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Abstract: In this work, the photocatalytic hydrogen evolution from ammonia borane under near-
infrared laser irradiation at ambient temperature was demonstrated by using the novel core-shell
upconversion-semiconductor hybrid nanostructures (NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O). The
particles were successfully synthesized in a final concentration of 10 mg/mL. The particles were
characterized via high resolution transmission electron microscopy (HRTEM), photoluminescence,
energy dispersive X-ray analysis (EDAX), and powder X-ray diffraction. The near-infrared-driven
photocatalytic activities of such hybrid nanoparticles are remarkably higher than that with bare up-
conversion nanoparticles (UCNPs) under the same irradiation. The upconverted photoluminescence
of UCNPs efficiently reabsorbed by Cu2O promotes the charge separation in the semiconducting
shell, and facilitates the formation of photoinduced electrons and hydroxyl radicals generated via
the reaction between H2O and holes. Both serve as reactive species on the dissociation of the weak
B-N bond in an aqueous medium, to produce hydrogen under near-infrared excitation, resulting
in enhanced photocatalytic activities. The photocatalyst of NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O
(UCNPs@Cu2O) suffered no loss of efficacy after several cycles. This work sheds light on the rational
design of near-infrared-activated photocatalysts, and can be used as a proof-of-concept for on-board
hydrogen generation from ammonia borane under near-infrared illumination, with the aim of green
energy suppliers.

Keywords: near-infrared; hydrogen evolution; upconversion; semiconductor; core-shell

1. Introduction

Due to the extensive production of air-based pollution and the ultimately limited
supply of fossil fuels, a search for a suitable fuel replacement is a priority. Switching to
a clean source of energy is urgent because of the amount of damage the atmosphere has
already suffered. In the search to replace fossil fuels with a cleaner alternative, hydrogen
has emerged as a high potential candidate. Hydrogen is attractive due to its high chemical
energy density and its ability to be stored in the three phases of matter: solid, liquid,
and gas. Additionally, when produced from a clean and renewable source, the hydrogen
producing reaction can have virtually zero emissions [1].

Owing to the explosive nature of gaseous hydrogen, and the immense pressure and
sealing necessary to store liquid hydrogen, solid storage materials have gained significant
traction [2–4]. In particular, chemically stored hydrogen, such as solid hydride complexes,
specifically borohydride complexes, have been theorized as a possible solution [5–7]. For a
while, sodium borohydride was the most popular choice for solid storage, since it could be
used as an aqueous fuel independently, in a direct fuel cell, or direct liquid-free cell [8,9].
However, in 2007, the United States Department of Energy recommended that sodium
borohydride not be used for on-board applications, such as for an automobile or a portable
power pack [10]. Instead, ammonia borane (AB) was identified as a promising alternative,
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by virtue of its remarkable gravimetric hydrogen storage capacity of 19.5 wt % and high sta-
bility in solid state at ambient temperature [11,12]. The catalytic decomposition of ammonia
borane to produce hydrogen has drawn much attention in recent years [13–25]. Although
various approaches were used to release hydrogen from AB over the years [26–37], there
has been little that allows the claim of a practical application, due to the harsh conditions,
such as high temperature during thermolysis and slow kinetics of dehydrogenation. To
circumvent these issues, the exploitation of environmentally friendly technologies becomes
imperative in the modern climate. Compared to other approaches, photocatalysis is supe-
rior, and is widely applied in photodegradation and photo-oxidization, as it utilizes the
inexhaustible solar energy, while not generating hazardous pollutants. Inspired by the
Fujishima Honda Effect reported in 1972 [38], a plethora of semiconductor-based photocata-
lysts, such as TiO2, g-C3N4, CdS [39], various perovskites [40–55], and WO3/rGO [56] have
been utilized in hydrogen production. Additionally, non-semiconductor catalysts based on
metals including platinium [57], rhenium [58], ruthenium [59,60], and iridium [61] have
also been used in the catalytic generation of H2 [62,63]. For these photocatalysts with their
light absorption threshold confined in either ultraviolet (UV, 300–400 nm) or visible (VIS,
400–700 nm) region [64], the major limitation is that only UV and/or visible light photons
can be utilized, which accounts for 5% and 43% of the full solar spectrum, respectively. The
under-exploitation of more abundant low-energy near-infrared (NIR) light, which makes
up 52% of the solar energy, undoubtedly imposes intrinsic limitations to the maximum
achievable solar energy conversion efficiency, and hinders the practical application in the
field of solar-to-fuels energy conversion. Although metallic or multi-metallic nanoparti-
cles with geometrically tunable localized surface plasmon resonances (LSPRs) redshifted
to NIR region, materials including ruthenium, platinum, palladium, cobalt, iron, nickel,
silver [65–75], cadmium and tungsten [76], gold [77], and copper [78–82] were used for
efficient H2 generation; the inherent photo-corrosion susceptibility and inevitable high pro-
cessing cost make their performance less satisfactory. Therefore, it is of great significance
to design and develop more efficient photocatalysts with capabilities to utilize NIR light
energy for stable photocatalytic H2 production.

One promising tactic to improve the utilization of the low-energy NIR light to drive
H2 evolution is coupling nonlinear optical materials that can strongly absorb NIR light pho-
tons with a photocatalytic semiconductor. Among them, lanthanide-doped upconversion
nanoparticles with well-controlled structures and morphologies are considered efficient
candidates due to their unique and remarkable optical characteristics, such as their ability
to convert near-infrared incident light into high-energy ultraviolet or visible light photons,
large anti-Stokes shifts, sharp and tunable multi-peak line emission profiles, and excellent
photostability [83–88]. Subsequently, the upconverted light photons need to be reabsorbed
by the appropriate semiconductors, with a concomitant injection of electrons from the
valance band (VB) to the conduction band (CB) of the semiconductor to generate photoin-
duced carriers. In this work, for the first time, we report the synthesis and characterization
of core-shell UCNPs-semiconductor (NaGdF4: Yb3+/Er3+@ NaGdF4 @Cu2O) hybrid nanos-
tructures, and demonstrate the NIR-driven photocatalytic activities for H2 evolution from
ammonia borane (AB) molecules. Cuprous oxide (Cu2O), a p-type semiconductor with
high optical absorption coefficients, has a bulk band gap of ~2.2 eV [89–91]. This interesting
exitonic feature ensures the spectral overlapping between absorption of Cu2O and emission
bands of UCNPs, which results in efficient energy transfer from UCNPs to Cu2O through
the reabsorbing of upconverted light photons. Integrating UCNPs and Cu2O into one
nano-entity with core-shell morphology efficiently promotes the direct energy migration
under NIR light irradiation for the formation of photoinduced charge carriers, due to the
intimate contact of two distinct materials. We can envision that this paradigm will provide
new insights for the rational design of NIR-responsive photocatalysts, and reveal a new
way for exploitation of sustainable energy sources.
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2. Materials and Methods
2.1. Materials

Gadolinium (III) acetate hydrate (99.9%) (Gd(OAc)3), ytterbium (III) acetate hydrate
(99.9%) (Yb(OAc)3), erbium (III) acetate hydrate (99.9%) (Er(OAc)3), oleic acid (90%) (OA), 1-
octadecene (90%) (1-ODE), sodium hydroxide (≥98%) (NaOH), ammonium fluoride (99.9%)
(NH4F), methanol (99.9%) (MeOH), cyclohexane (99.5%) (CH), nitrosyl tetrafluoroborate
(95%) (NOBF4), chloroform (99%) (CHCl3), dimethylformamide (99.8%) (DMF), copper (II)
nitrate (99.999%) (Cu(NO3)2), hydrazine (35 wt % in H2O) (N2H4), 2-propanol (C3H8O),
and ammonia borane (90%) (AB) were all purchased from Sigma Aldrich (St. Louis, MO,
USA) and used without further purification. Ethanol (EtOH) was purchased from VWR
and used as is. Ultrapure water (18.2 MΩ·cm resistivity, PURELAB Ultra Ionic Polishing
system) was used for all experiments.

2.2. Characterization

The size and morphology of the nanoparticles were determined by using a Titan 80–
300 analytical transmission electron microscope (TEM) (FEI Company, Hillsboro, OR, USA)
operating at 300 kV. The standard TEM samples were prepared by dropping solutions of
nanoparticles onto the surface of copper grids. Upconversion luminescence (UCL) spectra
were recorded at room temperature on a high sensitivity QE Pro-FL spectrofluorometer
(Ocean Optics, Inc, Dunedin, FL, USA), with the excitation source of an external 0–5 W ad-
justable continuous wave 980 nm laser diode (Dragon Lasers, China). Hydrogen evolution
was tracked using a HP 5890 gas chromatograph (Hewlett-Packard, Palo Alto, CA, USA),
equipped with a molecular sieve column and a thermal conductivity detector (TCD). The
column had a 15 m length, a 0.530 mm diameter, and a 25.0 µm film. Energy dispersive
X-ray spectroscopy (EDX) measurements were obtained on JSM-IT500HR scanning electron
microscope (SEM) (JEOL USA, Inc, Peabody, MA, USA) equipped with an EDAX APEX
detector (AMETEK, Inc., Berwyn, PA, USA). Powder X-ray diffraction (XRD) of the sample
was measured at room temperature for 2 h with the scattering angle 2θ range from 20◦

to 80◦, using a benchtop Miniflex-600 powder X-ray diffractometer (Cu Kα, λ = 1.5418 Å)
(Rigaku Americas Corporation, The Woodlands, TX, USA). Size distribution/histogram
was obtained using ImageJ software after measuring ~100 nanoparticles.

2.3. Photocatalytic H2 Evolution

First, the semiconductor-coated UCNPs (0.5 mL, 1.26 mL, 2 mL) were added to a
solution of ammonia borane (10 mL, 0.1 M) in a glass photoreactor equipped with a water
jacket and quartz top. The water circulating in the jacket was kept at 20 ◦C to prevent the
thermal decomposition of the ammonia borane. The solution was degassed with argon for
30 min. The photoreactor was then sealed and a 980 nm laser was introduced at 1 W. A
100 µL sample was taken every 30 min, for 180 min. To study the roles of hydroxyl radicals
in the photcatalytic evolution of H2, 2-propanol (0.1 mL) was added to the mixture in the
presence of 2.0 mL semiconductor-coated UCNPs and 10 mL 0.1 M ammonium borane.
Other conditions were the same as mentioned above for the photocatalysis.

2.4. Synthesis of NaGdF4:Yb3+/Er3+ UCNPs

First, Gd(OAc)3 (67 mg), Yb(OAc)3 (83 mg), Er(OAc)3 (4.6 mg), oleic acid (4 mL)
and 1-ODE (6 mL) were added to a 50 mL 3-neck flask. The flask was put under argon
protection and heated to 150 ◦C with magnetic stirring. At temperature, vacuum was
pulled to remove oxygen, moisture, and other low boiling point impurities. After several
degas cycles, the reaction was cooled to 50 ◦C. At this point, a mixture of NaOH (50 mg)
and NH4F (70 mg) dissolved in 10 mL of methanol was added and stirred for 30 min.
Next, the solution was degassed for several cycles at various temperatures (70 ◦C, 100 ◦C,
150 ◦C) to remove the methanol, and any other lower boiling point impurities. The reaction
solution was then heated to 290 ◦C, and allowed to react for 90 min. After cooling, the
mixture was spun in a centrifuge at 6000 rpm for 4 min and washed once with ethanol
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(5 mL), and then spun again and washed with a mixture of ethanol (8 mL) and cyclohexane
(4 mL). After a final spin, the particles were redispersed in cyclohexane (4 mL).

2.5. Synthesis of Hydrophobic Core-Shell NaGdF4:Yb3+/Er3+@NaGdF4 UCNPs

To start, the previously synthesized cores NaGdF4:Yb3+/Er3+, in cyclohexane (4 mL),
were added to a 50 mL 3-neck flask, along with Gd(OAc)3 (134 mg), oleic acid (4 mL),
and 1-ODE (6 mL). The flask was put under argon protection with magnetic stirring, and
the mixture was degassed at 150 ◦C. Once the reaction naturally cooled to 50 ◦C, both
NaOH (1 mL, 1.0 M in methanol) and NH4F (3.33 mL, 0.4 M in methanol) were added. The
reaction mixture was stirred for 30 min and was then degassed again at 70 ◦C, 100 ◦C, and
150 ◦C, to remove methanol and other low boiling point impurities. The temperature was
increased to 290 ◦C, and the reaction was allowed to stir for 90 min. Upon cooling to room
temperature, the reaction solution was washed by the same procedure as the core particles.
The final dispersion was in 4 mL of cyclohexane.

2.6. Transformation to Hydrophilic NaGdF4:Yb3+/Er3+@NaGdF4 UCNPs

The core/shell UCNPs (NaGdF4:Yb3+/Er3+@NaGdF4), in cyclohexane (2 mL), were
mixed with NOBF4 (2 mL, 50 mM in DMF). The combination was sonicated for 30 min, and
the layers were allowed to separate. The cyclohexane layer was removed, and chloroform
(8 mL) was added to the hydrophilic layer. The solution was centrifuged at 6000 rpm for
5 min. The pellet was then redispersed in 2 mL of DMF.

2.7. Synthesis of NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O UCNPs

The hydrophilic UCNPs (NaGdF4:Yb3+/Er3+@NaGdF4), in DMF (2 mL), were added
to a reaction vial with magnetic stirring. A 25 mM solution of Cu(NO3)2 (3.2 mL) was
added dropwise, and the mixture stirred for 30 min. Next, NaOH (4.8 mL, 0.1 M) was
added quickly, and the reaction was stirred for 30 more minutes. Then, N2H4 (4.8 mL,
0.1 M) was added dropwise, and the solution was allowed to stir for an additional 30 min.
The reaction solution was transferred to an autoclave reactor with a Teflon liner, and was
heated to 170 ◦C for 18 h. The solution was then spun in a centrifuge at 3000 rpm for 1 min
to remove large particles, and then the supernatant was allowed to settle overnight. The
remaining solution was then spun at 12,000 rpm for 20 min, and the pellet was redispersed
in ultra-pure water (1 mL, 18 MΩ cm).

3. Results

After purification, the UCNPs were measured via TEM at each stage in the synthesis,
to ensure uniformity in size and morphology. As shown in Figure 1A, the as-synthesized
core UCNPs (NaGdF4:Yb3+/Er3+) were single crystalline and highly monodisperse with
spherical morphologies. The lattice fringes had d-spacings of 0.515 nm, corresponding to
the (100) planes of ß-phase NaGdF4:Yb3+/Er3+, as demonstrated in Figure 2B. The particle
sizes were determined to be 20.9 nm ± 0.8 nm, based on the size distribution diagram
obtained by measuring ~100 particles (Figure 1C). After epitaxially growing an inert shell of
NaGdF4 on the spherical core UCNPs, the sizes of core-shell UCNPs (NaGdF4:Yb3+/Er3+@
NaGdF4) increased slightly to 24.2 nm± 1.1 nm, and the shapes and morphologies evolved
to hexagons, confirmed by TEM images shown in Figure 2.
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Subsequently, the thin layer of Cu2O was successfully grown on the surface of ß-
NaGdF4:Yb3+/Er3+@NaGdF4 to form eccentric core-shell UCNP-semiconductor hybrid hetero-
nanostructures (NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O), with a facile and robust wet-chemistry
approach, using an autoclave reactor with a Teflon liner, at a temperature of 170 ◦C for
18 h. The detailed structural information on ß-NaGdF4:Yb3+/Er3+@NaGdF4, the Cu2O
shell, as well as the interfaces between the core and shell, were clearly provided by the
HRTEM measurements. As shown in Figure 3A, the shapes of the hybrid nanostructures
changed from hexagons to quasi-spheres after Cu2O was grown on the surface, and the
surface roughness of the core-shell hybrid nanoparticles was clearly observed in the HRTEM
image, due to the growth of the Cu2O layer. The boundaries between the UCNP cores
and the outer layer of Cu2O were also resolved and highlighted by the white dashed line.
The single zoomed in particle further confirmed the core-shell morphology and the atomi-
cally well-defined crystalline facets, with the lattice fringes showing interplanar distances of
0.52 nm and 0.21 nm, corresponding to the (200) planes of UCNPs and Cu2O, respectively
(Figure 3B). An additional high-resolution TEM image with interplanar spacings of the core
and shell was shown (Figure S1) to further confirm the crystallographic planes of NaGdF4 and
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Cu2O in the hybrid heteronanostructures. The crystal structures of the hybrid nanoparticles
(NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O) were examined by X-ray powder diffraction (XRD)
analysis (Figure S2). The characteristic diffraction peaks indexed to the pure hexagonal phase
NaGdF4 (JCPDS 27-0699) and Cu2O (JCPDS 05-0667) further confirmed the core-shell struc-
ture synthesized. Meanwhile, the energy dispersive X-ray (EDX) spectroscopy analysis was
performed to validify the chemical compositions (Figure S3).
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Figure 4 shows the upconversion photoluminescence spectra of NaGdF4:Yb3+/Er3+ (UC-
NPs core), hydrophobic (CSUCNPs in C6H12) and hydrophilic NaGdF4:Yb3+/Er3+@NaGdF4
(CSUCNPs in H2O), and NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O (CSUCNPs@Cu2O) hybrid
nanostructures, under 980 nm NIR laser excitation. Three distinct non-radiative relaxations in
the spectra were observed, including 2H11/2→ 4I15/2 (528 nm), 4S3/2→ 4I15/2 (541 nm) and
4F9/2 → 4I15/2 (656 nm), which was attributed to the transitions of erbium (Er3+) ions after
the pump photons were absorbed by ytterbium (Yb3+) ions, and the energy was resonantly
transferred to adjacent Er3+ in the matrix under the excitation. The peak intensities of the
as-synthesized hydrophobic NaGdF4:Yb3+/Er3+@NaGdF4 were significantly increased after
an inert layer of NaGdF4 was grown, as shown by the red curve in Figure 4. During the
transformation from hydrophobic to hydrophilic NaGdF4:Yb3+/Er3+@NaGdF4 dispersed in
aqueous phase through a facile ligand-exchange method using NOBF4, the photolumines-
cence emission intensities decreased, mainly due to the detrimental quenching effects of the
H2O molecules demonstrated by the blue curve in Figure 4. Upon the coating of the semicon-
ductor Cu2O layer, the photoluminescence of the hybrid NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O
nanoparticles was almost quenched (pink curve), indicating the efficient energy transfer from
UCNPs to the shell Cu2O under 980 nm excitation. Cu2O has a bulk band gap of ~2.2 eV, and
its absorption spectrally overlaps with all three emission bands of the UCNPs, resulting in the
reabsorption of the upconverted light photons, and the quenching of the upconverted pho-
toluminescence of the core-shell hybrid hetero-nanostructures. It is noteworthy to point out
that the intimate contact stemming from the core-shell structures facilitated the reabsorption
of the upconverted photoluminescence emissions by Cu2O, and the subsequent transition of
the electrons in the valence band to the conduction band, which photo-catalyze the chemical
transformations of ammonia borane (AB) for H2 production.
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The photocatalytic activities of the hybrid NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O
(CSUCNPs@Cu2O) nanostructures were investigated by H2 evolution from the hydroly-
sis of AB (NH3BH3) under 980 nm NIR laser irradiation. The experimental setup was
shown in Figure S4. As shown in Figure 5A, the photocatalytic H2 production was quan-
tified under various conditions by gas chromatography (GC) equipped with a TCD detec-
tor, including pure AB molecules irradiated by 980 nm NIR laser, pure AB molecules with-
out irradiation of 980 nm NIR laser, bare UCNPs with excitation of 980 nm NIR laser, and
AB molecules in the presence of three samples of NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O
(UCNPs@Cu2O), with increasing volumes (0.5 mL, 1.3 mL and 2.0 mL) under illumina-
tion of 980 nm laser. It was demonstrated that the dehydrogenation of AB molecules
barely occurred, with negligible amounts of H2 being generated in the absence of pho-
tocatalysts (NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O), with and without 980 nm NIR laser
irradiation, for a period of 3 h. In addition, slight reaction occurred in the presence
of UCNPs without Cu2O shells (NaGdF4:Yb3+/Er3+@NaGdF4), further confirming the
stability of AB molecules in the photocatalytic experiments. The hydrolysis of AB was
efficiently catalyzed by photocatalysts (NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O), and con-
siderable amounts of H2 were evolved and detected during the first hour of 980 nm
NIR laser irradiation. The production of H2 significantly increased over a period of 180
min under the excitation. The enhanced photocatalytic performance can be primarily
ascribed to the energy transfer from UCNPs to the Cu2O shell and the photoinduced
charge carriers promoting the dehydrogenation of AB molecules under NIR excitation.
With increasing amounts of NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O (0.5 mL, 1.3 mL, and
2.0 mL), the photocatalytic H2 production was boosted, indicated by the rise in the
amounts of H2 detected at each 30 min time intervals (Figure 5A). More importantly,
core-shell NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O nanoparticles exhibited exceptional NIR
light-driven catalytic durability over multiple cycles of photocatalytic H2 evolution
(Figure 5B). It can clearly be seen that the photocatalysts suffered little to no loss of
activity after three cycles, lasting 540 min, allowing for potential use in an onboard
hydrogen application due to the well-preserved photocatalytic activities.
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with a 980 nm NIR laser with the power intensity set to 1 W. (The concentrations are 0.476 mg/mL, 1.119 mg/mL, and
1.667 mg/mL for 0.5 mL, 1.3 mL and 2.0 mL of UCNPs@Cu2O used, respectively). (B) Amount of H2 produced over time
on repeat cycles of the UCNP@Cu2O to show reusability.

A schematic of the charge transfer process was proposed to illustrate the NIR-driven
mechanism of photocatalytic H2 evolution over the synthesized core-shell NaGdF4:Yb3+/
Er3+@NaGdF4@Cu2O hybrid nanostructures in Figure 6. Under the excitation of 980 nm
NIR laser, three successive energy transfers (2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2
→ 4I15/2) from the sensitizer Yb3+ ions to activator Er3+ ions occur, resulting in the
emissions in ultraviolet (UV) and visible regions. These upconverted emissions are then
reabsorbed by Cu2O via an energy transfer process to generate photoexcited charge
carriers. The band gap value of UCNPs@Cu2O was determined to be ~2.25 eV according
to the Tauc Plot (Figure S5). The photo-generated electrons are excited from the valence
band (VB) to the conduction band (CB) of Cu2O, while positively charged holes are left
in the VB to react with H2O molecules to form hydroxyl radicals. The intermediate of
hydroxyl radicals is crucial in the investigation of the mechanism for the photocatalysis,
and various methods were reported for the detection [92–95]. The formation of hydroxyl
radicals was confirmed by the addition of 2-propanol acting as the hydroxyl radical
scavenger during the photcatalytic H2 evolution under 980 nm NIR laser irradiation.
The photocatalytic activities significantly decreased for AB dehydrogenation in the
presence of 2-propanol, due to the decrease of the concentration of hydroxyl radicals
(Figure S6). Due to the electronegativity difference between B and N atoms, the polar
and weak B-N chemical bond formed by sharing lone pair electrons between NH3 and
BH3 moieties is susceptible to be attacked by both H2O molecules and photogenerated
electrons. In addition, during the transformation of as-synthesized hydrophobic UC-
NPs to hydrophilic ones, the surface of particles was capped by BF4

− species. These
negatively charged species were carried over to the surface of core-shell UCNPs@Cu2O
hybrid nanostructures, which facilitates the absorption of AB by the electrostatic interac-
tion between the electron-deficient BH3 moiety of the AB molecules and BF4

− species,
forming an activated complex species. We assume that the hydroxyl radicals and pho-
toinduced electrons are both reactive species to enhance the catalytic H2 evolution for
AB dehydrogenation, by dissociating the weak B-N bond in aqueous medium.
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Figure 6. The mechanistic scheme for the transfer of energy from a source, through the particles, to the degradation of
ammonia borane.

4. Conclusions

In summary, the novel ß-phase NaGdF4:Yb3+/Er3+@NaGdF4@Cu2O core-shell hybrid
nanoparticles were synthesized for the first time and successfully characterized with a
concentration of 10 mg/mL. The intimate contact of the semiconducting shell to the core
nanostructures led to an efficient energy transfer from the UCNPs to the Cu2O under the
excitation of a 980 nm laser, which subsequently generated photoinduced charge carriers
actively participating in photocatalysis. The remarkable NIR-driven photocatalytic perfor-
mance was then evaluated by H2 evolution from the dehydrogenation of AB (NH3BH3)
molecules under 980 nm laser irradiation. Upon reaction with AB molecules, the amount
of H2 produced drastically increased in the presence of the hybrid photocatalysts based on
UCNPs and the semiconductor Cu2O, compared to pure AB, with and without irradiation,
as well as in conjunction with UCNPs without a semiconductor shell. In addition, the
NIR-driven photocatalytic activities were highly stable over multiple uses in the recycling
experiments. We speculate that this study can serve as the guideline for the rational design
and development of NIR-responsive photocatalysts and provide a new direction for im-
proving efficient near-infrared-activated photocatalytic H2 production toward sustainable
energy utilization in the near future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/nano11123237/s1, Figure S1: Additional high-resolution TEM image of UCNPs@Cu2O core-shell hybrid
hetero-nanostructures. Figure S2: XRD patterns of NaGdF4: Yb3+/Er3+@NaGdF4@Cu2O (UCNPs@Cu2O).
Figure S3: Energy-dispersive X-ray (EDX) spectra of core-shell NaGdF4: Yb3+/Er3+@NaGdF4@Cu2O
(UCNPs@Cu2O) nanoparticles. Figure S4: The picture of the experimental setup for the photocatalytic H2
evolution. Figure S5: Tauc plot of UCNPs@Cu2O and UV-absorbance of UCNPs@Cu2O core-shell hybrid
hetero-nanostructures. Figure S6: The photocatalytic H2 evolution from AB dehydrogenation over the
time catalyzed by UCNPs@Cu2O in the absence (black) and presence of 2-propanol (red) acting as the
hydroxyl radical scavenger under 980 nm NIR laser irradiation.
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