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We introduce a general class of orbital-free density functionals (OF-DFT) decomposed into a local part
in coordinate space and a local part in reciprocal space. As ademonstration of principle,we choose for
the former the Thomas-Fermi-von Weizsäcker (TFW) kinetic energy density functional (KEDF) and for
the latter a form derived from the Lindhard function, but with the two system-dependent adjustable
parameters. These parameters are machine-learned from Kohn-Sham data using Bayesian linear
regressionwith a kernelmethod,which employsmoments of the Fourier components of the electronic
density as the descriptor. Through a number of representative cases, we demonstrate that our
machine-learned model provides more than an order-of-magnitude improvement in the accuracy of
the frozen-phonon energies compared to the TFWKEDF,with negligible increase in the computational
cost. Overall, this work opens an avenue for the construction of accurate KEDFs for OF-DFT.

The foundation of modern first-principles computational materials science
is theHohenberg-Kohn (HK)1 density functional theory (DFT),wherein the
electron density replaces the many-body wavefunction as the fundamental
quantity of interest. In particular, the HK theorem states that there exists a
universal functional of the electron density n(r), the minimization of which
results in the exact ground-state density and energy, i.e., corresponding to
the many-body interacting system. While the exact form of the HK func-
tional is unknown, it can be assumed to be partitioned as: E[n] = T[n]+
W[n], where T is the electronic kinetic energy, andW is the energy arising
from electron-nuclei and electron-electron interactions. Though approx-
imations for the interaction energy functional are well-established1–3, the
same cannot be said for the kinetic energy functional.

This problem can be circumvented by the formally exact Kohn-Sham
formalism4, wherein the real system of interacting electrons is replaced by a
fictitious systemof non-interacting fermions that generate the samedensity.
In particular, the kinetic energy of the non-interacting fermionsTs is written
exactly in terms of the single-particle orbitals, the electron-electron inter-
actions aremodeledwithin theHartree approximation, and themany-body
effects are collected in the so-called exchange-correlation functional, for
which anumberof approximations at various levels of complexityhave been
developed5. This formalismhas found tremendous success over the past few
decades, firmly establishing itself as one of the cornerstones of materials
science research. However, even with the development of highly efficient
and scalable implementations6, the range of systems that is accessible to a
rigorous Kohn-Sham investigation is still limited. This is in significant part
due to the cubic scaling with the number of atoms, which arises from the
orthogonality constraint on the Kohn-Sham orbitals.

An alternative to the Kohn-Sham formalism, while still in the spirit of
HK DFT, is an orbital-free DFT (OF-DFT), where the real system of
interacting electrons is replaced with a fictitious system of non-interacting
bosons. SinceOF-DFTrequires the calculationofonly a single orbital,which
corresponds to the square root of the electron density, it scales linearly with
system size, allowing access, compared toKohn-ShamDFT7, to systems that
are significantly larger. Given the success of Kohn-ShamDFT, it is common
to maintain the same form in OF-DFT, while replacing the orbital-
dependent electronic kinetic energywith a functional of the density, referred
to as kinetic energy density functionals (KEDF). However, the KEDFs that
have been developed for OF-DFT, including those discussed below, suffer
from limited accuracy and transferability, which has limited the use of OF-
DFT in practice. Note that an alternative strategy to developing KEDFs is to
instead use the electron density fromOF-DFT, which is found to be close to
that from Kohn-Sham DFT, within the non self-consistent Kohn-Sham
formalism for evaluating the energy8–12. Though this strategy is found to
significantly improve the accuracy, and lower computational cost relative to
Kohn-Sham DFT, it still retains the cubic scaling complexity of the Kohn-
Sham formalism.

The earliestOF-DFTKEDFs are theThomas-Fermimodel and the von
Weizsäckermodel2,5,13, the latter representing a lowerboundonTs. Kirzhnits
proposed an interesting strategy toenhance the effectiveness of theKEDFby
combining the TFmodel with theWmodel, the latter scaled by a parameter
λ. Here, λ = 1 provides the exact KEDF for rapidly varying small density
perturbation (large wave-vector q), while 1

9 provides the exact KEDF for
slowly varying densities (i.e., small wave-vector q)14–16. In addition to other
choices of λ3, the parameter can also be made to vary spatially17.

1Department of Physics andAstronomy,GeorgeMasonUniversity, Fairfax, VA, 22030,USA. 2QuantumScience andEngineeringCenter, GeorgeMasonUniversity,
Fairfax, VA, 22030, USA. 3Department of Mathematical Sciences, GeorgeMason University, Fairfax, VA, 22030, USA. 4College of Engineering, Georgia Institute of
Technology, Atlanta, GA, 30332, USA. e-mail: imazin2@gmu.edu

npj Computational Materials |          (2025) 11:149 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01643-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01643-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01643-0&domain=pdf
mailto:imazin2@gmu.edu
www.nature.com/npjcompumats


Given the limited accuracy of these KEDFs, a number of semilocal
functionals have been developed that still satisfy the constraint arising from
the aforementioned lower bound18–23. Although these functionals demon-
strate improved accuracy, they are semi-empirical and are not able to
reproduce the Lindhard response function in the homogeneous electron gas
limit24. This limitation has driven the development of KEDFs that are non-
local in coordinate space, i.e., depend on the density correlation at finite
distances, which also reproduce the uniform electron gas limit15,16,25,25–39.
Though such functionals have found success in particular applications25,32–38,
they still have found limited use in practice due to significantly larger com-
putational expense, while still needing specialized kernels to be developed for
different materials systems25,34,36,37,39. This has motivated the recent develop-
ment of a number of machine-learned KEDFs40–48. However, the models so
developed lack accuracy and transferability, have been mainly tested on
model systems. Moreover, they are extremely complex and therefore do not
provide the physical insight necessary for future developments.

In this work, we discuss a particular class of KEDFs for OF-DFT: those
that canbedecomposed into a local part in coordinate spaceanda local part in
reciprocal space. Some of the proposals discussed above can be shown to
belong to this class. As a demonstrationof principle, we choose for the former
the TFW KEDF and try for the latter a functional form derived from the
Lindhard response function, but with the two adjustable parameters made
system-dependent. These parameters aremachine-learned fromKohn-Sham
data using Bayesian linear regression in conjunction with the kernel method,
while employing moments of the Fourier components of the electronic
density as the descriptor. Through representative cases of metals and binary
alloys, we demonstrate that when the part of the functional that is local in
reciprocal space is applied non-self-consistently for frozen phonon calcula-
tions, there ismore thananorder-of-magnitude improvement in theaccuracy
of the energy relative to the TFWKEDF, with negligible increase in the cost.

Results
Formalism
The KEDFs can typically be decomposed into local and non-local compo-
nents in r-space, such that:

Ts½n� ¼ TTFλW½n;∇n� þ TNL½n�
¼ TTF½n� þ λ � TW½n;∇n� þ TNL½n�

ð1Þ

where

TTFλW ¼
Z

3
10

ð3π2Þ
2
3nðrÞ53

� �
dr

þ
Z

λ

8
j∇nðrÞj2
nðrÞ

� �
dr:

The choice of λ has been a point of contention for years. While the original
choice of λ = 149,50 represents a lower bound on Ts and is correct in the limit
of small and rapid (large wavevector) density variations, Kirzhnits’ version,
λ = 1/9, provides the exact response in the limit of slow but not necessarily
small variations14. Regardless of the value of λ, the functional TFλW gen-
erally provides a poor representation of the linear response function and,
consequently, of theKEDF3,17,51. This shortcomingnecessitates development
of more accurate functionals with an improved response function, moti-
vating the incorporation of non-local KEDFs8–12. From a broader
perspective, these nonlocal KEDFs are density-driven and employ specific
forms, often constrained by system-dependent physical considerations, to
develop density-weighted kernels, K½n�ðr; r0Þ7. The general formulation of
nonlocal KEDFs in terms of a kernel K½n�ðr; r0Þ can be expressed as:

TNL ¼
Z

drdr0f ðnðrÞÞK½n�ðr; r0Þf ðnðr0ÞÞ; ð2Þ

where the function f(n) can take the various forms7,15,25,32 etc.While showing
good results for particular problems, suchnonlocalKEDFhave found rather

limited use in practice due to greater computational expense and the need
for specialized kernels to be developed for different materials systems7. Our
previous study on this issue suggests that the primary challenge does not
stem from the self-consistent density distribution resulting fromorbital-free
functional, but rather from the error of calculating the total energy from a
given density distribution using local orbital-free functionals, that is, from
poor description of the charge susceptibility8. Since the most common
application of DFT is on calculated energy differences upon the external
perturbation, we first propose to seek for a density functional in terms of the
density difference, i.e.,

ΔTNL ¼
Z

drdr0 ΔnðrÞK½n�ðr; r0ÞΔnðr0Þ; ð3Þ

whereΔn(r) = n(r)− neq(r) is the deviation of the density distribution from
the equilibrium unperturbed density neq(r) due to the frozen phonon-type
perturbation, and ΔTNL is a nonlocal KEDF correction to energy difference
Δ, when going from neq(r) to n(r), rather than a total-energy functional.
Note that in general Eq. (3) is nonlocal not only in the real space, but also in
the reciprocal space after the Fourier transform. Assuming that K½n�ðr; r0Þ
depends only on the coordinate difference, K½n�ðr� r0Þ, it can be made
local, i.e., involve a single reciprocal lattice summation. Importantly, this is
still amuchbetter approximation thana local-in-real-space functional. For a
uniform electron gas the function ðKÞ is nothing but the Lindhard function,
which is strongly nonlocal in the coordinate space, but strictly local in the
momentumspace. Furthermore,we believe that for thedensity differences it
is a much better approximation than for the total density functionals7,15,25,32.
Thus, we assume that

ΔTNL ¼
Z

drdr0 ΔnðrÞK½n�ðr� r0ÞΔnðr0Þ: ð4Þ

For a homogeneous electron gas the functional can be further constrained to
depend only on ∣r� r0∣, leading to the following nonlocal KEDF correction:

ΔTNL ¼
Z

drdr0 ΔnðrÞ ~χ�1
NLð∣r� r0∣ÞΔnðr0Þ; ð5Þ

where~χ�1
NL is density-dependent susceptibility kernel derived fromLindhard

response function. Similar ideas have been explored in previous works,
notably in the Perrot functional52 and in the ansatz proposed by Chai and
Weeks53.While the expression forK in Eq. (4) does not have to be isotropic
as in Eq. (5), we will accept in the following the latter form, as a reasonable
starting point.

In a periodic system, Δn(r) =∑GδnGe
iG⋅r represents the density

expansion in the reciprocal basis set G, and δnG denotes the density varia-
tion. In the following we will consider potential perturbations that do not
break periodicity ("frozen phonons”). By construction, the non-local cor-
rectionTNL is a functional of the total density n obtained fromOF-DFT and
is assumed to be local in q-space. The discretized version of the nonlocal
KEDF in q-space is obtained by taking the Fourier transform of Eq. (5), as
given by:

ΔTNL½nðGÞ� ¼ Ω
X
G

δn2G ~χ�1
NL½n�

� �
G : ð6Þ

Here, Ω is the volume of the entire cell in r-space. The summation spans
over discrete reciprocal vectors G and δnG is the density variation.

At this point, ~χ�1
NL½n� is an arbitrary functional, which needs to be

parametrized in terms of nG; a suitable functional form needs to be
selected, and the parameters entering this form will be functions of
nG, as determined through machine learning. To guess an optimal
functional form is a challenging task that can only be solved when a lot
of experience will have been accumulated. Keeping inmind the case of
uniform electron gas, we select somewhat arbitrarily, the functional
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form corresponding to the difference between the Lindhard function
and the quadratic response in the generalized TFλW functional. This
form includes just two parameters, the free-electron-gas Fermi vec-
tor, and the coefficient in front of the von Weizsacker term, λ.

In this case, the nonlocal KEDF kernel, ~χ�1
NL, will be written as

~χ�1
NL½n�ðGÞ ¼ ~χ�1

Lind � ~χ�1
TFλW ð7Þ

where:

~χ�1
Lind ðη0ðnðGÞÞÞ ¼ � π2

kF
1
2 1þ 1�η02

2η0
��

× ln 1þη0
1�η0

��� ������1
;

ð8Þ

~χ�1
TFκWðη0ðnðGÞÞÞ ¼ � π2

kF

1
1þ 3κη02

� ��1

: ð9Þ

Here, kF ¼ ð3π2nG¼0Þ1=3 is the Fermi wave vector of the uniform electron
gas with the average density nG = 0 and we will use it as an adjustable
parameter in ML, i.e., η0 ¼ η

α, with η ¼ G
2kF

is now the reduced momentum.
The κ parameter corresponds to λ in the TFλWfunctional, and we shall use
it as a second ML parameter, as follows:
• For α= 1 and κ= 1, ~χLind ¼ χLind, where χLind denotes the Lindhard

response function for the uniform electron gas2,31. Similarly,
~χTFκW ! χTFW , where χTFW is the TFW response function, corre-
sponding to the second-order gradient expansion approximation with
λ= 1. This represents the limiting case of the Lindhard response function
as η→∞49,50.

• For α = 1 and κ ¼ 1
9, ~χTFκW ! χTF19W

, where χTF19W
is the TF19W

response function, corresponding to the second-order gradient
expansion approximation with λ ¼ 1

9. This provides the limiting case
of the Lindhard response function as η→ 049,54.

The behavior of these response functions, corresponding to the
Lindhard and TFλW response functions, is illustrated in Fig. 1.

We want to emphasize again that the chosen functional form, inspired
byuniformelectron gas, is somewhat arbitrary and likely not the best choice,
but appears to be a good starting point. Indeed, selection of the two
adjustable parameters is not physicallymotivated and should be looked at as
a purelymathematical construct.However, our choicewasmotivated by the
following considerations: (i) wewant to retain some aspects of the Lindhard
function, as linear response is crucial; (ii) we know thatOF-DFT can deviate
from KS-DFT in either direction for different materials, so we needed a
method that allows for a sign change and includes parameters that control

this sign change. Scaling the independent variable in the Lindhard function
provides these desired properties.

The key remaining task is to investigate the density dependence of the
scaling parameters α and κ, which are determined using data-driven
machine learning (ML) techniques. In particular, a kernel-based Bayesian
regression technique55 is employed to predict α as follows:

α ¼
XNτ

l¼1

wlkðXi; ~XτÞ; ð10Þ

where the kernel kmeasures the distance between the descriptor vectors Xi

and ~Xτ , corresponding to different sets in the training data. The weights wl

are trained to DFT dataset and summed over the index l, with the size of the
training dataset denoted byNτ. The descriptor vectors are defined in terms
of the Fourier components of the moments of the electronic density,

n!m
G ¼

X
GnfG¼0g

jnGj k Gkm2 & m 2 Z;

such that description vector are generalized as

X ¼ n!m
G

κ

" #
:

Another parameter, κ, is obtained through linear regression against the
average density nG = 0. However, the constraint imposed on κ through this
regression canbe too strict for trainingα. Todevelop amore effectivemodel,
one could consider a multi-variable kernel-based Bayesian regression
technique or another algorithm from the family of manifold learning
methods. For now, this is our initial prototype, and we are testing the
effectiveness of Bayesian regression model. While a fully developed
functional could potentially involve more parameters beyond just α and
κ, our goal is to demonstrate that machine learning (ML) methods can
effectively be use to learn these two parameters, and significantly improving
accuracy.

Analysis of Δ-correction
By construction, the nonlocal KEDF can be either negative or positive,
depending on the TF19W functional as compared to the “exact”Kohn-Sham
kinetic energy density functional. According to Eq. (1), the non-local KEDF
relationship is expressed as:

TNL ¼ Ts � TTF
1
9
W: ð11Þ

Now, the variation of the non-local KEDF, i.e., the non-local correction,
ΔTNL[n(G)], is derived as a functional of the density obtained self-consistently
through OF-calculations. Consequently, the non-local KEDF correction,
ΔTNL[n(G)], must account for both positive and negative deviations, as the
TF19W model can differ across material systems, either exceeding or falling
short of the Kohn-Sham benchmark. Note that in Fig. 1, λ = 1 always needs a
positive correction, and λ = 1/9a negative one. From that fact it is clear that in
the proposed scheme λ must be system-dependent. To account for this, the
KEDFkernel,~χ�1

NL½n�, is scaled and incorporates two parameters, α and κ as in
Eq. (8) and (9) where κ now plays the role of an adjustable λ.

We use the relative error between OF and KS calculations, both with
and without non-local correction, integrated across the perturbation para-
meters g, as ourfigure ofmerit, or “cost”. Analyzing the behavior of this cost,

ΔNL�g ½n�
Δg ½n�

¼
R

ΔOF þ ΔTNL

� �� ΔKS

	 
2
dgR

ΔOF � ΔKS

	 
2
dg

; ð12Þ
Fig. 1 | Lindhardcorrespondtotheresponsefunctionofuniformsystemofindependent
fermions, and TFmodel shows the constant response. The factor λ = 1 and 1

9 corre-
sponding to response of second order gradient expansion approximations.
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within the α-κ space, each material and perturbation pattern, reveals a
distinctive funnel-shaped region highlighted in red. This is illustrated in Fig.
2 for representative cases. This red funnel region highlights a significant dip

in the ðΔNL�g

Δg
Þ surface for specific values of the KEDF kernel scaled

parameters α and κ. The characteristic red funnel exhibits subtle variations
in shape across the different systems under investigation. These variations
can be attributed to the fact that the non-local correction TNL[n(G)] can be
either positiveornegative, dependingon thedifferentphases of un-distorted
and slightly distorted structures in our study.

To effectively improve the cost ðΔNL�g

Δg
Þ and ensure that results remain

within the red funnel region, selecting an appropriate value of α for a given κ
is crucial. This prediction is achieved by employing linear regression against
themeandensity perunit cell,nG = 0, resulting in κreg as demonstrated inFig.
3. In the figure, different markers correspond to different material systems.
Each point represents the average of all possible κ values within the red
funnel, which exists for the case when the cost ðΔNL�g

Δg
Þ is at-least lower by the

factor of 10, and encompasses various phases of both distorted and undis-
torted conventional cells. The crude linear regression method is used to
estimate the relationship between the scaled parameter κ in terms of the
regression variable κreg, with the average density per unit cell, denoted as
nG = 0, serving as the independent regression variable. This approach allows
to obtain a tentative estimation of the scaled parameter κ in terms of κreg.
The purpose of this simple linear regression is not to achieve a perfectfit, but
to ensure that the value of κreg lies within the funnel-shaped structure in the
α-κ space, which our analysis confirms.

Subsequently, for a designated parameter κreg, the optimized value,
αopt, is computed using an optimization algorithmfminbnd implemented
in Matlab, which uses a combination of golden section search and para-
bolic interpolation over a specified interval. Hence, we aim to minimize the
cost function, ðΔNL�g

Δg
Þ, with the cost function tolerance threshold of 1 × 10−13

and setting the constraint on the αopt from 0.1 to 9. Both α and κ are scaling
parameters, so we constraint them to vary only within one order of mag-
nitude. It is worth noting that these optimized values of αopt typically fall
within the range delineated by the red funnel in Fig. 2. As an example, Fig. 3
includes an inset figure showing the cost surface along with the corre-
sponding values of α and κ for hexagonal closed-packed structure (HCP) of
magnesium (Mg). These values—as highlighted in the offset—are close to
κreg and αopt, which were obtained through a non-linear optimization
scheme in Matlab.

The improvement in overall calculation performance is quantitatively
evaluated through the deviation, defined as:

Δmodel ¼ EmodelðgÞ � Emodelðg ¼ 0Þ; ð13Þ

where Emodel denotes the energy computed using the corresponding
ground-state density. Specifically, when model = KS, the ground-state KS
density is used, whereas for model∈{OF, NL}, the ground-state OF density
is employed.Thedeviation,Δmodel, takes values fromthe set {ΔKS,ΔOF,ΔNL}.
Here, g = 0 corresponds to the equilibrium case (no frozen phonon
perturbation), and model refers to KS, OF, or NL. The direction of the
perturbation is indicated inparentheses through the value of g. Thebehavior

Fig. 2 | Figure shows the cost profiles in the α-κ space for FCC Al (first row) and
HCP Mg (second row). The left panel displays the profiles at a specific orientation,
while the right panel provides a top view of the same profiles, with elevation indi-
cated by the color bar. Red regions highlight areas with costs less than or equal to—1

(in log units). These are the representative funnel shapes, and the differing funnel
shapes correlate directly with positive and negative non-local corrections. For
details, see Supplementary Figs. 2–5.
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of Δmodel is illustrated in Fig. 4 for κreg and αopt. These model sets provide a
reference for the comparison, and validates the efficacy of our non-local
model. The figure illustrates the deviation Δmodel for each perturbation
parameter, ’g’, corresponding to the cases depicted in Fig. 2). Notably, the
incorporation of the correction TNL[n(G)] via the non-local KEDF kernel
yielding substantially better agreement with KS calculations. Additionally,
the non-local model is robust enough to distinguish between positive and
negative error correction.Notably, the average improvement in accuracy for
the optimal choice of parameters is Oð200Þ (see Supplementary Fig. 1),
whereas the improvement for the optimized parameters obtained above is
Oð60Þ (see Supplementary Tables 1–6).

In order to verify the results, we compared the deviation
ΔðαÞ ¼ αopt � αpert, where αpert ranges from 15% to 15% of αopt. Addi-
tionally, we analyzed the change in the normalized deviation,
ΔN ¼ ðΔNL�g ðαpertÞ�ΔNL�g ðαoptÞ

Δg
Þ, as illustrated in Fig. 5. The normalized devia-

tion ΔN become pronounce for some cases when αpert is considerably dif-
ferent than αopt. This analysis serves as our test of α-sensitivity to the overall
cost. The results indicate that ΔNL−g(αpert) ≥ΔNL−g(αopt), underscoring our
motivation to minimize the deviation ΔNL as much as possible. There is an
outlierwhereΔNL−g(αpert) <ΔNL−g(αopt), forwhich themethod yieldsworse
results compared to the original deviation (Δg). This corresponds to frozen
phonons inheavily strainedaluminum(5% isochoric c—compressionof the
ideal hexagonal close-packed, HCP, lattice). The outlier is excluded from
our Bayesian training algorithm to prevent over-fitting, as its inclusion,
though marginal, reduces the model’s predictive accuracy. Additionally, in
the case ofmagnesium (Mg), ourmodel does not improve upon the existing
TF19Wmodel, as the designated funnel corresponds to a very narrow range
of αopt for the fixed κ obtained through regression. However, it does not
worsen the result either, as the original deviation (Δg) remains ~10−4 ha.
Overall, this demonstrates that a simple partitioning of the nonlocal func-
tional in Fourier space can improve accuracy.

The result presented demonstrates the feasibility and accuracy of our
proposed hypothesis for decomposing nonlocal KEDFs, and these findings
should be robust enough to transfer to larger systems for studying electronic
structure calculations which is our primary interest.

Machine learning
In the earlier section, we demonstrated that our selected functional form,
which depends on two parameters, α and κ, is indeed a powerful tool. The
only challenge lies in accurately determining these parameters to bypass the
need for Kohn-Sham (KS) calculations. This section presents results from
the calculation of kinetic energy density functional (KEDF) with a nonlocal
contribution using machine learned model, in addition to the local TF19W
model, and compares the result with the “benchmark" Kohn-Sham (KS)
calculation. A significant technical challenge arises when handling density
changes, δnG, that alter the crystal unit cell. Existing Kohn-Sham (KS)
codes56 generate nKS(r) and nKS(G) on regular grids aligned with the crystal
symmetry, necessitating a sophisticated mathematical model for inter-
polation scheme. To address this issue, we propose a straightforward test
utilizing a frozen phonon type of perturbation. In this case, the positions of
the atoms are held fixed with respect to the perturbation parameter, (g),
thereby avoiding potential pitfalls associated with mesh changes. The
machine learning (ML) algorithm used for training and testing is based on
kernel-based Bayesian regression. In this approach, the optimal values,
denoted by αopt, are used to update the weight vector w. Further details are
provided in the “Machine Learned Model” subsection of the Methods
section. The test/train set partitioning is achieved throughfive-fold stratified
Monte-Carlo Cross Validation techniques. In Bayesian regression, the
kernel is defined using descriptor vectors that encapsulate information
regarding the density moments, and κreg. Utilizing this ML approach, pre-
dictions of α values for the test cases result in a significant enhancement,
defined as the inverse of the “cost", in overall accuracy, without introducing
additional computational complexity. The details of these improvements
are depicted in Fig. 6, with the ML technique applied across 200 test trials
(only 100 sample trails are shown). The results are presented on a log10 scale,
and for the given trials, ourMLmethod improves accuracy on average by up
to 1.44 on the log10 scale. This validates the robustness of our algorithm in
predictingα, referred to asαpred, thereby improving theoverallTFλWmodel
by at least a factor of 10.

While Fig. 6 contains all information about the improvement that
our formalism provides, it is also instructive to show the improvement in

Fig. 3 | This figure illustrates the linear regression between the parameter κ
and the mean density per unit cell (nG=0). Eachmarker represents the average of
all κ values within the red funnel shown in Fig. 2. The calculation is performed for
four different phases, including three slightly distorted conventional phases for each

material. The purpose of the linear fit is not to precisely match all data points but to
provide a predictive model for κ that aligns with the target funnel. For example, the
highlighted region in the offset surface plot is for hexagonal close-packed structure of
magnesium (Mg).
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such an observable parameter as phonon frequency. Indeed, while our
main target function, Δ, represents an integrate deviation from the
Kohn-Sham result over the entire range of the phonon displacements,
one can also use a less stringent criterion, namely the second derivative
of the total energy with respect to the ionic displacement, i.e., the
dynamic matrix. For the high-symmetry displacements this second
derivative is an eigenmode, and is proportional to the square of the
corresponding phonon,

Ω ¼ 1
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2E
du2

� �����
g¼0

s
;

where u is the ionic displacement, and M the ionic mass. This is just the
derivative of our energy deviation function Δ with respect to the pertur-
bation parameter g. Then we can introduce the “phonon error” as

δmodel ¼
ΩKS �Ωmodel

ΩKS

����
����;

where model∈ {OF, NL}. The results for representative cases are presented
in Table 1.

Systems and Methods: Crystal structures and perturbations
We consider body-centered cubic (BCC), face-centered cubic (FCC), hex-
agonal close-packed (HCP), and body-centered tetragonal (BCT) crystal
phases of magnesium (Mg), aluminum (Al), indium (In), and binary sys-
tems such as aluminium-magnesium (Al-Mg) and aluminium-indium (Al-
In). These systems form a diverse set that includes simple metals and
transition metals in a variety of geometries. Importantly, well-tested local
pseudopotentials57 are available for the chemical elements in question, i.e.,
Mg, Al, and In, allowing for a careful comparison of the results obtained
from KS-DFT and OF-DFT calculations. The conventional cell consists of
2-atom cells, and we choose the ideal γ = c/a ratios of 1.633 and 1.414 for
HCP and BCT structure respectively.

We applied two types of perturbations to study the stability and
structural response of Al, Mg, In, and their alloys (Al-Mg, Al-In) in various
crystal configurations: BCC, FCC, BCT, and HCP.
1. Frozen Phonon calculations : To lower symmetry, we applied per-

turbation parameter g in the form of atomic displacement. These
atomic displacement were applied along specific crystallographic
directions as:
• BCC/FCC: displacements along (110), (111), and (001)
• BCT: displacements along (110), (100), and (001)
• HCP: displacements along (100), (010), and (001)

Each displacementmagnitude is governed by the parameter g, where
—0.05 ≤ g ≤ 0.05, modifying each atomic coordinate η
to η0 ¼ ð1þ gÞη.

2. Uniaxial Distortion (ϵ): We also simulated structural strain by
stretching the crystal along the x-yplanewhile compressing it along the
z-axis, ensuring constant volume.Here, ϵquantifies thedistortion,with
values of 0% (no strain), 3%, and 5%.

For each uniaxial distortion (ϵ), we applied frozen-phonon atomic
perturbations (g), enabling us to explore structural responses under com-
bined symmetry-lowering displacements and uniaxial strain.

Discussion
In this work, we have introduced a novel class of KEDFs for OF-DFT that
allows for the following decomposition: a local part in coordinate space and
a local part in reciprocal space. As a demonstration of principle, we have
selected the TFWKEDF for the former, and a Lindhard response function-
based functional with two system-dependent parameters for the latter. We
have machine-learned these parameters from Kohn-Sham data using
Bayesian linear regression combined with the kernel method, while
employingmoments of the Fourier components of the electronic density as
the descriptor. Through representative cases of metals and binary alloys, we
have demonstrated that even for the rather simple functional form chosen,
there is more than an order-of-magnitude improvement in the accuracy of
the energy relative to the TFWKEDF, when the machine-learned model is
applied non-self-consistently for frozen phonon calculations, with negli-
gible increase in the cost.

The development of more sophisticated functionals, particularly for
the part that is local in reciprocal space, along with self-consistent appli-
cation, is likely to further increase the accuracy of OF-DFT calculations,
making it a worthy subject of future research. The development of more
accurate descriptors is expected to further increase the accuracy of the
machine learned model and consequently OF-DFT calculations, making it
another subject for future research.

Methods
DFT calculations
All calculations are performed using the M-SPARC code for rapid
prototyping56,58, which is a Matlab version of the large-scale parallel
electronic structure code, SPARC58,59. This code implements the real-space
finite-difference method, whose formulation and implementation in the
context of KS-DFT and OF-DFT can be found in previous works60–63. We

Fig. 4 | The plot illustrates the energy deviations (Δ) due to frozen phonon
perturbation g along different crystallographic directions: (111) for FCC Al,
(001) for HCP Mg. For Al ΔKS is <ΔOF, while for Mg, ΔKS is >ΔOF. The nonlocal
correction algorithm improves the deviations, and the corresponding optimized
parameters κ and α derived from the optimization scheme are shown.
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employ the local density approximation (LDA-PZ)4,64 for the exchange-
correlation functional and use the bulk-derived local pseudopotentials
(BLPS)57. In the OF-DFT calculations, we choose the TFW kinetic energy
density functional with weight factor λ = 1/9. In the KS-DFT calculations,
we perform Brillouin zone integration using a 15 × 15 × 15 Monkhorst-
Pack grid for the FCC, BCC lattices, and 15 × 15 × 10 grid for the HCP and
BCT lattices, which ensures that the energies are converged to within 10−7

ha/atom. In all calculations, we employ a 12-th order finite-difference
approximation and a grid spacing of 0.3 bohr, which ensures that the
computed energies are converged to within 10−6 ha/atom. Finally, the
change in energy arising due to a perturbation is converged to within
10−7 ha/atom.

Machine learned model
The training and prediction of α are crucial steps, accomplished using a
Laplacian-based activation kernel:

kE ¼ exp � k Xi � Xτk1
� �

;

where Xi and Xτ correspond to the descriptor vectors and consist of the
moments of the density:

nmG ¼
X

GnfG¼0g
jnGj k Gkm2 ;

Fig. 5 | Thisfigure illustrates the α-sensitivity to the normalized deviationΔN as a
function of the nonlocal deviation (ΔNL). The x-axis represents the deviation
percentage of αopt from 15% to 15%, while the y-axis shows the deviation in the
nonlocal correction. The colors correspond to different materials, the marker shape
represents different crystal structures, and the marker size indicates the introduced

strain. The overlap of the data points suggests that there is no significant difference in
the normalized deviation ðΔNÞ for the cases shown in the legend. Positive values
indicate that the nonlocal correctionwithαpert is greater than the nonlocal correction
with αopt and vice-versa.
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where − 4 ≤m ≤ 4 and κreg. Each X vector is defined as

X ¼
nmG
κreg

" #
;

hence the descriptor vectors Xi=1 and Xτ have sizesR
Ndes × 1 andRNdes ×Nst ,

respectively, whereNdes is the dimension of the descriptor vectors andNst is
the exhaustive number of structures under study. Now,Nst is split into a test
set (NTest) and training sets (Nτ), ensuring that at least one instance of each
material is included in the test set. The corresponding activation kernel
matrix for the training sets is given as:

ðkEÞτ 2 k1E; k
2
E; . . . ; k

Nst
E

h i
; RN st ×Nτ ;

where the semicolon is used as a delimiter between the different rows. Note
that ðkEÞτ is a normalized, symmetric, positive definite matrix. The vectors
αopt (introduced in Eq. (10)) are obtained via a non-linear optimization
scheme and have dimensionsRNst × 1.

The loss functionL corresponding to Bayesian regression technique is

L ¼ Θ2

2
αopt � kEw

����
����
2

2

� Θ1

2
w

����
����
2

2

; ð14Þ

whereΘ1 andΘ2 are hyper-parameters. The term involvingΘ2 ensures that
the optimized coefficients αopt remain close to the training values αTrain, as

measured by the squared L2 norm, kαopt � kEwk22, between them. This

encourages themodel to closely approximate the training data.On the other
hand, the term associated withΘ1 acts as a regularization factor, penalizing
large weight values w through the squared L2 norm k wk22, which helps
control model complexity and prevent overfitting. The optimal weights, w,
which minimize the loss function L, defined in Eq. (14) are shown below:

w ¼ Θ2CwðkTE Þταopt RNτ × 1

with Cw ¼ Θ1I þΘ2ðkTEkEÞ
� ��1

RNτ ×Nτ :

The optimized weight vector (w) is verified using k-fold cross-validation as
referred inFig. 6.Using themethoddefined above, the values ofα for the test
set are predicted as

αpred ¼ ðkEÞTestw; RNTest × 1;

where the size of ðkEÞTest isRNTest ×Nτ and is briefly mentioned in Eq. (10).

Data availability
The data that support the findings of this study are available within the
article and from the corresponding author upon reasonable request.
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Supplementary Figure 1: Ideal improvement averages at log10

(
∆g

∆NL−g

)
= 2.25

II. OPTIMIZED ENHANCEMENT:

The section reports the value of κ, obtained through regression (κreg), and the corre-

sponding non-linear optimization search for αopt, for various structures of the Al, In, Mg,

AlIn, and AlMg systems, and the average improvement ratio is 1.77 in log10 units.

3



cases κreg αopt Improvement Factor
Al-BCC−ϵ = 0 0.3205 6.6521 3.3033
Al-BCC−ϵ = 3 0.3205 7.0629 2.6759
Al-BCC−ϵ = 5 0.3205 6.6291 3.3193
Al-BCT−ϵ = 0 0.3318 7.7202 0.8697
Al-BCT−ϵ = 3 0.3318 6.8034 1.7682
Al-BCT−ϵ = 5 0.3318 7.1830 1.6611
Al-FCC−ϵ = 0 0.3319 6.6289 2.8902
Al-FCC−ϵ = 3 0.3319 6.9591 2.1708
Al-FCC−ϵ = 5 0.3319 7.4064 2.0201
Al-HCP−ϵ = 0 0.3269 6.6692 1.0807
Al-HCP−ϵ = 3 0.3269 7.7819 0.8980
Al-HCP−ϵ = 5 0.3269 8.9994 0.7903

Supplementary Table 2: Table showing the values of κreg, αopt, and Improvement Factor
for different Al structure

cases κreg αopt Improvement Factor
In-BCC−ϵ = 0 0.1649 6.4026 1.5328
In-BCC−ϵ = 3 0.1649 6.4034 2.3855
In-BCC−ϵ = 5 0.1649 6.4733 2.0313
In-BCT−ϵ = 0 0.1673 6.2370 3.0341
In-BCT−ϵ = 3 0.1673 6.0451 1.9007
In-BCT−ϵ = 5 0.1673 6.0345 1.8371
In-FCC−ϵ = 0 0.1671 7.9507 1.9038
In-FCC−ϵ = 3 0.1671 6.1322 2.2844
In-FCC−ϵ = 5 0.1671 6.0975 2.2420
In-HCP−ϵ = 0 0.1654 8.3252 0.9609
In-HCP−ϵ = 3 0.1654 8.2519 0.9582
In-HCP−ϵ = 5 0.1654 8.9994 1.0173

Supplementary Table 3: Table showing the values of κreg, αopt, and Improvement Factor
for different In structure
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