
Pairwise Markov Chain: A Task Scheduling
Strategy for Privacy-Preserving SIFT on Edge

Hengrun Zhang and Kai Zeng
Department of Computer Science, Department of Electrical and Computer Engineering

George Mason University, Fairfax, VA USA
{hzhang18, kzeng2}@gmu.edu

Abstract—In this paper, we propose a task scheduling strategy,
which can achieve image feature extraction on edge while
ensuring privacy. Our task scheduling strategy applies to a fairly
popular privacy-preserving Scale-Invariant Feature Transform
(SIFT) scheme, where images to be processed are firstly randomly
split into two portions for encryption and transmitted to two
different edge nodes for feature extraction. Then, in the edge,
our task scheduling strategy will re-assign these two portions
to proper edge nodes for processing. During the whole process,
two portions of the same image should not be assigned to the
same edge node in order to preserve privacy. We show that
this privacy constraint can be enforced through constructing a
pairwise Markov chain, and carefully designing system states
and transition probabilities. We further formulate the whole task
scheduling problem as a stochastic latency minimization problem
and solve it by converting it into a linear programming problem.
Simulation results show that our proposed task scheduling
strategy can achieve lower latency than baseline strategies while
satisfying the privacy constraint.

I. INTRODUCTION

The emergence of multimedia data colors people’s daily life.
However, many tasks related to processing those multimedia
data are usually computationally expensive, and people have
to turn to cloud computing for help. Recently, the emergence
of edge computing further improves the computation perfor-
mance of cloud computing, since edge computing just requires
data to be uploaded to close-by nodes in the edge instead
of far-away clouds. This will significantly decrease network
latency, especially considering the fact that multimedia data
usually have large sizes. However, due to computation resource
limitation, edge nodes will not have servers with the same ca-
pacity as those in remote clouds. In this case, a well-designed
task scheduling strategy is needed to optimize the performance
on edge. In recent years, several resource allocation and task
scheduling works have been proposed for edge computing with
different system configurations [1]–[6]. Nevertheless, none of
them consider privacy issues during task scheduling.

Actually, the privacy-preserving requirement has been con-
sidered for not a short time in many multimedia applications.
In computer vision, image matching is based on image features
extracted through algorithms usually with very high computa-
tional requirement, such as Scale-Invariant Feature Transform
(SIFT) [7]. People have to rely on cloud computing when
the number of images to be processed is large. However,
some images, such as profiles and medical images, have
sensitive contents that are not supposed to go public. In this

case, when images are uploaded to clouds for SIFT feature
extraction, image owners do not want to reveal the image
content to the cloud server. In recent years, many related works
have been done for privacy-preserving SIFT [8]–[10]. These
works usually realize SIFT feature extraction in the encrypted
domain through homomorphic addition, multiplication and
comparison. Later, it is shown in [11] that if just one cloud
is used for securing SIFT, the security and privacy can still
be compromised due to unique statistical characteristics of
images, and using more than one servers for securing SIFT
could be a feasible alternative. In [11], [12], images are
randomly split into two portions and transmitted to two clouds
for SIFT processing. Such a split actually acts as a means of
encryption, which has a much stronger guarantee for privacy
than the traditional homomorphic encryption. Besides, the
computational requirement is also reduced significantly.

All the above privacy-preserving SIFT algorithms are only
based on cloud computing, which always suffer from large
network latency, since large size images have to be transmitted
to remote servers. With the emergence of the new computing
paradigm of edge computing, we now can offload the feature
extraction part to the edge. Fig. 1 shows the difference between
cloud-based and our proposed edge-based image matching
framework. Different from the cloud-based image matching
framework, which requires to upload images to the remote
cloud, our edge-based counterpart just needs to upload images
to the nearby edge for image feature extraction. After that,
the extracted features can be uploaded to the cloud for image
matching. This will greatly reduce transmission latency and
bandwidth consumption in the core network. For example,
let’s consider an image of 3, 000 × 3, 000, which is the size
of images considered in [12]. Since each pixel is usually
represented by a value ranging from 0 to 255, we need 8
bits to describe each pixel. Thus, the total data size should be
8× 3, 000× 3, 000 = 8.85 MB if we consider just one image
channel. The largest number of SIFT keypoints in those images
is 35,299. Each keypoint is described with a 128-dimension
vector. Each element in the vector has a value ranging from
0 to 15, which needs 4 bits for representation. Therefore, the
total data size will be reduced to 4×128×35299 = 2.26 MB
after SIFT feature extraction, which is almost one-fourth of
the original size. In other words, we only have one-fourth of
the original transmission latency and bandwidth consumption
in the core network if we transmit extracted keypoints instead



A version of this paper has got accepted in INFOCOM’19

(a)

(b)

Fig. 1. Comparison between cloud-based and edge-based privacy-preserving
image matching framework. (a) Cloud-based privacy-preserving image match-
ing. (b) Edge-based privacy-preserving image matching.

of the original images.
A typical edge network usually consists of multiple con-

nected edge nodes. The feature extraction tasks can be dis-
tributed to proper edge nodes for processing in order to
optimize the performance, such as delay or load balancing. On
the other hand, we need to ensure that two portions of the same
image are not scheduled to the same edge node for processing.
Otherwise, the edge node could reconstruct the image, which
violates privacy. To the best of our knowledge, there are
no existing works considering such a privacy constraint in
task scheduling on edge. In this paper, we will consider
task scheduling for a system like this: to achieve a privacy-
preserving scheme like the privacy-preserving SIFT discussed
above, an image is first divided into two portions, which are
sent to two different edge nodes. After that, portions can be
either directly processed at the corresponding edge node or
switched to another edge node for processing to minimize
queuing delay. For privacy consideration, we need to make
sure that no two portions of the same image are ever assigned
or switched to the same edge node.

Based on the above system and privacy constraint, we
propose a stochastic task scheduling strategy. A Markov chain
will be constructed to facilitate the stochastic task scheduling
on the edge nodes. Once edge nodes receive image portions,

they will decide whether to process those portions themselves
or assign portions to other nodes based on the constructed
Markov chain. Considering the privacy constraint, we cannot
consider each node separately. Instead, each two nodes will be
considered in pairs, and this is why we call our Markov chain
“pairwise”. The chain will be constructed carefully with pos-
sible pair transitions. We can construct our pairwise Markov
chain in advance based on the property that the stationary
state of a Markov chain is not affected by its initial state.
The optimized queuing and processing latency on edge nodes
can then be computed and recorded in advance, which saves
computational delay when deciding the scheduling. Simulation
results validate that our proposed strategy can achieve an
efficient task scheduling while ensure the privacy. The main
contributions of this paper are as follows:
• We propose an edge computing based deployment for a

fairly popular application of privacy-preserving SIFT. We
formulate the task scheduling problem with the consid-
eration of privacy constraint that no two portions of the
same image should be scheduled to the same edge node for
processing. To the best of our knowledge, we are the first
one to consider such a privacy constraint in task scheduling
problems on edge.

• We propose a pairwise Markov chain to enforce the privacy
constraint. The system states and transition probabilities are
carefully designed. Achievability of the stationary state of
the chain is proved.

• We integrate the proposed pairwise Markov chain with
the optimization model, construct a stochastic optimization
problem for queuing plus processing latency minimization
with the privacy constraint enforcement, and show that the
problem can be solved through transforming it to a linear
programming problem.
The rest of this paper is organized as follows. In Section II,

we give a full description of our privacy constrained task
scheduling system. In Section III, our constructed pairwise
Markov chain for privacy constraint enforcement is intro-
duced. Our optimization strategy through linear programming
is presented in Section IV. Experimental results for validation
and evaluation are given in Section V. We discuss possible
improvements and extensions in Section VI. Section VII
discusses related works and conclusions will be drawn in
Section VIII.

II. MODEL CONSTRUCTION AND PROBLEM FORMULATION

In this paper, we consider the privacy-preserving SIFT
proposed in [12] as an application scenario. According to
[7], SIFT is realized through keypoint localization, orientation
assignment, and keypoint descriptor. The key part is generation
of the difference-of-Gaussian scale space, which requires ex-
tensive convolution computation. For privacy-preserving SIFT
in [12], the original image I is split into two portions. For
the first portion, a number ranging from 0 to 255 is randomly
selected for each pixel. This will generate I1. The second
portion is generated through adding the original image with the
first portion. In other words, we have I2 = I +I1. After that,



A version of this paper has got accepted in INFOCOM’19

the two portions will respectively generate two difference-of-
Gaussian scale spaces, and those three steps for SIFT feature
extraction can be done through homomorphic addition and
comparison. With the above privacy-preserving scheme, users
need to split the image into two portions for encryption, and
transmit these two portions to two different edge nodes. In
the edge, we need to ensure that no two portions of the same
image are assigned or switched to the same edge node.

A. System Model

Let’s consider an edge network, denoted as G = (V,E),
where V and E represent the set of nodes and links in the
network. Each edge node is assumed to have both communi-
cation and computing capabilities. All the links among edge
nodes are considered full-duplex. In this paper, we assume
that communication among edge nodes are through high-speed
wired links. For example, in a campus wireless network, the
edge nodes could be access points (APs), which are connected
by high speed Ethernet with transmission rate of 10 Gbps.
Therefore, we assume that the transmission delay among the
edge nodes are negligible compared with queuing delay in the
edge node.

For an edge network with K edge nodes V =
{v1, v2, · · · , vK}, when an image portion is sent to an edge
node vi by the user (either through a wireless or wired link),
the node will firstly decide whether it will process the portion
itself or switch the portion to another node vj 6= vi. We assume
that if a portion gets switched to another node once, it will not
be switched again. In other words, when the portion arrives at
the head-of-line of node vj , it will be processed by vj . Thus,
the whole process can be seen as a 2-hop behavior. In this
paper, we use Pi to denote the proportion of image portions
that are processed by itself for node vi when the edge network
gets stable.

Each edge node vi has a 2-hop process from its own
perspective. An example of the 2-hop process with four edge
nodes (K = 4) is illustrated in Fig. 2(a). The 2-hop process
will generate K queues. The first queue records image portions
to be processed by node vi itself, which is denoted as Qi,i. All
the other queues Qi,j record image portions to be switched
to node vj . With a slight abuse of notation, we use Qi,i(t)
and Qi,j(t) to denote their queue lengths in each time slot
t, respectively. Besides, we use Di,i(t) and Di,j(t) to denote
their head-of-line (HOL) delay [13], respectively. According to
Little’s Law [14], if the entire edge network can become stable,
the queue length and HOL delay should have the following
relationship in the stationary state.

di,k =
1

αi,k
lim

n0→∞

n0∑
n=0

n · Pr{qi,k = n} (1)

Here, node vk can be both vi and vj . αi,k represents the long-
term average arrival rate for queue Qi,k. In this paper, we use
the average arrival rate within a long enough time interval for
approximation. Note that a unit arrival process is assumed in
this paper, which makes all the arrival rates between 0 and
1. di,k and qi,k respectively represent the HOL delay and

(a) (b)

Fig. 2. Example of our 2-hop process and transmissions not permitted under
privacy constraint. (a) 2-hop process. (b) Transmissions not permitted.

queue length for queue Qi,k as the entire system becomes
stable. n and n0 are the possible and maximum queue length
individually. Pr{qi,k} = n reflects the probability where the
stable queue length of Qi,k is equal to n.

As has been discussed above, our scheduling policy can be
seen as a 2-hop process. We can assume that the long-term
average arrival rate of node vi is αi. This αi can actually
also be seen as the arrival rate in the first hop. Since once an
image portion arrives at node vi, the portion will be processed
by node vi itself with a proportion Pi, the arrival rate for
Qi,i can then be denoted as αi,i = Piαi. On the other hand,
the proportion where an arrived image portion is scheduled to
another node is 1 − Pi obviously. In this paper, we assume
that the scheduled node is randomly selected from the other
(K−1) nodes, which makes the long-term average arrival rate
of Qi,j equal to αi,j = 1

K−1 (1 − Pi)αi. From this equation,
we can see that all αi,j are actually the same. For notation
ease, we can respectively use αi,1 and αi,2 to represent αi,i

and all the αi,j .
In this paper, we assume that all edge nodes have the same

computation capacity. In this case, service time is just related
to tasks. For SIFT feature extraction, most of the computa-
tions happen in generation of the difference-of-Gaussian scale
space. Therefore, if the number of scales is selected the same
and all image portions have the same size, we can assume
that privacy-preserving SIFT feature extraction for those image
portions has the same computational overhead. Based on the
above assumption, we can consider service time for those
image portions the same, which is denoted as N , in the number
of time slots. With the same arrival and service rate, we can
claim that when the whole edge network becomes stable, all
those queue lengths Qi,j(t) should converge to a single length
qi,2. Considering Little’s Law discussed above, we also have
the converged HOL delay di,2. Besides, we also use qi,1 and
di,1 to represent the converged queue length and HOL delay
for Qi,i.

B. Optimization Problem Formulation

In this paper, we aim at minimizing the total latency under
the system model introduced in the last section. According
to the definition, the total latency is actually composed of
queuing time and service time. However, as has been discussed
in the last section, service time is fixed with the given servers
and tasks. In this case, our optimization problem can actually
be simplified to minimizing queuing time, which can be
represented by HOL delay. In our defined system model, we



A version of this paper has got accepted in INFOCOM’19

have two kinds of HOL delay, di,1 and di,2. Obviously, we
want them both to be minimized. In this case, we define the
summation of these two kinds of HOL delay as our objective
to be minimized, which is denoted as Ti shown below:

Ti , di,1 + di,2 (2)

From the perspective of each edge node vi, there is a similar
2-hop process, which corresponds to a similar optimization
problem. In this paper, we only target one of these optimization
problems, which can be defined as below:

min Ti

s.t. φ(I1,Qi,k) + φ(I2,Qi,k) 6= 2 i, k = 1, 2, · · · ,K
(3)

The indicator function φ(I,Qi,k) is defined as follows:

φ(I,Qi,k) ,

{
1 I ∈ Qi,k

0 I /∈ Qi,k

(4)

The constraint in (4) actually corresponds to the privacy
constraint in this paper, which requires that no edge nodes
should get both two portions of the same image. Fig. 2(b)
shows an example with four edge nodes. In this example,
two image portions of the same image individually arrive
at node v1 and v2. We illustrate two pairs of transmissions
that should not be permitted, (f1,1, f1,2) and (f2,1, f2,2). The
privacy constraint is enforced through our pairwise Markov
chain to be described in detail in Section III. We will tune the
transition probabilities in our Markov chain to optimize the
delay performance.

III. PAIRWISE MARKOV CHAIN FOR PRIVACY
CONSTRAINT ENFORCEMENT

In this paper, we consider an attack model like this: an
attacker wants to recover the content of some images. In order
for this, the attacker randomly selects and eavesdrops a node
in our edge network. Therefore, our task scheduling policy
should avoid transmitting two portions of the same image to
the eavesdropped node. Since the eavesdropped node can be
any node in the edge network, our policy should be further
extended to the case that two portions of the same image
should not be transmitted to any node in the edge network.
When it comes to a traditional task scheduling problem, the
whole process can actually be described by a Markov chain.
Here, we carefully modify the Markov chain by considering
each two edge nodes in pairs to reflect the privacy constraint.

A. Optimization Problem Reconsideration and Pairwise
Markov Chain Construction

Our constructed pairwise Markov chain is based on a
pairwise architecture. We start from a simple example of an
edge network with three edge nodes, shown in Fig. 3.

From this figure, we can see that each two edge nodes are
considered in pairs to generate a new node. Based on our
pairwise architecture, if two different edge nodes v1 and v2
receive two portions of the same image, generally speaking,
they will have two choices: processing the two portions

Fig. 3. Example of an edge network and transformed pairwise architecture.

Fig. 4. Detailed assignments of image portions.

themselves, or transmitting the two portions to another pair. If
they choose to process the two portions themselves, obviously,
there will be no violation of the privacy constraint. If they
choose to schedule the portions to another pair, there will
be another two choices: transmitting the two portions to v1
and v3, or v2 and v3. When image portions are transmitted
to v1 and v3, it can actually be seen as the case that the
first image portion is still processed by v1 itself, while the
second image portion is transmitted from v2 to v3. A similar
case applies to image portions being transmitted to v2 and v3.
The detailed assignments are shown in Fig. 4. It is easy to
imagine when an edge network has K(K > 3) nodes, a node
pair (vi1 , vi2) can have three kinds of choices (instead of just
two in the above example) when two received image portions
are determined to be transmitted to another pair. Besides
being transmitted to node pair (vi1 , vj2) and (vj1 , vi2), the
image portions can also be transmitted to node pair (vj1 , vj2).
Here, i1, i2, j1, j2 = 1, 2, · · · ,K, and i1, i2, j1 and j2 are all
different.

With the above pairwise architecture, two image portions of
the same image have no chance to be transmitted to the same
node. On the other hand, we need to reconsider the system
model and optimization problem described in Section II-A.
Previously, we consider the whole system from the perspective
of each edge node. With the introduction of privacy constrain,
we should consider the system in node pairs. Fortunately, the
system still follows Little’s Law, but with a little modification
for the arrival rate of each edge node. In Fig. 3, we give the
proportion of image portions processed by node pair (v1, v2)
itself, denoted as P1,2. Based on previous discussion, we have
shown that even if two image portions of the same image will
be transmitted to another node pair, the situation still exists
that one of these two image portions will still be processed
by the original node. In other words, the proportion of a node
Pi1 is not necessarily equal to the proportion of a node pair
Pi1,i2 . In the example shown in Fig. 3, we actually have P1 =

P2 = P1,2 +
1−P1,2

2 =
1+P1,2

2 . When the case is extended



A version of this paper has got accepted in INFOCOM’19

to an edge network with K edge nodes, we should have the
following relationship:

Pi1 = Pi2 = Pi1,i2 +

(
1

K−1
)
− 1(

2
K

)
− 1

(1− Pi1,i2)

=
2 + (K − 1)Pi1,i2

K + 1

(5)

The arrival rates need to be modified accordingly when de-
scribed by Pi1,i2 .

From (5), we can see that Pi1 and Pi2 are the same.
Actually, if we consider the whole edge network from the
perspective of node pair (vi1 , vi2), the first-hop arrival rate of
these two nodes αi1 and αi2 are also the same, denoted as
λi1,i2 for notation ease. This is because a node pair corre-
sponds to two image portions of the same image. Obviously,
these two image portions always arrive at the same time. In
this situation, the minimal HOL delay summation, described
in (2), of these two nodes should be the same. In other words,
we just need to minimize the HOL delay summation from
the perspective of one of these two nodes, which makes the
optimization objective in (3) unchanged. Besides, with our
generated pairwise architecture, the privacy requirement can
be met, which corresponds to the constraint in (3).

Similar to traditional scheduling policies, our pairwise
scheduling process can also be described by a Markov chain,
which is called as pairwise Markov chain in this paper. Each
system state of our constructed pairwise Markov chain is
denoted as Z(t) = (W (t),Q(t)), where W (t) and Q(t)
represent the working status and queue length vector, respec-
tively. Each element wk(t), with k = 1, 2, · · · ,K, in W (t)
reflects how many time slots are still needed for the k-th server
to complete its current task. Recall that in Section II-A, we
assume that the total number of time slots for an edge node to
complete a task is N . Therefore, each wk(t) has N+1 possible
values, with wk(t) = 0, 1, 2, · · · , N , where wk(t) = 0 means
that the server is idle in this time slot. Each element qk(t) in
Q(t) represents the queue length with a structure similar to
that of wk(t). For the edge network with K nodes, the state
space S ⊆ {0, 1, · · · , N}K × {0, 1, · · · M}K represents all
possible states of our Markov chain that can be reached from
the initial state, which is defined as Z0 , (0K×1,0K×1). M
depends on the storage limit of each server.

B. Pairwise Markov Chain Achievability

According to [15], an irreducible Markov chain has a
positive stationary distribution if and only if all of its states
are positive recurrent. In other words, we can prove that our
Markov chain has a stationary distribution by showing that it
is irreducible and positive recurrent.

Proposition 1. The pairwise Markov chain proposed in this
paper is irreducible.

Proof. For irreducibility, we should show that any two states
can be reached from each other in our Markov chain. Since by
the definition of our Markov chain, the initial state can reach
any other states, we just need to show that any states can

reach the initial state. In our Markov chain, we assume that
the initial state has a possible transition to itself. This transition
is necessary and reasonable, since we should consider the case
that no tasks are in the edge in a certain time slot. Such
an assumption will just make our Markov chain aperiodic.
This means that for a given set of transition probabilities, our
Markov chain will just have one stationary distribution, which
does not influence our proof.

With the above assumption, we can give a proof for irre-
ducibility as follows. For any state Z(t), we can find the server
with the longest queue length qmax. Recall that each task can
be completed in N time slots. Then, we can assume an event
that in N(qmax + 1) time slots, there are no tasks arriving at
the edge. From Section III-A, we know that the arrival rate of
node pair (vi1 , vi2) is λi1,i2 . Then, the probability of this event
is (1−λi1,i2)N(qmax+1) > 0, which means that this event can
happen. If this event happens, the edge will complete all tasks
that are both in service and queued in N(qmax+1) time slots.
In other words, the current state will transit to the initial state
Z0 in at most N(qmax + 1) time slots. Note that some states
Z(t) may transit to the initial state in less than N(qmax + 1)
time slots with our task switch operations. However, this does
not matter since for the initial state, we have already assumed
a possible transition to itself. Since any state in our Markov
chain can have such an event, any state can reach back to the
initial state, which proves the irreducibility. �

Now, we have shown that our Markov chain is irreducible.
We still have to show that our Markov chain is positive
recurrent. Here, we utilize Foster-Lyapunov theorem [16] to
prove it.

Proposition 2. The pairwise Markov chain proposed in this
paper is positive recurrent.

Proof. Consider a Lyapunov function defined as follows:

V (Z(t)) , ‖W (t)‖+ ‖Q(t)‖ =

K∑
k=1

wk(t) + qk(t) (6)

Here, ‖·‖ is the L1-norm. Then, according to Foster-Lyapunov
theorem, it suffices to show that for any given state Zc, our
Markov chain has:

E[V (Z(t+ 1))− V (Z(t))|Z(t) = Zc] ≤ −δ, Zc ∈ F
(7a)

E[V (Z(t+ 1))− V (Z(t))|Z(t) = Zc] < C, Zc /∈ F (7b)

Here, E[·] calculates the expected value. δ and C are two strict
positives. F denotes some finite set. Next, we will show how
to find δ, C and F .

In our Markov chain, we define F to include all states where
every node in the server is busy with some task. Formally,
F = {ZF = (W F ,QF )|ZF ∈ Z, wF,k 6= 0 for ∀wF,k ∈



A version of this paper has got accepted in INFOCOM’19

W F , k = 1, 2, · · · ,K}. In this case, for any Zc ∈ F , we
have:

E[V (Z(t+ 1))− V (Z(t))|Z(t) = Zc]

=E[‖W (t+ 1)‖+ ‖Q(t+ 1)‖ − ‖W (t)‖ − ‖Q(t)‖|
Z(t) = Zc]

=

K∑
k=1

[wk(t+ 1)− wk(t)] +

K∑
k=1

[qk(t+ 1)− qk(t)]

≤−K + 2 < 0 (8)

Since every edge node is busy with some task, after one time
slot passes, each element in the working status vector can
only decrease by 1. With totally K edge nodes, ‖W (t+ 1)‖
will decrease by K compared with ‖W (t)‖. Besides, with
the unit arrival process assumption, there are at most two
new tasks (one image split into two portions) arriving at
node pair (vi1 , vi2) in the current time slot. Then, no matter
whether these two tasks are processed by the current nodes
or transmitted to other nodes, ‖Q(t+ 1)‖ will not be further
changed. Therefore, ‖Q(t + 1)‖ can at most increase by 2
compared with ‖Q(t)‖. Then, the expected value is at most
equal to (8). Furthermore, if we want to make the scheduling
problem meaningful, K should be larger than 2. Therefore,
(8) is less than 0. In this case, for any Zc ∈ F , the expected
value is strictly less than 0. In other words, we can find a
strictly positive δ, satisfying formula (7a).

On the other hand, for any Zc /∈ F , some edge nodes may
be idle, which may make the total decrease of ‖W (t)‖ less
than K. Besides, similar to the case of Zc ∈ F , ‖Q(t+1)‖ can
at most increase by 2 compared with ‖Q(t)‖. Then, we can see
that the largest expected value happens when all edge nodes
are idle. In other words, we have (9), which is not greater than
2. In this case, we can pick any C > 2. Then, we can have
that for any Zc /∈ F , formula (7b) is satisfied.

E[V (Z(t+ 1))− V (Z(t))|Z(t) = Zc]

=

K∑
k=1

[wk(t+ 1)− wk(t)] +

K∑
k=1

[qk(t+ 1)− qk(t)]

≤0 + 2 = 2 (9)

Based on the above analysis, we have proved that our
Markov chain is irreducible and positive recurrent. In this case,
we can claim that the chain has a stationary distribution. �

C. Privacy Constrained Stochastic Task Scheduling Modeling

Next, let’s take a look at how to relate the privacy constraint
to our constructed pairwise Markov chain. Previously, we
have listed four situations that do not violate the privacy con-
straint. These four situations can be ensured through carefully
designing transition probabilities in our constructed pairwise
Markov chain. For a network with totally K nodes, we will
have (K − 1)K/2 pairs, which is denoted as (vi, vj) in this
section. From the perspective of a given node pair (vi1 , vi2)
and for each state Z(t), we will assign a probability for an
assignment to node pair (vi, vj), denoted as P i,j

Z(t). Note that

as has been discussed before, i = i1 or j = i2 actually
correspond to the cases that image portions will be processed
by the current nodes. We can construct relationships between
these probabilities and transition probabilities to ensure the
privacy constraint. Here, two cases are discussed in detail
for relationship construction between those two probabilities.
Similar discussions can be done from the perspective of any
given node pair.

Case 1: In this case, we will discuss all the states in our
constructed Markov chain whose elements in the working
status vector are all not zero. This means that all edge nodes
are in service. In other words, when our Markov chain arrives
at the state Z(t) = ((wk(t) 6= 0)K×1, (qk(t))K×1), it can
only transit to the state Z(t+ 1) = ((wk(t)−1)K×1, (qk(t) +
∆qk)K×1). Here, ∆qk can be 0 or 1. Value 0 means that there
is no new task assigned to node vk in the current time slot,
while value 1 means that there is an assigned task to vk. In
this case, we should have:

Pr{Z(t+ 1)|Z(t)} =

{
λi1,i2P

i,j
Z(t) ∆qi = ∆qj = 1

1− λi1,i2 ∆qk = 0,∀k
(10)

It is easy to imagine that all ∆qk = 0 represents there are no
newly arrived tasks.

Case 2: In this case, we will discuss all the states in our
Markov chain who have elements with value 0 in the working
status vector. This means that some edge nodes are idle, and
can process their next queued tasks. Then, we should have
Z(t+1) = ((wk(t)+∆wk)K×1, (qk(t)+∆qk)K×1). ∆wk can
be −1, 0, N , and ∆qk can be −1, 0, 1. Each combination of
∆wk and ∆qk corresponds to a subsequent system state. The
value of ∆wk and ∆qk are determined by the arrival process,
working status of each edge node and task assignment strategy.
When wk(t) 6= 0, the corresponding edge node is in service,
and Case 2 will get simplified to Case 1. If the edge node is
idle (wk(t) = 0), ∆wk can be 0 or N . It is 0 when the edge
node has processed all the queued tasks and has no newly
assigned task. In this situation, ∆qk can only be 0. Otherwise,
∆wk will be N . As for ∆qk, its value should be -1 if there
is no newly arrived task, and 0 with a newly arrived task.

After the above discussion about possible combinations of
∆wk and ∆qk, it is the time to consider those transition
probabilities. Before that, we further summarize those possible
combinations into five categories. Each combination is denoted
as ci, with i = 1, 2, · · · , 5. In detail, c1 = (∆qk = 1,∆wk =
−1), c2 = (∆qk = 0,∆wk = N), c3 = (∆qk = 0,∆wk = 0),
c4 = (∆qk = 0,∆wk = −1), and c5 = (∆qk = −1,∆wk =
N). c1 and c2 correspond to the situations that there is a newly
assigned task, and we use a set CY to include them. c3, c4 and
c5 correspond to the situations that there is no newly assigned
task, which is included by the set CN . Then, the transition
probability can be described as follows:

Pr{Z(t+ 1)|Z(t)} =


λi1,i2P

i,j
Z(t) (∆qi,∆wi) ∈ CY

(∆qj ,∆wj) ∈ CY

1− λi1,i2 (∆qk,∆wk) ∈ CN ,∀k
(11)



A version of this paper has got accepted in INFOCOM’19

Based on the above discussion, we can construct relation-
ships between P i,j

Z(t) and transition probabilities. The param-
eters to be tuned are actually P i,j

Z(t).

D. Optimization Problem Modeling

Next, we will talk about how to complete constructing our
optimization model in detail. Recall that in Section II, we
just gave a general idea of the proportion Pi1 and Pi2 (Pi

in Section II), the privacy constraint, and parameters to be
tuned for our optimization problem. In Section III-A, we have
shown that Pi1 = Pi2 , and we just need to consider the
HOL delay summation from the perspective of one of those
two nodes vi1 and vi2 . In this section, vi1 is chosen in our
objective function. Besides, in the last section, we constructed
our pairwise Markov chain for privacy constraint enforcement,
and defined parameters to be tuned as P i,j

Z(t). In this case, our
optimization problem can be rewritten as (12). For simplicity,
Pr{Z(t + 1)|Z(t)} is represented by Prz1,z . The stationary
distribution is described as Distz .

min
P i,j

Z(t)

Ti1 = di1,1 + di1,2

s.t.
∑
z∈S

Prz1,z ·Distz = Distz1 ,∀z1 ∈ S∑
z∈S

Distz = 1

P i,j
Z(t) ≥ 0

(12)

Here, the first two constraints represent stationary state equa-
tions of our Markov chain. The relationship between P i,j

Z(t)
and Prz1,z is described in equation (10) and equation (11).
With our Markov chain, di1,k can be calculated through the
extension of equation (1) as follows:

di1,k =
1

αi1,k

M∑
n=0

n · Pr{qi1,k = n}

=
1

αi1,k

M∑
n=0

n
∑
z∈S

qi1,k=n

Distz (13)

Here, M corresponds to the storage limit of each server. Recall
that when k = i1, αi1,i1 = αi1,1, qi1,i1 = qi1,1 and di1,i1 =
di1,1, while for all k 6= i1, αi1,k = αi1,2, qi1,k = qi1,2 and
di1,k = di1,2.

If we can solve the optimization problem described in (12),
the proportion Pi1 and Pi2 can be calculated with those P i,j

Z(t).
In detail, we can firstly calculate the node pair proportion
Pi1,i2 based on (14). Then, Pi1 and Pi2 can be derived based
on the relationship described in (5).

Pi1,i2 =

∑
z∈S Distz ·

∑
z1∈S1

P i,j
z∑

z∈S Distz ·
∑

z1∈S2
P i,j
z

(14)

Here, Z(t) and Z(t+ 1) are respectively simplified to z and
z1. Given any system state z ∈ S, S1 indicates a portion of
subsequent system states of z, These subsequent system states
correspond to the case that i = i1 and j = i2. In other words,

the newly arrived tasks are decided to be processed by the
current node pair. S2 corresponds to the set of all possible
subsequent system states of z.

IV. OPTIMIZATION PROBLEM SOLVING

As has been discussed in the last section, we need to
firstly solve the optimization problem described in (12) in
order to derive the proportion Pi1 and Pi2 . The optimization
model described in (12) can theoretically be solved. However,
considering its nonlinearity, it is not computationally practical.
In this section, we will give a full description of how to
transform our optimization problem to a linear equivalent
form, and solve it through linear programming.

Firstly, we let Xi,j
z = Distz · P i,j

z . Note that P i,j
Z(t) is

simplified to P i,j
z here. Since

∑K
i,j=1,i6=j P

i,j
z = 1, we should

have
∑K

i,j=1,i6=j X
i,j
z = Distz correspondingly. After that,

the original optimization model is considered together with
equation (5), (11), (13) and (14), and can be transformed to
the following form:

min
X

ik,j
z ,Pi1,i2

Ti1 = di1,1 + di1,2

s.t. C1(Xi,j
z , Pi1,i2) = 0

C2(Xi,j
z1 ) = 0,∀z1 ∈ S∑

z∈S

K∑
i,j=1,i6=j

Xi,j
z = 1

Xi,j
z ≥ 0

(15)

Where di1,1 and di1,1 can be described by Xik,j
z , Pi1,i2 with

the following two formulas:

di1,1 =
K + 1

αi1 [2 + (K − 1)Pi1,i2 ]

M∑
n=0

n
∑
z∈S

qi1,1=n

K∑
i,j=1,i6=j

Xi,j
z

di1,2 =
K + 1

αi1(1− Pi1,i2)

M∑
n=0

n
∑
z∈S

qi1,2=n

K∑
i,j=1,i6=j

Xi,j
z

(16)
The first and second constraint respectively come from equa-
tion (14) and the first stationary state equation of our Markov
chain. In detail, we have:

C1(Xi,j
z , Pi1,i2) =

∑
z∈S

∑
z1∈S1

Xi,j
z − Pi1,i2

∑
z∈S

∑
z1∈S2

Xi,j
z

C2(Xi,j
z1 ) =

∑
z∈S

∑
z1∈S3

αi1X
i,j
z

+
∑
z∈S

∑
z1∈S4

(1− αi1)

K∑
i,j=1,i6=j

Xi,j
z −

K∑
i,j=1,i6=j

Xi,j
z1

(17)
Here, S3 and S4 are respectively the set of subsequent
states with and without newly arrived tasks. With (15), (16)
and (17), the original optimization problem is transformed to
an equivalent linear programming problem. We can use a one-
dimensional search algorithm proposed in [4] to solve it. The



A version of this paper has got accepted in INFOCOM’19

optimal set of Xi,j
z , denoted as Xp, will be firstly obtained for

each given Pi1,i2 ∈ [0, 1]. Then, we will conduct a horizontal
comparison for all combinations of the optimal set Xp and
given Pi1,i2 to find the optimal P ∗ and the corresponding
ultimate optimal set X∗. Finally, all transition probabilities
can be calculated through P i,j

z = Xi,j
z · (

∑K
i,j=1,i6=j X

i,j
z )−1

and equation (11).

V. SIMULATION AND EVALUATION

In this section, we will give a full analysis for the effi-
ciency of our proposed stochastic task scheduling strategy. Our
scheme is compared with two baselines:
• Random Walk (RW): Each idle pair receiving two portions

of the same image will randomly select another pair, which
does not include themselves, and transmit those two portions
to that pair for processing. This case actually corresponds
to the proportion for local processing Pi1 = Pi2 = 0.

• Greedy Local Processing (GLP): Each idle pair receiving
two portions of the same image will choose to process those
two portions themselves anytime. This case actually corre-
sponds to the proportion for local processing Pi1 = Pi2 = 1.
In the simulation, we consider an edge with six nodes. The

largest possible number of queued tasks M is set to be 5. As
has been mentioned in Section II-A, the processing latency N
for all tasks in this paper can be considered the same. Here,
we assume that N = 20 time slots. Besides, we respectively
add a bias of 100 time slots to reflect possible node and link
corruptions. Such biases are randomly applied to the whole
network. Note that all the simulation results here are from the
perspective of one single node vi1 .

Fig. 5(a) shows the comparison among our task scheduling
strategy, RW and GLP. From this figure, we can see that
as the arrival rate grows, all of the three task scheduling
strategies have longer latency, which is consistent to our
intuition. Overall, our task scheduling strategy has the most
optimal result. When the arrival rate is low, GLP almost has the
same latency as our task scheduling strategy. This is because
at this time, edge nodes usually do not have queued tasks. In
this case, tasks are better to be served locally as soon as they
reach the edge nodes. Transmission to other nodes can meet
additional link corruptions besides node corruptions. When the
arrival rate rises, GLP begins to achieve performance similar
to our task scheduling strategy. This indicates that passing
tasks to other nodes is proper for a higher arrival rate. Finally,
Fig. 5(b) shows the optimal proportion of local processing
Pi1 for different arrival rates. From this figure, we can notice
that the proportion Pi1 is not exactly 1, 0.9 actually. The
reason is that node corruptions will cause queued tasks. When
tasks are queued in one node, it is better to distribute them
to other nodes to fully utilize computation resources of the
whole network.

Fig. 6 shows the optimal distribution of queue length for a
particular edge node in different arrival rates. From this figure,
we can see that when the arrival rate is low, the case that
there are no queued tasks is extremely likely to happen. With
the arrival rate rising, probability of the edge node having no

(a)

(b)

Fig. 5. Efficiency evaluation results. (a) Queuing plus processing latency vs.
arrival rate. (b) Optimal proportion for local processing vs. arrival rate

queued tasks decreases significantly. This is consistent to our
observation above that when the arrival rate rises, the total
latency also increases. Since processing time for all the tasks
is assumed to be equal, the extra more latency can only be
attributed to longer queuing time, which results from longer
queues.

VI. DISCUSSION

In this section, we want to discuss briefly about poten-
tial improvements and extensions of our privacy-preserving
scheduling policy. In this paper. we assume that the attacker
can only eavesdrop one edge node. In the future, the case
with multiple nodes getting hacked is worth considering. Even
worse, all edge nodes have the possibility to be owned by
the same entity and all get hacked. The case with all nodes
getting attacked may not be solved properly just by privacy-
preserving scheduling. However, the case with some nodes
getting hacked can still be considered. In addition, schedulers
may also be attacked. It is also interesting to look into the
case that schedulers act maliciously.



A version of this paper has got accepted in INFOCOM’19

Fig. 6. Distribution of Queue Length in Different Arrival Rates

The extension to the case that the edge network has a
multihop architecture is also interesting. According to [17], the
linear relationship between queue length and HOL delay does
not necessarily hold in multihop networks. The relay issue
will cause the arrival process to change. In this case, our 2-
hop process cannot be directly extended to the multihop case.
Besides the newly arrived tasks from outside of the network,
the queue of one node should also contain tasks transmitted
from other nodes in the network. Furthermore, communication
latency and throughput constraint should also be considered.
Backpressure scheduling policies [13], [18] could be a solution
to these issues.

VII. RELATED WORKS

Edge computing helps improve latency performance by pro-
cessing information on the edge nodes near users. It can also
reduce the bandwidth consumption in the core network by pre-
processing or aggregating information at edge before sending
them to the cloud. Under this new computing paradigm, a well-
designed task scheduling strategy is needed to decide which
computing task to be assigned to which edge node. Up to
now, several resource allocation and task scheduling works
[1]–[6] have been done for edge computing systems with
different configurations. However, none of them considered
privacy issues.

SIFT algorithm [7] has been widely used in image matching
owing to its robustness. Since SIFT requires a large number
of convolution computations, many cloud computing solutions
have been proposed for it. With the concern of preserving
image privacy against untrusted third party cloud servers,
privacy-preserving SIFT schemes have been proposed. [8]–
[10] propose to utilize homomorphic encryption to satisfy pri-
vacy requirements. Later, [11] claims that relying on just one
server cannot well guarantee privacy, and [11], [12] propose to
randomly split images for encryption and transmit these two
portions to two different remote servers for privacy-preserving
SIFT processing. In this paper, we propose an edge computing
based deployment for such a privacy-preserving application.

During the whole process, it should be guaranteed that no edge
nodes are assigned two portions of the same image. Therefore,
a task scheduling strategy with such a privacy constraint needs
to be designed.

A Markov-chain-based task scheduling strategy is pro-
posed in this paper. The privacy constraint is guaranteed by
paring the corresponding edge nodes. The achievability of
our Markov chain is proved by irreducibility and positive
recurrence [15]. Irreducibility is ensured by the structure of
our Markov chain, and positive recurrence is claimed through
Foster-Lyapunov theorem [16].

VIII. CONCLUSION

In this paper, we propose a stochastic task scheduling strat-
egy based on a privacy-preserving SIFT algorithm on edge.
Images are randomly split into two portions for encryption
and transmitted to two edge nodes for processing. During the
whole process, all edge nodes should not have the chance to
get both two portions of the same image. In order to guarantee
such a privacy constraint, we construct a pairwise Markov
chain to take care of it. Edge nodes are considered in pairs
in all system states of our chain. The achievability can be
proved through showing irreducibility and positive recurrence.
Queuing plus processing latency can be minimized based on
our constructed pairwise Markov chain. Simulation results
validate that our task scheduling strategy can achieve minimal
latency, and guarantee the privacy constraint at the same time.

REFERENCES

[1] Z. Jiang and S. Mao, “Energy delay trade-off in cloud offloading for
mutli-core mobile devices,” in Proc. IEEE Global Communications
Conference (GLOBECOM’15), San Diego, CA USA, Dec. 2015, pp.
2306–2316.

[2] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic resource
and task allocation for energy minimization in mobile cloud systems,”
IEEE J-SAC, vol. 33, no. 12, pp. 2510–2523, Dec. 2015.

[3] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE TSIPN, vol. 1, no. 2, pp. 89–103, Jun. 2015.

[4] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE
International Symposium on Information Theory (ISIT’16), Barcelona,
Spain, Jul. 2016, pp. 1451–1455.

[5] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE TWC, vol. 16,
no. 3, pp. 1397–1411, Mar. 2017.

[6] X. Wang, R. Jia, X. Tian, and X. Gan, “Dynamic task assignment
in crowdsensing with location awareness and location diversity,” in
Proc. IEEE International Conference on Computer Communications
(INFOCOM’18), Honolulu, HI USA, Apr. 2018.

[7] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
IJCV, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[8] W. Lu, A. L. Varna, A. Swaminathan, and M. Wu, “Secure image
retrieval through feature protection,” in Proc. IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP’09), Taipei,
Taiwan, Apr. 2009.

[9] C.-Y. Hsu, C.-S. Lu, and S.-C. Pei, “Image feature extraction in
encrypted domain with privacy-preserving SIFT,” IEEE Trans. Image
Processing, vol. 21, no. 11, pp. 4593–4607, Nov. 2012.

[10] S. Wang, M. Nassar, M. Atallah, and Q. Malluhi, “Secure and private
outsourcing of shape-based feature extraction,” in Proc. International
Conference on Information and Communications Security (ICICS’13),
2013, pp. 90–99.



A version of this paper has got accepted in INFOCOM’19

[11] Z. Qin, J. Yan, K. Ren, C. W. Chen, and C. Wang, “Towards efficient
privacy-preserving image feature extraction in cloud computing,” in
Proc. ACM International Conference on Multimedia (MM’14), Nov.
2014, pp. 497–506.

[12] S. Hu, Q. Wang, J. Wang, Z. Qin, and K. Ren, “Securing SIFT:
Privacy-preserving outsourcing computation of feature extractions over
encrypted image data,” IEEE Trans. Image Processing, vol. 25, no. 7,
pp. 3411–3425, May 2016.

[13] A. Mekkittikul and N. McKeown, “A starvation-free algorithm for
achieving 100% throughput in an input-queued switch,” in Proc. IEEE
ICCCN’96, 1996.

[14] S. M. Ross, Introduction to Probability Models. Oxford, UK: Academic
Press, 2014.

[15] R. Serfozo, Basics of Applied Stochastic Processes. Berlin, Germany:
Springer, 2009.

[16] R. Srikant and L. Ying, Communication Networks: An Optimization,
Control and Stochastic Networks Perspective. Cambridge, UK: Cam-
bridge University Press, 2014.

[17] B. Ji, C. Joo, and N. B. Shroff, “Delay-based back-pressure scheduling
in multihop wireless networks,” IEEE/ACM TON, vol. 21, no. 5, pp.
1593–1552, Oct. 2013.

[18] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.


