Quiz 1, Propositional Logic

Date: September 11

1. For the proposition: \((p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow ((p \lor q) \rightarrow r))\),

(a) (5pts) Prove it is a tautology using truth tables.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>(A):</th>
<th>(B):</th>
<th>(C):</th>
<th>(D):</th>
<th>(E):</th>
<th>(A \rightarrow (B \rightarrow D))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
<td>(r)</td>
<td>(p \rightarrow r)</td>
<td>(q \rightarrow r)</td>
<td>(p \lor q)</td>
<td>((p \lor q) \rightarrow r)</td>
<td>(B \rightarrow D)</td>
<td></td>
</tr>
<tr>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>
(b) (5pts) Prove it is a tautology using algebra (you do not need to annotate your algebra).

\[(p \to r) \to ((q \to r) \to ((p \lor q) \to r))\]

\[\equiv (\neg p \lor r) \to ((q \to r) \to ((p \lor q) \to r))\]
\[\text{conditional law}\]

\[\equiv (\neg p \lor r) \to (\neg q \lor r) \to ((p \lor q) \to r)\]
\[\text{conditional law}\]

\[\equiv (\neg p \lor r) \to (\neg q \lor r) \lor (\neg (p \lor q) \lor r)\]
\[\text{conditional law}\]

\[\equiv \neg (\neg p \lor r) \lor ((\neg q \lor r) \lor (\neg (p \lor q) \lor r))\]
\[\text{conditional law}\]

\[\equiv (\neg p \land \neg r) \lor (\neg q \lor r) \lor (\neg (p \lor q) \lor r)\]
\[\text{DeMorgan's law}\]

\[\equiv (p \land \neg r) \lor (\neg (q \lor r) \lor (\neg (p \lor q) \lor r))\]
\[\text{DeMorgan's law}\]

\[\equiv (p \land \neg q) \lor ((\neg q \land \neg r) \lor (\neg (p \lor q) \lor r))\]
\[\text{law of negation}\]

\[\equiv ((p \land \neg r) \lor (q \land \neg r)) \lor (\neg (p \lor q) \lor r)\]
\[\text{associativity}\]

\[\equiv ((p \lor q) \land \neg r) \lor (\neg (p \lor q) \lor r)\]
\[\text{distributivity}\]

\[\equiv \neg (\neg (p \lor q) \lor \neg r) \lor (\neg (p \lor q) \lor r)\]
\[\text{DeMorgan's law}\]

\[\equiv \neg (\neg (p \lor q) \lor r) \lor (\neg (p \lor q) \lor r)\]
\[\text{law of negation}\]

\[\equiv TRUE\]
\[\text{excluded middle}\]
Quiz 2, Rules of Inference

Date: September 18

1. (10pts) Prove \((p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow ((p \lor q) \rightarrow r))\) using inference rules.

1 \([p \rightarrow r]\) Assumption
2 \([q \rightarrow r]\) Assumption
3 \([p \lor q]\) Assumption
4 \(r\) Case analysis 3,1,2
5 \((p \lor q) \rightarrow r\) \(\rightarrow\) introduction 3,4
6 \((q \rightarrow r) \rightarrow ((p \lor q) \rightarrow r)\) \(\rightarrow\) introduction 2,5
7 \((p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow ((p \lor q) \rightarrow r))\) \(\rightarrow\) introduction 1,6
Quiz 3, Predicate Logic
Date: September 25

1. (5pts) Assert for the array $A[1, \ldots, n]$ that the elements alternately increase and decrease.

“For a given index i of A, A increases on one side of i and decreases on the other side.”:

$$((A_{i-1} < A_i) \land (A_i > A_{i+1})) \lor ((A_{i-1} > A_i) \land (A_i < A_{i+1}))$$

“For every interior element in A, A increases on one side of the element and decreases on the other.”:

$$\forall i \in I_{2}^{n-1} : ((A_{i-1} < A_i) \land (A_i > A_{i+1})) \lor ((A_{i-1} > A_i) \land (A_i < A_{i+1}))$$

While it is not necessary to do so, note that the above can be cleverly rewritten:

$$\forall i \in I_{2}^{n-1} : (A_i - A_{i-1})(A_{i+1} - A_i) < 0$$

2. (5pts) Assert for a graph $G(V,\text{Edge}(u,v))$ that there is NOT any pair of vertices x, y such that they are connected by a path of 3 edges.

“x and y are connected by a path of 3 edges.”:

$$\exists z \in V : \exists w \in V : (x \neq w) \land (y \neq z) \land \text{Edge}(x, z) \land \text{Edge}(z, w) \land \text{Edge}(w, y)$$

“There is no pair x, y such that x and y are connected by a path of 3 edges.”:

$$- (\exists x \in V : \exists y \in V : \exists z \in V : \exists w \in V : (x \neq w) \land (y \neq z) \land \text{Edge}(x, z) \land \text{Edge}(z, w) \land \text{Edge}(w, y))$$
Quiz 4, Mathematical Induction

Date: October 2

1. (5pts) Prove $2^{2n} - 1$ is divisible by 3, $n \geq 1$
 (i.e. $\exists m \in \mathbb{N} : 2^{2n} - 1 = 3m$)
 (Hint: $4 = 3 + 1$).

When $n = 1$, $2^{2n} - 1 = 2^2 - 1 = 3$, which is divisible by 3, thus proving the base case.

Assume that for some $k \geq 1$, $2^{2k} - 1$ is divisible by 3, so for some integer m_k,

$$2^{2k} - 1 = 3m_k$$

We would like to prove the $k + 1$ case,

$$2^{2(k+1)} - 1 = 3m_{k+1} \quad \text{(for some integer m_{k+1})}$$

To do this, we begin with the left hand side, and work until we can substitute the inductive hypothesis,

$$2^{2(k+1)} - 1 = 2^{2k}2^2 - 1$$
$$= 4 \times 2^{2k} - 1$$
$$= 3 \times 2^{2k} + 2^{2k} - 1 \quad \text{(from the hint)}$$
$$= 3 \times 2^{2k} + 3m_k \quad \text{(by the inductive hypothesis)}$$
$$= 3(2^{2k} + m_k)$$
$$= 3m_{k+1} \quad \text{(if we let $m_{k+1} = 2^{2k} + m_k$)}$$

This proves the inductive conclusion, thus by mathematical induction, the theorem is proved.
2. (5pts) Let \(S_{n+1} = 2S_n + 1, \) \(n \geq 0, S_0 = 0, \)
Prove \(S_n = 2^n - 1, \) \(n \geq 0. \)

When \(n = 0, \) we have
\[
S_n = S_0 = 0 = 2^0 - 1 = 2^0 - 1 = 1 - 1 = 0
\]

Assume that for some \(k \geq 0, \)
\[
S_k = 2^k - 1
\]

We would like to prove the \(k + 1 \) case,
\[
S_{k+1} = 2^{k+1} - 1
\]

To do this, we begin with the left hand side,
\[
\begin{align*}
S_{k+1} &= 2S_k + 1 \quad \text{(from the recursive definition)} \\
&= 2(2^k - 1) + 1 \quad \text{(from the inductive hypothesis)} \\
&= 2 \times 2^k - 2 + 1 \\
&= 2^{k+1} - 1
\end{align*}
\]

This proves the inductive conclusion, thus by mathematical induction, the theorem is proved.
Quiz 5, Program Verification

Date: October 10

1. (7pts) State, prove, and use the loop invariant for the following code, assuming \(n \geq 0 \).

\[
i \leftarrow 0
\]
\[
x \leftarrow 2
\]
\[\textbf{while } i < n \textbf{ do}
\]
\[
x \leftarrow 4 \times x
\]
\[
i \leftarrow i + 1
\]
\[
x \leftarrow x/2
\]
\[
i \leftarrow 0
\]
\[
x \leftarrow 2
\]
\[\text{// } (x = 2^{i+1}) \land (i \leq n)
\]
\[\textbf{while } i < n \textbf{ do}
\]
\[\text{// } (x = 2^{i+1}) \land (i \leq n) \land (i < n)
\]
\[
x \leftarrow 4 \times x
\]
\[\text{// } (x = 4 \times 2^{i+1} = 2^{i+3}) \land (i \leq n) \land (i < n)
\]
\[
i \leftarrow i + 1
\]
\[\text{// } (x = 2^{i+2}) \land (i \leq n)
\]
\[
x \leftarrow x/2
\]
\[\text{// } (x = 2^{i+2}/2 = 2^{i+1}) \land (i \leq n)
\]
\[\text{// } (x = 2^{i+1}) \land (i \leq n) \land \neg(i < n)
\]

Note that \((i \leq n) \land \neg(i < n)\) implies \(i = n\), so \(x = 2^{n+1}\) at the end.

2. (3pts) State the loop invariant for the following code.

\[
i \leftarrow 0
\]
\[
s \leftarrow 0
\]
\[\textbf{while } i \leq n \textbf{ do}
\]
\[
s \leftarrow s + s
\]
\[
i \leftarrow i + 1
\]
\[
s \leftarrow s + 2^i
\]

Answer: \(s = i \times 2^i\)
1. (5pts) Prove \(\sum_{i=0}^{n} a^i = \frac{a^{n+1} - 1}{a-1} \), \(a \neq 1 \), \(n \geq 0 \).

When \(n = 0 \), \(\sum_{i=0}^{n} a^i = \sum_{i=0}^{0} a^i = a^0 = 1 \), and
\[
\frac{a^{n+1} - 1}{a-1} = \frac{a^{0+1} - 1}{a-1} = \frac{a-1}{a-1} = 1,
\]
which proves the base case.

Assume that for some \(k \geq 0 \), \(\sum_{i=0}^{k} a^i = \frac{a^{k+1} - 1}{a-1} \) with \(a \neq 1 \).

We would like to prove the \(k + 1 \) case, \(\sum_{i=0}^{k+1} a^i = \frac{a^{(k+1)+1} - 1}{a-1} \).

To do this, we begin with the left hand side, and work until we can substitute the inductive hypothesis,
\[
\begin{align*}
\sum_{i=0}^{k+1} a^i &= a^{k+1} + \sum_{i=0}^{k} a^i \\
&= a^{k+1} + \frac{a^{k+1} - 1}{a-1} \quad \text{(from the inductive hypothesis)} \\
&= \frac{a^{k+1}(a-1) + a^{k+1} - 1}{a-1} \\
&= \frac{a^{k+1+1} - 1}{a-1}
\end{align*}
\]

This proves the inductive conclusion, thus by mathematical induction, the theorem is proved.
2. (5pts) Let $S_{n+1} = S_n + \left(\frac{1}{2}\right)^n$, $n \geq 0$, $S_0 = 0$.
Prove $S_n = 2 - \left(\frac{1}{2}\right)^{n-1}$, $n \geq 0$.

When $n = 0$, $2 - \left(\frac{1}{2}\right)^{n-1} = 2 - \left(\frac{1}{2}\right)^{0-1} = 2 - 2 = 0 = S_0 = S_n$, which proves the base case.

Assume that for some $k \geq 0$, $S_k = 2 - \left(\frac{1}{2}\right)^{k-1}$.

We would like to prove the $k+1$ case, $S_{k+1} = 2 - \left(\frac{1}{2}\right)^{(k+1)-1} = 2 - \left(\frac{1}{2}\right)^k$.

To do this, we begin with the left hand side, and work until we can substitute the inductive hypothesis,

$$S_{k+1} = S_k + \left(\frac{1}{2}\right)^k$$

(from the recursive definition)

$$= 2 - \left(\frac{1}{2}\right)^{k-1} + \left(\frac{1}{2}\right)^k$$

(from the inductive hypothesis)

$$= 2 - 2 \times \left(\frac{1}{2}\right)^k + \left(\frac{1}{2}\right)^k$$

$$= 2 - \left(\frac{1}{2}\right)^k$$

This proves the inductive conclusion, thus by mathematical induction, the theorem is proved.
Quiz 7, Regular Expressions

Date: November 1

1. (2 pts) Write the strings of length 5 in $L(R)$, $R = (ab + b)a^*b$.

 $\{abaab, baaab\}$. At the beginning of the string, there is a choice of ab or b, and once that choice is made, the remainder of the string is fixed, since we know that the length must be exactly five.

2. (2 pts) Simplify $((a + \Lambda)^*a + a^*)$.

 Answer: a^*

 $(a + \Lambda)^* = a^*$, so $(a + \Lambda)^*a = a^+$. $a^+ + a^* = a^*$ because $a^+ \subseteq a^*$.

3. (6 pts) Give a regular expression R, $L(R) = L$, $\Sigma = \{a, b\}$, $L = \{x \mid x \text{ contains } aa \text{ but does not contain } bb\}$.

 The set of strings which do not contain a bb can written with the expression $(b + \Lambda)(a + ab)^*$, because any b which is not at the beginning of the string must be preceded by an a.

 It follows that every string in L can be expressed as follows: any string without a bb, followed by some aa, followed by any string without any string without a bb. In other words,

 $$((b + \Lambda)(a + ab)^*)(aa)((b + \Lambda)(a + ab)^*)$$
Quiz 8, Regular Grammars

Date: November 6

1. (6pts) Convert $a + b^*$ into a regular grammar with unit productions.

\[
P_1 = \{ S_1 \to aA_1, A_1 \to \Lambda \} \\
P_2 = \{ S_2 \to bA_2, A_2 \to \Lambda \} \\
P_3 = \{ S_3 \to \Lambda, S_3 \to S_2, S_2 \to bA_2, A_2 \to S_3 \} \\
P_4 = \{ S_4 \to S_1, S_4 \to S_3, S_1 \to aA_1, A_1 \to \Lambda, \\
S_3 \to \Lambda, S_3 \to S_2, S_2 \to bA_2, A_2 \to S_3 \}
\]

Using P_4 as the final answer, the start symbol is S_4.
2. (4pts) Convert into a regular grammar:
\{S \rightarrow aA, A \rightarrow B, A \rightarrow bC, C \rightarrow A, C \rightarrow bS, C \rightarrow \Lambda, B \rightarrow aB\}.

Solution:

\[
\begin{align*}
S & \rightarrow aA \\
A & \rightarrow B \\
A & \rightarrow bC \\
B & \rightarrow aB \\
C & \rightarrow \Lambda \\
C & \rightarrow bS \\
C & \rightarrow \Lambda \\
C & \rightarrow B \\
A & \rightarrow aB \\
C & \rightarrow bC \\
C & \rightarrow aB
\end{align*}
\]
Quiz 9, Regular Grammar Conversion
Date: November 13

1. (6pts) Convert \{S \to aA, S \to \Lambda, A \to bB, A \to aA, B \to bS\} into a regular expression.

First add \(S'\), \(H\), and missing loopbacks.

\[
\begin{align*}
S' & \to S \\
S & \to aA \\
A & \to bB \\
B & \to bS \\
H & \to \Lambda \\
S & \to H \\
A & \to aA \\
B & \to B \\
S & \to S \\
A & \to bB/ B \to B/ B \to bS: A \to bbS
\end{align*}
\]

To remove \(B\) then \(A\) then \(S\), begin by removing \(B\).

\[
\begin{align*}
A & \to bB/ B \to B/ B \to bS: A \to bbS
\end{align*}
\]

After removing \(B\) the remaining productions are:

\[
\begin{align*}
S' & \to S \\
S & \to aA \\
A & \to bbS \\
H & \to \Lambda \\
S & \to H \\
A & \to aA \\
S & \to S \\
\end{align*}
\]

Remove \(A\).

\[
\begin{align*}
S & \to aA/ A \to aA/ A \to bbS: S \to aa*bbS
\end{align*}
\]

After removing \(A\), the remaining productions are:

\[
\begin{align*}
S' & \to S \\
S & \to H \\
H & \to \Lambda \\
S & \to (\Lambda + aa*bb)S
\end{align*}
\]

Remove \(S\).

\[
\begin{align*}
S' & \to S/ S \to (\Lambda + aa*bb)S/ S \to H: (aa*bb)^*
\end{align*}
\]

Regular expression: \((aa*bb)^*\)
Alternately, to remove A then B then S, begin by removing A.

\[
S \rightarrow aA / A \rightarrow aA / A \rightarrow bB : S \rightarrow aa^*bB
\]

After removing A the remaining productions are:

\[
S' \rightarrow S \\
S \rightarrow aa^*bB \\
B \rightarrow bS \\
H \rightarrow \Lambda \\
S \rightarrow H \\
B \rightarrow B \\
S \rightarrow S
\]

Remove B.

\[
S \rightarrow aa^*bB / B \rightarrow B / B \rightarrow bS : S \rightarrow aa^*bbS
\]

After removing B, the remaining productions are:

\[
S' \rightarrow S \\
S \rightarrow H \\
H \rightarrow \Lambda \\
S \rightarrow (\Lambda + aa^*bb)S
\]

Remove S.

\[
S' \rightarrow S / \Lambda + aa^*bb)S / S \rightarrow H : (aa^*bb)^*
\]

Regular expression: $(aa^*bb)^*$
Alternately, to remove S then A then B, begin by removing S.

$S' \rightarrow S / S \rightarrow S / S \rightarrow aA$: $S' \rightarrow aA$

$S' \rightarrow S / S \rightarrow S / S \rightarrow H$: $S' \rightarrow H$

$B \rightarrow bS / S \rightarrow S / S \rightarrow aA$: $B \rightarrow baA$

$B \rightarrow bS / S \rightarrow S / S \rightarrow H$: $B \rightarrow bH$

After removing S, the remaining productions are:

$S' \rightarrow aA$ $A \rightarrow bB$ $B \rightarrow baA$ $H \rightarrow \Lambda$

$S' \rightarrow H$ $A \rightarrow aA$ $B \rightarrow bH$

$B \rightarrow B$

Remove A.

$S' \rightarrow aA / A \rightarrow aA / A \rightarrow bB$: $S' \rightarrow aa^*bB$

$B \rightarrow baA / A \rightarrow aA / A \rightarrow bB$: $B \rightarrow baa^*bB$

After removing A, the remaining productions are:

$S' \rightarrow aa^*bB$ $B \rightarrow (\Lambda + baa^*b)B$ $H \rightarrow \Lambda$

$S' \rightarrow H$ $B \rightarrow bH$

Remove B.

$S' \rightarrow aa^*bB / B \rightarrow (\Lambda + baa^*b)B / B \rightarrow bH$: $S' \rightarrow aa^*b(baa^*b)^*bH$

Regular expression: $\Lambda + aa^*b(baa^*b)^*b$
2. (4 pts) Convert \(\{ S \to aA, S \to \Lambda, A \to bB, A \to aA, B \to bS \} \) into a deterministic regular grammar.

The clever person will note that the grammar is already a deterministic regular grammar. However, proceeding by algorithm will produce the following.

\[
V_{\{S\}} \to aV_{\{A\}} \quad V_{\{A\}} \to aV_{\{A\}} \quad V_{\{B\}} \to aV_{\emptyset} \\
V_{\{S\}} \to bV_{\emptyset} \quad V_{\{A\}} \to bV_{\{B\}} \quad V_{\{B\}} \to bV_{\{S\}}
\]

\[V_{\{S\}} \to \Lambda\]
Quiz 10, Finite Automata
Date: November 20

1. (5pts) Build a DFA for $\Sigma = \{a, b, c\}$,
$L = \{x \mid x$ contains exactly 2 as and at least one $b\}$.

q_0 - no as or bs seen
q_1 - one a and no bs
q_2 - two as and no bs
q_3 - three or more as (trap state; does not need to be shown)
q_4 - no as and at least one b
q_5 - one a and at least one b
q_6 - two as and at least one b

2. (5pts) Build a DFA for $\Sigma = \{a, b\}$,
$L = \{x \mid x$ contains a ba before any $bba\}$.

q_0 - no ba seen, and the last character was not a b
q_1 - no ba seen, and the last character was a (single) b
q_2 - no ba seen, and the last characters seen were bb
q_3 - ba seen, prior to a bba
q_4 - bba seen first (trap state; does not need to be shown)
Quiz 11, Finite Automata II
Date: November 29

1. (4pts) Give a DFA for \(L(P), P = ababbaba. \)

2. (3pts) Directly give a DFA for \(L(r), r = (a+ab)bb. \)

 It helps to note that there are only two strings in the language, \(abb \) and \(abbb \).

 Note: the intended problem was \((a+ab)^*bb\), which would result in two additional transitions:

3. (3pts) Prove \(L \) is not regular, \(L = \{ x \mid x = a^i b^j, i > j \} \).

 Let \(S \) be the set \(S = \{ a^i \mid i \geq 0 \} \). Pick any distinct pair \(x = a^i \) and \(y = a^j \) from \(S \), and without loss of generality assume that \(i > j \) (since \(x \) and \(y \) are different, then one of them has to be the longer one, so we’ll call \(x \) the longer one).

 Let \(z = b^j \), so \(z \) is the same length as \(y \) and shorter than \(x \). It follows that \(xz = a^ib^j \in L \) but \(yz = a^ib^j \notin L \). This means that no matter which distinct pair of elements are picked from \(S \), there is some string which can be appended to each of them which will allow them to be
distinguished by a state machine.

Since every string in S is distinguishable by a state machine, any state machine which recognizes the language must have an infinite number of states to accommodate for each of the strings in S. No finite automata can have an infinite number of states, therefore the language L is not regular.
Quiz 12, Context-Free Grammars
Date: December 6

1. (5pts) Give a CFG for \(\{ a^i b^j c^k \mid i \leq k \leq i + j \} \).

We see that \(k = i + n \) for some \(n \). So \(j \geq n \) and \(j = n + m \) for some \(m \). Then for as long as \(n \geq 0 \) and \(m \geq 0 \), all of the inequalities will be satisfied (because they can also be written \(i \leq i + n \leq i + n + m \)). The resulting string can be rewritten \(a^i b^{n+m} c^{i+n} = a^i (b^n)(b^m c^n) c^i \).

Let \(B \) generate strings of the form \(b^n \) and \(C \) generate strings of the form \(b^m c^n \). Then the following CFG will generate the language:

\[
S \rightarrow aSc | BC \\
B \rightarrow bB | \Lambda \\
C \rightarrow bCc | \Lambda
\]

2. (5pts) Give a CFG for \(\{ a^i b^j c^k \mid j = 2i + 3k \} \).

Since \(j = 2i + 3k \), the resulting string can be rewritten as \(a^i b^{2i+3k} c^k = (a^i b^{2i})(b^{3k} c^k) \).

Let \(A \) generate strings of the form \(a^i b^{2i} \) and \(C \) generate strings of the form \(b^{3k} c^k \). Then the following CFG will generate the language:

\[
S \rightarrow AC \\
A \rightarrow aAbb | \Lambda \\
C \rightarrow bbbCc | \Lambda
\]