
1

1
Copyright 2005 H.Gomaa

SWE 721 / IT 821 Reusable Software Architectures

Static Modeling for
Software Product Lines

Hassan Gomaa
Department of Information and Software

Engineering
George Mason University

Reference: Hassan Gomaa, Chapter 6 in “Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures”, Addison-Wesley Object

Technology Series, 2005

Copyright © 2005 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form
or by any means, without the prior written permission of the author.

2
Copyright 2005 H.Gomaa

Static Modeling for Single Systems
• Static Model

– Define structural relationships between classes
– Depict classes and their relationships on class diagrams

• Relationships between classes
– Associations
– Composition / Aggregation
– Generalization / Specialization

• Static Modeling during Analysis
– System Context Class Diagram

– Depict external classes and system boundary
– Static Modeling of Entity classes

– Persistent classes that store data

2

3
Copyright 2005 H.Gomaa

Static Modeling for
Software Product Lines

• Static Modeling of SPL problem domain
– Real-world classes

• Physical classes
• Entity classes

– SPL context class diagram
• Define boundary of SPL

– SPL entity class diagrams
• Model information intensive SPL classes

4
Copyright 2005 H.Gomaa

UML Modeling for Software Product Lines

• Depict class and object categorization using UML
stereotypes

• Stereotype defines
– New modeling element derived from existing UML

modeling element
– Tailored to modeler’s problem
– Depicted using guillemets

• «entity», «interface», «control»
• UML 1.4 upwards supports multiple stereotypes for class

– Use UML stereotypes to depict reuse category
– Use UML stereotypes to depict application role

category

3

5
Copyright 2005 H.Gomaa

Static Modeling for Single Systems

• UML 1.4 upwards supports multiple
stereotypes for a modeling element

• Single systems (COMET)
– Categorize each class by

application role using stereotype
• «control», «entity», «interface»

– Object has same application role
stereotype as class it is instantiated
from

6
Copyright 2005 H.Gomaa

Static Modeling for
Software Product Lines

• UML 1.4 upwards supports multiple
stereotypes for a modeling element

• Single systems
– Categorize each class by application role

using stereotype
– «control», «entity», «interface»

• Software Product Lines (PLUS)
– Second UML stereotype depicts

reuse category
• «kernel», «optional», «variant»

4

7
Copyright 2005 H.Gomaa

Static Modeling of SPL Problem Domain
• During Analysis Modeling

– Conceptual static model
– Emphasizes real-world classes in the problem domain
– Does not initially address software classes
– Emphasis on

• Physical classes
– Have physical characteristics (can see, touch)

• Entity classes
– Data intensive classes

• Figure 6.2 Conceptual static model for Microwave Oven System
• Figure 6.3 Conceptual static model for Microwave Oven Product

Line

8
Copyright 2005 H.Gomaa

Software Product Line Context Model

• Defines boundary between software product line and
external environment
– Depicted on UML product line context class diagram
– System Context Class Diagram for a family of systems

• Software Product Line
– Consider as one aggregate class
– <<product line system>>
– Represents any member of SPL

• Model external entities to SPL as external classes
– SPL boundary is variable

5

9
Copyright 2005 H.Gomaa

Software Product Line Context Model
• Model each external class using two stereotypes

– E.g., Fig. 6.1
• Role categories of external classes (Fig. 6.4)

– <<external I/O device>>
– <<external user>>
– <<external system>>
– <<external timer>>

• Reuse categories of external classes
– <<kernel >>
– <<optional>>
– <<variant>>

10
Copyright 2005 H.Gomaa

Associations on SPL Context Class Diagram

• SPL Context Class Diagram shows
– Association between product line system and external class
– Multiplicity of association (1 to 1, 1..* to 1, etc.)
– Kernel external classes

• 1 to 1, 1..* associations with product line system
– Optional, variant external classes

• 0..1, 0..* associations with product line system
• Associations have standard names

– «external input device» Inputs to «product line system»
– «product line system» Outputs to «external output device»
– «external user» Interacts with «product line system»
– «external system» Interfaces to «product line system»
– «external timer» Awakens «product line system»

6

11
Copyright 2005 H.Gomaa

Software Product Line Context Model

•• Development strategiesDevelopment strategies
–– Forward evolutionary engineeringForward evolutionary engineering

•• Kernel first approachKernel first approach
– Context model for kernel developed first

• Depict kernel external classes
– Figure 6.5 Microwave Oven product line

Kernel System context class diagram
• Software Product Line Evolution

• Consider optional and variant external classes
– Figure 6.6 Microwave Oven product line context

class diagram

12
Copyright 2005 H.Gomaa

Software Product Line Context Model
•• Development strategiesDevelopment strategies

–– Reverse evolutionary engineeringReverse evolutionary engineering
• View Integration Approach

– Develop context model for each member of SPL
– Integrate context models -> Product Line context model

• External classes common to all members -> kernel
external classes

• External classes only in some views -> optional
external classes

• Determine alternative (variant) external classes
• Software Product Line Evolution

– Consider further evolution of context model
• Example: Figs 15.17 – 15.20 SPL Context Model for Factory Automation SPL

7

13
Copyright 2005 H.Gomaa

Static Modeling of Entity Classes
• Entity classes

– Data intensive classes
– Store long-living (persistent) data
– Especially important for Information System SPLs

• Many are database intensive
– Also important for many real-time and distributed SPLs

• During analysis modeling
– Model entity classes in the problem domain
– Attributes
– Relationships

14
Copyright 2005 H.Gomaa

Entity Class Models for Software Product
Lines

•• Kernel first approachKernel first approach
– Entity class model for kernel developed first

• Software Product Line Evolution
– Consider optional and variant classes

• View Integration Approach
– Develop entity class model for each member of SPL
– Integrate entity class models -> SPL entity class model
– Classes common to all members -> kernel classes
– Classes only in some members -> optional classes
– Classes with differences

-> Specialized variant subclasses of generalized
superclass

Figs 6.8-6.12 Entity class model for E-commerce SPL

8

15
Copyright 2005 H.Gomaa

Object & Class Structuring Criteria
• Determine all software objects and classes in SPL

– Use Object Structuring Criteria
– Guidelines for identifying objects

• Structuring criteria depicted using stereotypes
– «entity», «interface», «control»

• Objects are categorized (Figure 6.1)
– Interface object

• Interfaces to and communicates with external environment
– Entity object

• Long living object that stores information
– Control object

• Provide overall coordination for collection of objects
– Application Logic Object

• Responsible for executing application specific rules or
algorithms

16
Copyright 2005 H.Gomaa

Object Structuring Criteria

• Interface object
– User interface object

• Interfaces to a human user
– Device interface object

• Interfaces to an external device
– System interface object

• Interfaces to external system or subsystem
• Entity object

– Data abstraction object
• Encapsulates data structure

– Database wrapper object
• Hides details of access to DBMS

9

17
Copyright 2005 H.Gomaa

Object Structuring Criteria
• Control object

– Coordinator object
• Decision making object, not state dependent
• Decides when, and in what order, other objects

execute
– State dependent control object

• Defined by finite state machine
– Statechart or state transition table

– Timer object
• Activated periodically

18
Copyright 2005 H.Gomaa

Object Structuring Criteria
• Application Logic Object

– Business Logic Object
• Encapsulates business rules

– Algorithm Object
• Encapsulates problem domain algorithm

– Agent object
• Encapsulates knowledge of application domain

