
Do this while we start
• Open a Web Browser

• Visit http://10.10.27.49/workshop.ova

• Temp: http://169.254.233.110/workshop.ova

• Open VirtualBox

• Import the file that was downloaded as an Appliance

• In the File menu, select Import Appliance. Select the Downloaded
File

• If you can allot more RAM to the appliance. Go ahead and do so

• If not. I am sorry!

http://10.10.27.49/workshop.ova
http://169.254.233.110/workshop.ova

HDFS, MapReduce
and Spark

Hitesh Dharamdasani 
Informant Networks

Today we will play with

What the hell does
“Distributed” even mean?

• Distributed does not mean “Parallel Computation”

• Distributed does not mean 4000 Clients and 1 Server

• Distributed does not mean “Grid Computing”

• If the words “Tightly Coupled” are used, Its *NOT*
distributed

• Good examples: git-scm, Internet, MapReduce

• Bad Examples: CERN, GIT Network, etc…

What is BigData?
• Very broad term

• Usually means that computation code has become
minuscule compared to error handling and synchronization

• Or if data is heterogeneous

• 100 GB is not yet BigData. 10+ TB. Probably?

• MapReduce won sorting challenge. 102 TB in 72 mins with
2100 nodes in 2014

• Data Processing using Distributed Systems

Error Amplification Problem
• 5 commodity machines cheaper than one large

machine

• If availability of large machine is 99.9% it will fail
once day in a year.

• 5 machines will fail 5 days in a year.

• Systems need to incorporate this downtime

• Imagine no Google for 5 days a year.

The problem of Scale
• “Anything that can go wrong will go wrong” -

Murphy

• At 10000+ machines, If one fails everyday, A lot of
failures will happen time and again

• At large scale. Small error rates manifest
themselves.

• Leads to Error Amplification problem

The Origins  
GFS and MapReduce

• Produced by Jeff Dean, Sanjay
Ghemawat and others

• GFS - Google File System

• Yahoo! open sourced version -
Hadoop

• Hadoop = HDFS(based on
GFS) + MapReduce

• Comes under the Apache
License

• Fun Fact: Hadoop was the
name of Doug Cutting(Hadoop
Inventor) kids elephant doll

 Proceedings of the 19th ACM  
symposium on Operating systems principles

Over 5000 citations

Hadoop Distributed File
System (HDFS)

• Just a way of storing files. Like FAT, NTFS, ext4…

• Does not do computation at all

• Stores data with high degree of redundancy.
Minimises loss due to hardware failure

• Built for Throughput, not for speed!

Key ideas
• Files are stored as chunks

• Fixed size(64 MB).

• Reliability through replication.

• Each chunk is replicated across N+ chunk servers (N >= 1)

• Single master to co ordinate access, keep metadata (Not Distributed Yet)

• Simple centralized management.

• No data caching

• Little benefit due to large datasets, streaming reads.

In a nutshell

More

• Replication is rack aware

• Fault tolerance is extremely high

• Supports scale of 10,000+ machines

• Allows for building higher degrees of abstraction

Map Reduce
• Hopes for a fault tolerant file system underneath

(i.e. HDFS)

• Applies computation to the data at the node

• No need to bring data to one place

• Send the computation to where the data resides

• Exploits the associative property of Mathematics

Map Reduce
• Map is a one-to-one operation

• For some ‘x’, Apply a function, f(x) = y

• Reduce collects all y’s to give a result

• count(y) = n

• All maps are done in parallel, reduce is done in parallel over
similar data items.

Illustration

What happens when things
break?

• Computation on nodes that have failed get
restarted where other copies of data is present

• Slow moving computations are started on other
nodes. The one that finishes first is taken into effect

• When a hard drive on a node fails. Just replace it.
Data will be put back automatically

Limitations of MapReduce

• Multiple Stages still write to disk

• Stage Failures are not handled correctly

• Disk is the Major Bottleneck right now

• Good for ETL, But not for ML or Streaming Jobs

Next Generation
• 100’s of frameworks built on top of HDFS

• Cloudera offers a one-click solution for $$$$

• Spark is the most upcoming project in the Apache
group of projects

• Remember MapReduce had sorted 102 TB in 72
minutes using 2100 machines?

What is Spark?

Spark

Some Data (NFS, HDFS, S3 …)

Java Python Scala

Machine
Learning 
ML Lib

Streaming ETL SQL ….GraphX

What is Spark?

Spark

Some Data (NFS, HDFS, S3 …)

• Inherently distributed
• Computation happens where the data

resides

What is different from
MapReduce

• Uses main memory for caching

• Dataset is partitioned and stored in RAM/Disk for
iterative queries

• Large speedups for iterative operations

Spark Internals
The Init

• Creating a SparkContext
• It is Sparks’ gateway to access the cluster
• In interactive mode. SparkContext is created as ‘sc’

Lets begin by running pyspark on the command line

Spark Internals
The Key Idea - Resilient Distributed Datasets

• Basic abstraction in Spark
• Immutable collection of parallelised data
• Stored in RAM or Disk

Two Types of Operations on RDDs

Transformations

Take a RDD and produce
another RDD

Actions  
 

Compute the sequence of
transformations to give

back results

Spark Internals
Resilient Distributed Datasets

data_rdd = sc.textFile(“file://...“)

sc is SparkContext. A gateway for us to interact with
the cluster

Spark Internals
• Nothing actually

happens when you
perform transformations

• Spark just remembers
what has to be done

• Everything gets
evaluated only when you
ask for it

• Lazy Evaluation

Also applicable to Apache Pig

Spark Internals
Transformation Operations on RDDs

Map

def map_func(x):
return x+1

rdd_2 =
rdd_1.map(func)

Filter
 
def fil_func(x):

if x % 2 == 0:
return True

else:
return False

rdd_2 =
rdd_1.filter(func)

Spark Internals
Transformation Operations on RDDs

• map
• filter
• flatMap
• mapPartitions
• mapPartitionsWithIndex
• sample
• union
• intersection
• distinct
• groupByKey

Why use Spark?

• Need to have chained operations. Not possible
with MapReduce

• Gain time with in-memory querying

• Far easier to learn top down than bottom up

Where things are going

