
8.3 Elliptic Equations | 403

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

Figure 8.14 Electrostatic potential from the Laplace equation. Boundary conditions set in

Example 8.9.
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Since second-order finite difference formulas were used, the error of the Finite Dif-
ference Method poisson.m is second order in h and k. Figure 8.13(b) shows a more
accurate approximate solution, for h = k = 0.1. The Matlab code poisson.m is written
for a rectangular domain, but changes can be made to shift to more general domains. "

For another example, we use the Laplace equation to compute a potential.

! EXAMPLE 8.9 Find the electrostatic potential on the square [0,1] × [0,1], assuming no charge in the
interior and assuming the following boundary conditions:

u(x,0) = sin πx

u(x,1) = sin πx

u(0,y) = 0

u(1,y) = 0.

The potential u satisfies the Laplace equation with Dirichlet boundary conditions.
Using mesh size h = k = 0.1, or M = N = 10 in poisson.m results in the plot shown in
Figure 8.14. "

8 Heat distribution on a cooling fin
Heat sinks are used to move excess heat away from the point where it is generated. In this
project, the steady-state distribution along a rectangular fin of a heat sink will be modeled.
The heat energy will enter the fin along part of one side. The main goal will be to design
the dimensions of the fin to keep the temperature within safe tolerances.

The fin shape is a thin rectangular slab, with dimensions Lx × Ly and width δ cm,
where δ is relatively small. Due to the thinness of the slab, we will denote the temperature
by u(x,y) and consider it constant along the width dimension.

Heat moves in the following three ways: conduction, convection, and radiation.
Conduction refers to the passing of energy between neighboring molecules, perhaps due to
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the movement of electrons, while in convection the molecules themselves move. Radiation,
the movement of energy through photons, will not be considered here.

Conduction proceeds through a conducting material according to Fourier’s first law

q = −KA∇u, (8.41)

where q is heat energy per unit time (measured in watts), A is the cross-sectional area of the
material, and ∇u is the gradient of the temperature. The constant K is called the thermal
conductivity of the material. Convection is ruled by Newton’s law of cooling,

q = −HA(u − ub), (8.42)

where H is a proportionality constant called the convective heat transfer coefficient
and ub is the ambient temperature, or bulk temperature, of the surrounding fluid (in this
case, air).

The fin is a rectangle [0,Lx] × [0,Ly] by δ cm in the z direction, as illustrated in
Figure 8.15(a). Energy equilibrium in a typical !x × !y × δ box interior to the fin, aligned
along the x and y axes, says that the energy entering the box per unit time equals the energy
leaving. The heat flux into the box through the two !y × δ sides and two !x × δ sides is by
conduction, and through the two !x × !y sides is by convection, yielding the steady-state
equation

−K!yδux(x,y) + K!yδux(x + !x,y) − K!xδuy(x,y)

+K!xδuy(x,y + !y) − 2H!x!yu(x,y) = 0. (8.43)

Here, we have set the bulk temperature ub = 0 for convenience; thus, u will denote the
difference between the fin temperature and the surroundings.

Dividing through by !x!y gives

Kδ
ux(x + !x,y) − ux(x,y)

!x
+ Kδ

uy(x,y + !y) − uy(x,y)

!y
= 2Hu(x,y),

and in the limit as !x,!y → 0, the elliptic partial differential equation

uxx + uyy = 2H

Kδ
u (8.44)

results.
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Figure 8.15 Cooling fin in Reality Check 8. (a) Power input occurs along interval [0,L] on

left side of fin. (b) Energy transfer in small interior box is by conduction along the x and y

directions, and by convection along the air interface.
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Similar arguments imply the convective boundary condition

Kunormal = Hu

where unormal is the partial derivative with respect to the outward normal direction n⃗. The
convective boundary condition is known as a Robin boundary condition, one that involves
both the function value and its derivative. Finally, we will assume that power enters the fin
along one side according to Fourier’s law,

unormal = P

LδK
,

where P is the total power and L is the length of the input.
On a discrete grid with step sizes h and k, respectively, the finite difference approxi-

mation (5.8) can be used to approximate the PDE (8.44) as

ui+1,j − 2uij + ui−1,j

h2 + ui,j+1 − 2uij + ui,j−1

k2 = 2H

Kδ
uij .

This discretization is used for the interior points (xi,yj ) where 1 < i < m,
1 < j < n for integers m, n. The fin edges obey the Robin conditions using the first deriva-
tive approximation

f ′(x) = −3f (x) + 4f (x + h) − f (x + 2h)

2h
+ O(h2).

To apply this approximation to the fin edges, note that the outward normal direction trans-
lates to

unormal = −uy on bottom edge

unormal = uy on top edge

unormal = −ux on left edge

unormal = ux on right edge

Second, note that the second-order first derivative approximation above yields

uy ≈ −3u(x,y) + 4u(x,y + k) − u(x,y + 2k)

2k
on bottom edge

uy ≈ −3u(x,y) + 4u(x,y − k) − u(x,y − 2k)

−2k
on top edge

ux ≈ −3u(x,y) + 4u(x + h,y) − u(x + 2h,y)

2h
on left edge

ux ≈ −3u(x,y) + 4u(x − h,y) − u(x − 2h,y)

−2h
on right edge

Putting both together, the Robin boundary condition leads to the difference equations

−3ui1 + 4ui2 − ui3

2k
= −H

K
ui1 on bottom edge

−3uin + 4ui,n−1 − ui,n−2

2k
= −H

K
uin on top edge

−3u1j + 4u2j − u3j

2h
= −H

K
u1j on left edge

−3umj + 4um−1,j − um−2,j

2h
= −H

K
umj on right edge.
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If we assume that the power enters along the left side of the fin, Fourier’s law leads to the
equation

−3u1j + 4u2j − u3j

2h
= − P

LδK
. (8.45)

There are mn equations in the mn unknowns uij , 1 ≤ i ≤ m, 1 ≤ j ≤ n to solve.
Assume that the fin is composed of aluminum, whose thermal conductivity is

K = 1.68 W/cm ◦C (watts per centimeter-degree Celsius). Assume that the convective heat
transfer coefficient is H = 0.005 W/cm2 ◦C, and that the room temperature is ub = 20◦C.

Suggested activities:

1. Begin with a fin of dimensions 2 × 2 cm, with 1 mm thickness. Assume that 5W of power is
input along the entire left edge, as if the fin were attached to dissipate power from a CPU
chip with L = 2 cm side length. Solve the PDE (8.44) with M = N = 10 steps in the x and
y directions. Use the mesh command to plot the resulting heat distribution over the
xy-plane. What is the maximum temperature of the fin, in ◦C ?

2. Increase the size of the fin to 4 × 4 cm. Input 5W of power along the interval [0,2] on the
left side of the fin, as in the previous step. Plot the resulting distribution, and find the
maximum temperature. Experiment with increased values of M and N . How much does the
solution change?

3. Find the maximum power that can be dissipated by a 4 × 4 cm fin while keeping the
maximum temperature less than 80◦C. Assume that the bulk temperature is 20◦C and the
power input is along 2 cm, as in steps 1 and 2.

4. Replace the aluminum fin with a copper fin, with thermal conductivity K = 3.85 W/cm ◦C.
Find the maximum power that can be dissipated by a 4 × 4 cm fin with the 2 cm power
input in the optimal placement, while keeping the maximum temperature below 80 ◦C.

5. Plot the maximum power that can be dissipated in step 4 (keeping maximum temperature
below 80 degrees) as a function of thermal conductivity, for 1 ≤ K ≤ 5 W/cm◦C.

6. Redo step 4 for a water-cooled fin. Assume that water has a convective heat transfer
coefficient of H = 0.1 W/cm2 ◦C, and that the ambient water temperature is maintained at
20◦C.

7. Cut a rectangular notch from the right side of the fin, and redo step 4. Does the notched fin
dissipate more, or less, power than the original?

The design of cooling fins for desktop and laptop computers is a fascinating engineering
problem. To dissipate ever greater amounts of heat, several fins are needed in a small
space, and fans are used to enhance convection near the fin edges. The addition of fans
to complicated fin geometry moves the simulation into the realm of computational fluid
dynamics, a vital area of modern applied mathematics.

8.3.2 Finite Element Method for elliptic equations

A somewhat more flexible approach to solving partial differential equations arose from
the structural engineering community in the mid-20th century. The Finite Element Method
converts the differential equation into a variational equivalent called the weak form of
the equation, and uses the powerful idea of orthogonality in function spaces to stabilize
its calculations. Moreover, the resulting system of linear equations can have considerable
symmetry in its structure matrix, even when the underlying geometry is complicated.


