
1Copyright 2016 H.Gomaa

SWE 760

Lecture 13 –
System and Software Quality Attributes for

Real-Time Embedded Systems

Reference:

H. Gomaa, Chapters 16 - Real-Time Software Design for Embedded
Systems, Cambridge University Press, 2016

Copyright © 2016 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or by any means,
without the prior written permission of the author.

Copyright © 2016 Hassan Gomaa 2

Figure 4.1 COMET/RTE life cycle model

Requirements
Modeling

Analysis
Modeling

Incremental
Software

Construction

Incremental
Software

Integration

System
Testing

Incremental
Prototyping

Customer

User

Design
Modeling

System
Structural
Modeling

Copyright © 2016 Hassan Gomaa 3

System and Software Quality Attributes
• Address non-functional requirements

• System (hardware + software) Quality Attributes

– Scalability

– Performance

– Availability

– Safety

– Security

• Software Quality Attributes

– Maintainability

– Modifiability

– Testability

– Traceability

– Reusability

Copyright © 2016 Hassan Gomaa 4

Scalability

• Extent to which the system is capable of growing after its
initial deployment

• System needs to be designed in such a way that it is
capable of growth

• Distributed component-based software architecture

– Much more capable of scaling upwards than a
centralized design

– Components are designed such that multiple instances
of each component can be deployed to different nodes
in a distributed configuration

5Copyright 2016 H.Gomaa

Example of Scalability

Copyright © 2016 Hassan Gomaa 6

Performance

• Performance analysis

– Quantitative analysis of a real-time software design

– Conceptually executing on a given hardware
configuration

– With a given external workload applied to it

• Performance modeling

– Abstraction of the real computer system behavior

– Developed for the purpose of gaining greater insight
into the performance of the system

– Whether or not the system actually exist

– E.g., simulation modeling, real-time scheduling

7Copyright 2016 H.Gomaa

Example of Performance

8Copyright 2016 H.Gomaa

Availability
• Extent to which system is available for operational usage

– Addresses system failure

– E.g., system must be operational for 99% of time

• Fault tolerant systems

– E.g., Triple redundancy and voting systems

• Hot standby, e.g., backup server in Banking system

• Software design

– Systems without single points of failure

– Distributed component-based software architectures

• Deployed to multiple nodes

– If a single node goes down

• System can operate in a degraded mode.

9Copyright 2016 H.Gomaa

Example of Availability

• Minimize system failure

– No single point of failure

10Copyright 2016 H.Gomaa

Safety
• Goal of System Safety: accident prevention

• Proactively identifying, assessing, and eliminating or controlling
safety-related hazards, to acceptable levels, can achieve accident
prevention (FAA)

• Hazard

– A condition, event, or circumstance that could lead to or contribute
to an unplanned or undesired event (FAA)

• Safety critical system

– Safety-related hazards identified during requirements specification

– Software design must detect hazards and take appropriate action

• Examples of safety requirements

– Railroad Crossing Control System (Chapter 20),

• Barrier must be lowered within a pre-specified time

– Light Rail Control System

• Train must slow down to a stop if an obstacle is detected

11Copyright 2016 H.Gomaa

Modifiability

Figure 16.3 Example of modifiability - abstract Oven Prompts class and language specific subclasses

«entity»
OvenPrompts

{abstract}

textPrompt: String[1..*, 1..*]

initialize (in language)
{abstract}

readPrompt (in promptId,
out promptText)

«entity»
EnglishOvenPrompts

initialize (in english)

«entity»
FrenchOvenPrompts

initialize (in french)

«entity»
SpanishOvenPrompts

initialize (in spanish)

«entity»
GermanOvenPrompts

Initialize (in german)

• Extent to which software is capable of being modified during and after initial
development

• Design for Change,

– e.g., Oven Prompt class with language specific subclasses

12Copyright 2016 H.Gomaa

Testability
• Extent to which software is capable of being tested during

and after its initial development

• During Requirements Phase

– Develop functional (black box) test cases

– Develop test cases from use case descriptions

• During Software Architectural Design

– Develop integration test cases

– Test interfaces between communicating components

• Scenario based testing

– Develop integration test cases from interaction
scenarios sequence or communication diagrams

13Copyright 2016 H.Gomaa

Determine scenario to test from Sequence Diagram

13

14Copyright 2016 H.Gomaa

Traceability
• Extent to which artifacts of each phase can be traced back

to products of previous phases

• Build traceability into software development method

• Software requirements – use case model

• Use case based interaction diagrams

– Determines objects required to realize each use case

– Determine sequence of interactions between objects

• Software architecture

– Integrate use case based interaction diagrams

• Impact Analysis

– Determine impact of software change using traceability

15Copyright 2016 H.Gomaa

2: Prompt

«software system»
: MicrowaveOvenSystem

«external output
device»

: OvenDisplay

1: Prompt for Time

2: Prompt

«software system»
: MicrowaveOvenSystem

«external output
device»

: OvenDisplay

1: Prompt for Time

«entity»
: OvenPrompts

Figure 16.4 Traceability analysis before and after change to introduce Oven Prompts object

«output»
: OvenDisplay

Output

«state dependent
control»

: MicrowaveControl

«output»
: OvenDisplay

Output

«state dependent
control»

: MicrowaveControl

1.1: Read (promptId)

1.2: Prompt Text

Figure 16.4a

Figure 16.4b

Example of
Traceability

16Copyright 2016 H.Gomaa

Reusability
• Extent to which software is capable of being reused

• Software Component Reuse

– Library of reusable code components

• May be functional or object-oriented

• Software Design reuse

– Reuse components and their interconnections

• Architecture reuse

– Large grained reuse

– Focuses on requirements and design

– Much greater potential than component reuse

• Generic architecture

– One architecture for the application domain

– Manually adapted (tailored) for a specific application

17Copyright 2016 H.Gomaa

Software Design Reuse

• Design Patterns

– Describes a recurring design problem

– Arises in specific design context

– Presents a well proven design for its solution

– Larger grained reuse than component

• Software Product Line Engineering

– Captures similarities and variations of product family

– Develop software architecture for a product family

– Tailor and configure for a given application

• One member of product family

Copyright © 2016 Hassan Gomaa 18

System and Software Quality Attributes
• Address non-functional requirements

• System (hardware + software) Quality Attributes

– Scalability

– Performance

– Availability

– Safety

– Security

• Software Quality Attributes

– Maintainability

– Modifiability

– Testability

– Traceability

– Reusability

