Do this while we start

Open a Web Browser

Visit http://10.10.27.49/workshop.ova

Temp: http://169.254.233.110/workshop.ova

Open VirtualBox
Import the file that was downloaded as an Appliance

* In the File menu, select Import Appliance. Select the Downloaded
File

 |f you can allot more RAM to the appliance. Go ahead and do so

e |[f not. | am sorry!

http://10.10.27.49/workshop.ova
http://169.254.233.110/workshop.ova

HDFS, MapReduce
and Spark

Hitesh Dharamdasani
Informant Networks

caldlng

A P A CHE

RSASE

Today we will play with

What the hell does
‘Distributed” even mean??

Distributed does not mean “Parallel Computation”
Distributed does not mean 4000 Clients and 1 Server
Distributed does not mean “Grid Computing”

It the words “Tightly Coupled” are used, lts *"NOT”*
distributed

Good examples: git-scm, Internet, MapReduce

Bad Examples: CERN, GIT Network, etc...

What is BigData"”

Very broad term

Usually means that computation code has become
minuscule compared to error handling and synchronization

Or if data is heterogeneous
100 GB is not yet BigData. 10+ TB. Probably?

MapReduce won sorting challenge. 102 TB in 72 mins with
2100 nodes in 2014

- Data Processing using Distributed Systems

Error Amplification Problem

5 commodity machines cheaper than one large
machine

It availability of large machine is 99.9% it will fall
once day in a year.

5 machines will fail 5 days in a year.
Systems need to incorporate this downtime

Imagine no Google for 5 days a yeatr.

The problem of Scale

"Anything that can go wrong will go wrong™ -
Murphy

At 10000+ machines, It one tails everyday, A |ot of
failures will happen time and again

At large scale. Small error rates manifest
themselves.

Leads to Error Amplification problem

The Origins
GFS and MapReduce

Produced by Jeff Dean, Sanjay
Ghemawat and others

GFS - Google File System

Yahoo! open sourced version -
Hadoop

Hadoop = HDFS(based on
GFS) + MapReduce

Comes under the Apache
License

Fun Fact: Hadoop was the
name of Doug Cutting(Hadoop
Inventor) kids elephant doll

The Google File System

Sanjay Ghemawal, Howard Godictt, and Shun-Tak Leung
Google*

ABSIRAC] 1.
We btave deegoed and replamented the Coogle Filo Sye
worn, & aceleble distributed Hle evatom Jor large oEtributed
dara-irie

INTRODUCTION
Wi b desigoead sond Tmipemented the Geooghe il Sy
rar (GFS) to moet the rapidly growing demards of Ceogle’
dara proceszing needs, GFS shares many of tho sama goal
aeing o ney censive encimaoe Ly beondwsene seved e diel aes a5 previous distrbutes Dl systems auch a3 porformence
aigh eggregate performence “o 2 large number of ellents. scalebility, reliaziliny, an availabiity lIlowever, its desig

While zharing mary of toe came goale a8 proviowe die e been Aviver by vy observat ors o i '
sy anc leckinological envizonmend, both cusren and an
tieipated. that reflact & marked dovartuee from eece earlic

sive appleations. It prowides By 't to erance while

‘l‘l 1 | ;l'l' 3|'a' W W
srcuted Sle svatoma, our dealgt has been draven by cbace-

nlwatiom arwklna-< acd tvhooleoval oo

Proceedings of the 19th ACM
symposium on Operating systems principles
Over 5000 citations

Hadoop Distributed File
System (HDFS)

Just a way of storing files. Like FAT, NTFS, ext4...
Does not do computation at all

Stores data with high degree of redundancy.
Minimises loss due to hardware failure

Built for Throughput, not for speed!

Key 1deas

Files are stored as chunks

* Fixed size(64 MB).

Reliability through replication.

* Each chunk is replicated across N+ chunk servers (N >= 1)

Single master to co ordinate access, keep metadata (Not Distributed Yet)
« Simple centralized management.

No data caching

* Little benefit due to large datasets, streaming reads.

N a nutshel

HDFS Data Distribution

)

Node A Node B Node C Node D Node E

Input File

\Vliore

Replication is rack aware
Fault tolerance is extremely high
Supports scale of 10,000+ machines

Allows for building higher degrees of abstraction

Map Reduce

Hopes for a fault tolerant tile system underneath
(i.e. HDFS)

Applies computation to the data at the node
No need to bring data to one place
Send the computation to where the data resides

Exploits the associative property of Mathematics

Map Reduce

Map Is a one-to-one operation

For some ‘X', Apply a function, f(x) = y

Reduce collects all y's to give a result

count(y) = n

All maps are done in parallel, reduce is done in parallel over
similar data items.

Input

Deer Bear River
Car Car River
Deer Car Bear

l[lustration

The overall MapReduce word count process

Splitting

Deer Bear River

Reducing

44-{ Car Car River

\\
\\\
~
\.

.,
*{ Deer Car Bear

- » Bear, 2

Final result

» Car, 3

—»‘ Deer. 2

Bear, 2
Car, 3
Deer, 2
River, 2

Mapping Shuffling
Bear, |
Deer, 1 » DBear, |
Bear, 1
River, 1 | 4
_' S| Cart
’./‘\{#?.ﬂ-" -» Car: 1
Car, 1 = A Car, 1
Car, 1 \\}'.// \\(/’
River, 1 | . NN
./){ b Deer, 1
" /NY w Deer, 1
Deer. 1 | /50
Car,1 " .7 Y
Bear, 1 ' [River, 1
River, 1

- » River, 2 |

What happens when things
pbreak’?

* Computation on nodes that have failed get
restarted where other copies of data is present

* Slow moving computations are started on other
nodes. The one that finishes first is taken into effect

* When a hard drive on a node fails. Just replace it.
Data will be put back automatically

| imitations of MapReduce

* Multiple Stages still write to disk
o Stage Failures are not handled correctly
e Disk is the Major Bottleneck right now

* Good for ETL, But not for ML or Streaming Jobs

Next Generation

100’s of frameworks built on top of HDFS
Cloudera offers a one-click solution for $$$$

Spark is the most upcoming project in the Apache
group of projects

Remember MapReduce had sorted 102 TB in 72
minutes using 2100 machines?

What is Spark?

Machine

Learning | Streaming| GraphX =R
ML Lib

Java Python Scala

Some Data (NFS, HDES, S3 ...)

What is Spark”

* |Inherently distributed
» Computation happens where the data
resides

Some Data (NFS, HDFS, S3 .

What Is different from
MapReduce

* Uses main memory for caching

* Dataset is partitioned and stored in RAM/Disk for
iterative queries

* Large speedups for iterative operations

Spark Internals

The Init

* Creating a SparkContext
* |tis Sparks’ gateway to access the cluster
* |n interactive mode. SparkContext is created as ‘sc’

Lets begin by running pyspark on the command line

Spark Internals

The Key ldea - Resilient Distributed Datasets

* Basic abstraction in Spark
* Immutable collection of parallelised data
e Stored in RAM or Disk

Two Types of Operations on RDDs

Transformations Actions

Take a RDD and produce Compute the sequence of
another RDD transformations to give
back results

Spark Internals

Resilient Distributed Datasets

data rdd = sc.textFile(“file://..."%)

sc Is SparkContext. A gateway for us to interact with
the cluster

Spark Internals

Also applicable to Apache Pig

Nothing actually
happens when you
perform transformations

Spark just remembers
what has to be done

Everything gets
evaluated only when you
ask for it

Lazy Evaluation

it.

| know what to do. Wake
me when you really need

Spark Internals

Transformation Operations on RDDs

Map

def map func(x):

return x+1

rdd 2 =
rdd 1.map (func)

Filter

def fi1l func(x):
1f x § 2 ==
return True
else:
return False

rdd 2 =
rdd 1.fi1lter (func)

Spark Internals

Transformation Operations on RDDs
* map
- filter
- flatMap
- mapPartitions
* mapPartitionsWithIndex
- sample
* UNnion
* Intersection
- distinct
* groupByKkey

Why use Spark?

* Need to have chained operations. Not possible
with MapReduce

e Gain time with in-memory querying

* Far easier to learn top down than bottom up

Where things are going

Daytona Rules

Hadoop MR lSpark ISpark
Record Record 1PB
Data Size 102.5TB 100 TB 1000 TB
Elapsed Time 72 mins 23 mins 234 mins
Nodes 2100 206 190
Cores 50400 physical 6592 virtualized 6080 virtualized
ICluster disk 3150 GB
ueer e /s 618 GB/s 570 GB/s
throughput (est.)
h
Sort Benchmark Ves es No

dedicated data

virtualized (EC2)

virtualized (EC2)

Network

cHwor center, 10Gbps 10Gbps network 10Gbps network
ISort rate 1.42 TB/min 4.27 TB/min 4.27 TB/min
ISort rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min

