to
the total magnetization. In this limit, these spins do not
couple either to the external field Bx or to the saturated
Ho2,3 sublattices. Instead, they are coupled to each other
through weak third-neighbor interaction, potentially me-
diated by Dzyaloshinskii-Moriya interaction (DMI) (for
Ho1–Ho1 bonds, the DMI vector D||z), which couples
the x and y projections. Along with the finite stiffness
of Ho spins with respect to canting away from the easy
directions, this suggests that twisting the kagome lattice
introduces a unique mechanism for coupling spins to the
transport, driven by the resulting frustration. The irre-
versible Hall plateaus with the same magnetization, as
observed in Ref. [8], as well as the sign-flip of the Hall
conductivity without a corresponding change in magne-
tization seen in our work, may also stem from deviations
from the ideal Ising spin dynamics.

E. Conclusion

The kagome lattice has been extensively studied for
its magnetic frustration, and electronic topological prop-
erties, including flat and Dirac bands. However, the
role of structural twisting in this lattice has been largely
overlooked. In this regard, our findings on HoAgGe
open a new pathway for investigating the interaction
between structural distortion, magnetic frustration, and
their influence on electronic topology. This is partic-
ularly intriguing as spin-polarized quasi-2D bands and

Dirac crossings/anti-crossings are in close proximity of
the Fermi energy. Additionally, HoAgGe is a part of the
larger RTX family of compounds [14–19] (where R is a
rare earth element, T is a transition metal, and X is ei-
ther Ge or Si), providing the ability to tune magnetism
through different combinations of R, T, and X atoms.

III. METHODS

Crystal growth and structural characteriza-
tion. Single crystals of HoAgGe were grown by the flux
method considering eucetic point of Ag-Ge. Ho pieces
(Thermo Scientific 99.9%), Ag shots (Thermo Scientific
99.999%), and Ge pieces (Thermo Scientific 99.9999%)
were loaded into a 2 ml aluminum oxide crucible in a
molar ratio of 1:7.6:2.5. The crucible was then sealed in
a fused silica ampule under vacuum. The sealed ampule
was heated to 1175 ◦C over 10 hours, kept at 1175 ◦C for
10 hours, and then cooled to 825 ◦C over one week. Once
the furnace reached 825 ◦C, the tube was centrifuged to
separate the crystals in the crucible from the molten flux.
Several well-faceted long crystals [see the inset in Fig.
2(b) for an optical image of a polished crystal] up to 150
mg were obtained in the crucible. The crystal structure
was verified by Rietveld refinement [20] of a powder X-ray
diffraction pattern collected on a pulverized single crystal
using a Rigaku Miniflex diffractometer. The Rietveld re-
finement was performed using the FULLPROF software
[21] and is depicted in Supplementary Fig. S7. Crys-
tal and magnetic structures were drawn using VESTA
software [22].

Physical property measurements. DC magne-
tization, resistivity, and Hall measurements were per-
formed in a 9 T Quantum Design Dynacool Physical
Property Measurement System (PPMS). The AC Mea-
surement System (ACMS II) option was used for the DC
magnetization measurements. Single crystals of HoAgGe
were trimmed to adequate dimensions for electrical trans-
port measurements. Crystals were oriented with the
[001], [100], and [120] directions parallel to the applied
field for the c-axis and ab-plane measurements. Resis-
tivity and Hall measurements were performed using the
4-probe method. Pt wires of 25 µm were used for electri-
cal contacts with contact resistances < 30 Ω. Contacts
were affixed with Epotek H20E silver epoxy. An electric
current of 4 mA was used for the electrical transport mea-
surements. Contact misalignment in the magnetoresis-
tance and Hall resistivity measurements were corrected,
respectively, by symmetrizing and anti-symmetrizing the
measured data in positive and negative magnetic fields.
The magnetic and magnetotransport data presented here
were measured on several samples from different growth
batches to check the reproducibility.

Electronic structure calculations. Electronic
structure calculations were performed using Vienna ab
initio Simulation Package (VASP) [23] within projec-
tor augmented wave (PAW) method [24]. The Perdew-
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Burke-Enzerhof (PBE) [25] generalized gradient approx-
imation was employed to describe exchange-correlation
effects. For the ordered states, we added a Hubbard U
correction with the fully localized limit double-counting
recipe [26, 27], to account for the strongly correlated Ho
4f states and their localized magnetic moments. The ef-
fective parameter U − J = 8 eV was used. The orbital
moment on the Ho site obtained from the calculations is
consistently 6 µB which satisfies Hund’s rule as expected.
For the paramagnetic state, the open-core approximation
is employed, where the 4f electrons in the Ho pseudopo-
tential are treated as part of the frozen core, simulating
the average effect of the disordered magnetic moments.
The plasma frequencies are obtained by integration of the
Fermi velocity implemented in VASP via the LOPTICS
tag [28].
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S1. EXCHANGE COUPLING CONSTANTS

A numerical-orbital-based [1] DFT code OpenMX [2] was used for the calculations of magnetic properties. The
exchange coupling constants up to 5th nearest neighbors (defined in Fig. S2) are calculated perturbatively using
Green’s function method [3, 4] implemented in OpenMX 3.9 [5, 6]. The effective spin-Hamiltonian is defined as

H =
∑
⟨ij⟩1

J1n̂in̂j +
∑
⟨ij⟩2

J2n̂in̂j +
∑
⟨ij⟩3a

J3an̂in̂j +
∑
⟨ij⟩3b

J3bn̂in̂j

+
∑
⟨ij⟩4

J4n̂in̂j +
∑
⟨ij⟩5

J5n̂in̂j ,
(S1)

where n̂ is the unit vector along local easy-axis, Jn is the exchange coupling parameters for the n-th NN interaction
summarized in Table IV, and summation is over all bonds of a given type. Note that there are two inequivalent 3rd
NN interactions denoted as J3a and J3b.
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FIG. S2 : Definitions of effective exchange coupling constants up to 5 nearest neighbor.

# of NN meV

J1 4 3.154

J2 2 -1.395

J3a 4 -0.412

J3b 2 -0.552

J4 2 -0.073

J5 4 -0.212

TABLE S1 : Effective exchange coupling constants up to 5th nearest neighbor calculated using Green’s function method.

S2. MAGNETIZATION

Magnetization, M , for the case of B||[120] is both rich and intriguing. To fully understand the interactions within
the system, it is necessary to consider all three spatial directions. Previous studies [7, 8] explained these phenomena
using a “spin-ice” model, which assumes infinite easy-axis anisotropy, with the axis orientation varying from site to
site according to the three-fold symmetry. However, the non-zero slope of M(B) in the fully saturated spin-ice phase
suggests that even at magnetic fields of about 5 T, the Ho spins are still slightly canted. This is consistent with the
nonlinear Hall conductivity observed for a linear increase in magnetization (see Figs. 3(a) and S3(a)). Using this
information and assuming a lowest-order in-plane angular anisotropy, we can express the total anisotropy energy for
an individual site as K||M

2 cos2 (ϕ− α), where ϕ− α is the canting angle away from the easy axis, which is assumed
to be at an angle α to the Cartesian x ([100]). Zeeman energy will then be −hM ; here M is the full moment of
an individual Ho ion, and h the applied field. Note that for Ho1 α = 90◦, and for Ho2,3 α = ±30◦. Neglecting the
smaller exchange coupling, we find: χ120 = [χ120(Ho2)+χ120(Ho3)]/3 = 1/4K and the net magnetic moment per site:
M120(B) = (2/3)M +h/4K. Extracting these parameters from the experimental data in the saturated phase, we find
M ≈ 7.7 µB , in excellent agreement with neutron data [7], and KM2 ≈ 6.2 meV, a typical value for 4f ions.

Similarly, for B||[100], M100(B)=(1/
√
3)M + h/4K. Here, all three ions contribute to χ. By fitting our data, we

find M ≈ 7.5 µB , KM2 ≈ 5.0 meV, confirming the consistency of the model (within ± 10%). This analysis shows
that while the spin-ice (infinite anisotropy) model is a useful first approximation, it remains a rough one.

On the other hand, the experimentally measured M001(B) does not align with the spin-ice model at all. In
this case, assuming a cos2 ϕ easy-plane anisotropy, χ = 1/2K. The low-field slope of the experimental data is at
least ten times higher than the saturation-regime in-plane slope, suggesting that the quadratic anisotropy coefficient
K2M

2 ≈ 1.0 meV. Moreover, the slope gradually decreases with increasing field, dropping to about 0.13, even
lower than the in-plane values. The ramification is that the out-of-plane anisotropy is strongly non-quadratic. In
f-electron ions, three terms (cos2 ϕ, cos4 ϕ, and cos6 ϕ) are permitted, without any parametric smallness[9]. Indeed, the
nonlinear susceptibility is reasonably well described by the 6-th order Hamiltonian, E = K2M

2 cos2 ϕ+K4M
4 cos4 ϕ+

K6M
6 cos6 ϕ, where K2M

2 is as above, K4/K2 = −0.4, and K6/K2 = 0.11. This indicates that the out-of-plane spin
dynamics differ significantly from the in-plane dynamics and are far from the strong anisotropy limit of the spin-ice
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model. Notably, if the quartic coefficient were 60% larger, the system would transition abruptly to an easy-cone
anisotropy with the cone angle approximately 30◦ from the plane. This effect could occur if Ho were substituted by
another rare-earth element, as seen in the 166 family of materials[9].
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S3. HALL CONDUCTIVITY, HALL RESISTIVITY AND MAGNETORESISTANCE
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S4. STRUCTURAL CHARACTERIZATION
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FIG. S7 : X-ray diffraction. Rietveld refinement of the X-ray powder pattern of HoAgGe measured at room temperature.

Space group P 6̄2m (No. 189)

Unit cell parameters a = 7.0761(7) Å

c = 4.1788(2) Å

RWP 11.7 %

RB 5.499 %

RF 6.778 %

TABLE S2 : Selected data from Rietveld refinement of powder X-ray diffraction collected on ground crystals of HoAgGe.
Atomic coordinates are 0.58481, 0, 0 for Ho; 0.24866, 0, 1

2
for Ag; 1

3
, 2

3
, 1

2
for Ge(1); and 0, 0, 0 for Ge(2).
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