An Interactive Spatial and Longitudinal Data Dashboard

Faysal Shaikh - CSI 695 - Fall 2021

Presentation overview

- 1. Background & data sources
- 2. Database design & creation (DDL)
- 3. Database manipulation (DML)
- 4. Final combined database
- 5. Linking PostgreSQL with Tableau
- 6. Interactive Tableau dashboard
- 7. Insights and lessons learned

1. Background & data sources

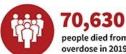
Timeline and impact of the U.S. opioid epidemic

TIMELINE OF THE U.S. OPIOID EPIDEMIC¹

late 1990s Pharmaceutical companies assure that patients will not become addicted to opioids and rates of opioid prescriptions begin to increase

2016

U.S. opioid overdoses account for over 42,000 deaths, more than any previous year on record


HHS declares the U.S. opioid epidemic a

2017 "public health emergency" and announces "5-Point Strategy To Combat the Opioid Crisis"

2019

"Opioid-involved overdoses" account for nearly 50,000 deaths, a new all-time high since 2016

IMPACT OF THE U.S. OPIOID EPIDEMIC²

people died from drug overdose in 2019²

1.6 million people had an opioid use disorder in the past year¹

1.6 million

people misused prescription

pain relievers for the first time¹

people used heroin in the past year1

48,006 deaths attributed to overdosing on synthetic opioids other than methadone (in 12-month period ending June 2020)3

10.1 million

people misused prescription opioids in the past year

2 million

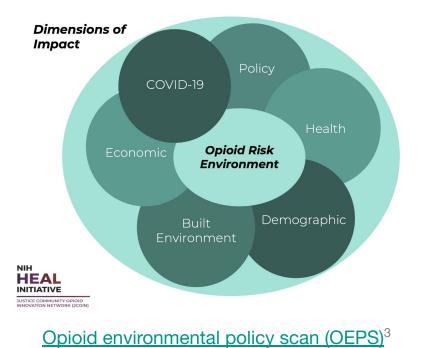
people used methamphetamine in the past year¹

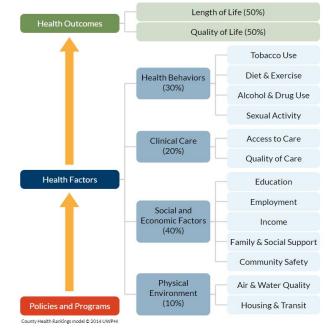
50,000 people used heroin for the first time¹

14,480

deaths attributed to overdosing on heroin (in 12-month period ending June 2020)³

SOURCES


1. 2019 National Survey on Drug Use and Health, 2020.


- 2. NCHS Data Brief No. 394, December 2020.
- 3. NCHS, National Vital Statistics System, Provisional drug overdose death counts.

1. Opioid overdose crisis, (2021, March 11), National Institute on Drug Abuse, Retrieved November 16, 2021, 2. U.S. Department of Health and Human Services. (2021, October 27). About the epidemic. HHS.Gov/Opioids. Retrieved November 16, 2021.

OEPS and CHR opioid epidemic data sources

County Health Rankings & Roadmaps (CHR)⁴

Kolak, M., Lin, Q., Paykin, S., Menghaney, M., & Li, A. (2021). GeoDaCenter/opioid-policy-scan: Opioid environment policy scan data warehouse (v0.1-beta) [Software]. Zenodo.
 University of Wisconsin Population Health Institute & Robert Wood Johnson Foundation. County health rankings. County Health Rankings & Roadmaps. Retrieved Nov 16, 2021.

Research question(s)

OEPS: a cross-sectional, multifaceted description of the opioid risk environment.⁵

CHR: a longitudinal, multifaceted description of health factors and outcomes.

Both data sources describe U.S. county-level measures.

Does combining *cross-sectional OEPS data* and *longitudinal CHR data* further detail our picture of the opioid risk environment in U.S. counties?

Does an *interactive data dashboard* visualization of this data *reveal any novel insights* about the opioid risk environment⁵ in U.S. counties?

5. Kolak, M. A., Chen, Y. T., Joyce, S., Ellis, K., Defever, K., McLuckie, C., Friedman, S., & Pho, M. T. (2020). Rural risk environments, opioid-related overdose, and infectious diseases: A multidimensional, spatial perspective. *International Journal of Drug Policy*, 85.

Special considerations for longitudinal CHR data

CHR data are available at yearly increments.

To reduce overall dataset size and maximize longitudinal follow-up, we limit our data to **measures available from all years (2010 - 2021).**

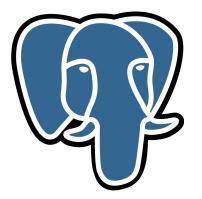
We must utilize schema that can handle several timepoints per county.

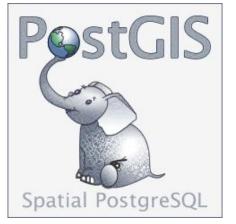
Special considerations for spatial OEPS data

OEPS data are available at various spatial scales.

To reduce overall dataset size and maximize consistency with CHR data, we limit our data to **measures available at the county level.**

We must utilize a DBMS that can handle geographic shapefile data.


2. Database design & creation (DDL)


DBMS choice: PostgreSQL + PostGIS

Why PostgreSQL + PostGIS?

- Excellent SQL compliance
- Integration w/ many tools
- Extensive documentation
- Dedicated PostGIS CrunchyData
 <u>interactive learning base</u>
- <u>Many</u> additional features found in PostgreSQL over MySQL (esp. for spatial data purposes)

PostgreSQL i.e. POSTGRES

Starting PostgreSQL server & logging in

PS project_path> pg_ctl start
waiting for server to start...done
server started

postgres=#

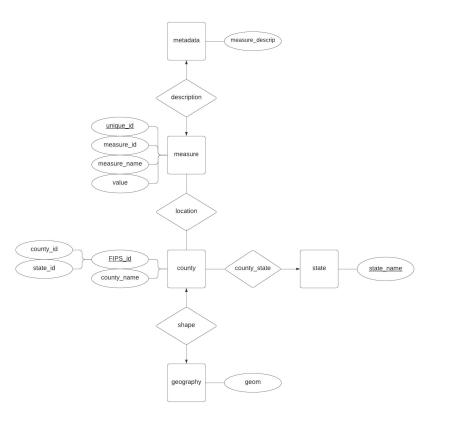
Tablespace & database creation in postgreSQL

postgres=# CREATE TABLESPACE csi695
postgres-# LOCATION 'D:\Codebase\CSI-695-project\combined-db_CHR-OEPS';
CREATE TABLESPACE

postgres=# CREATE DATABASE chr
postgres-# WITH TABLESPACE = csi695;
CREATE DATABASE

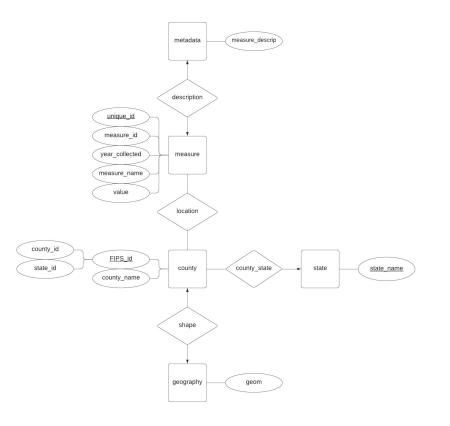
postgres=# CREATE DATABASE oeps
postgres-# WITH TABLESPACE = csi695;
CREATE DATABASE

postgres=# CREATE DATABASE combined_db_chr_oeps
postgres-# WITH TABLESPACE = csi695;
CREATE DATABASE

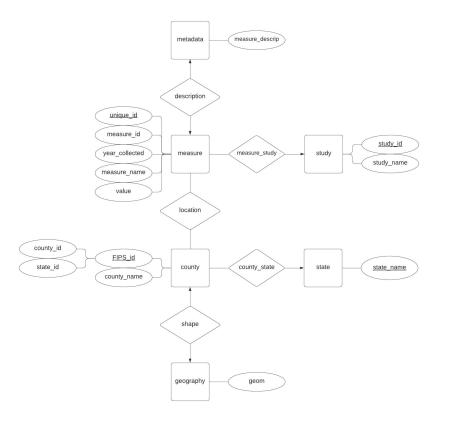

Enable PostGIS extensions

postgres=# \connect combined_db_chr_oeps
You are now connected to database "combined db chr oeps" as user "postgres".

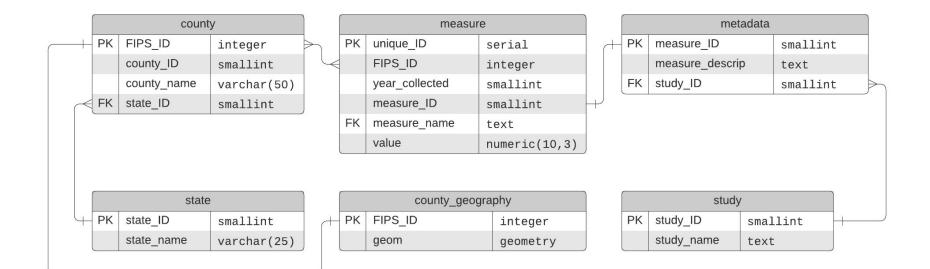
combined_db_chr_oeps=# CREATE EXTENSION postgis; CREATE EXTENSION combined_db_chr_oeps=# CREATE EXTENSION postgis_topology; CREATE EXTENSION combined_db_chr_oeps=# CREATE EXTENSION postgis_sfcgal; CREATE EXTENSION combined_db_chr_oeps=# CREATE EXTENSION fuzzystrmatch; CREATE EXTENSION combined_db_chr_oeps=# CREATE EXTENSION address_standardizer; CREATE EXTENSION combined_db_chr_oeps=# CREATE EXTENSION postgis_tiger_geocoder; CREATE EXTENSION


• • •

Entity-Relationship (ER) model for OEPS data


ULUCIDENT

Entity-Relationship (ER) model for CHR data


ULUCIDENT

Entity-Relationship (ER) model for combined data

ULUCIDENT

Relational model for combined data

postgres=# \connect combined_db_chr_oeps
You are now connected to database "combined db chr oeps" as user "postgres".

combined_db_chr_oeps=# CREATE TABLE measure (
combined_db_chr_oeps(# unique_ID smallserial PRIMARY KEY,
combined_db_chr_oeps(# FIPS_ID integer,
combined_db_chr_oeps(# year_collected smallint,
combined_db_chr_oeps(# measure_ID smallint,
combined_db_chr_oeps(# measure_name text,
combined_db_chr_oeps(# value numeric(10,3),
combined_db_chr_oeps(#);
CREATE TABLE

```
combined_db_chr_oeps=# CREATE TABLE county (
combined_db_chr_oeps(# FIPS_ID integer PRIMARY KEY,
combined_db_chr_oeps(# county_ID smallint,
combined_db_chr_oeps(# county_name varchar(50),
combined_db_chr_oeps(# state_ID smallint
combined_db_chr_oeps(# );
CREATE TABLE
```

```
combined_db_chr_oeps=# CREATE TABLE state (
combined_db_chr_oeps(# state_ID smallint PRIMARY KEY,
combined_db_chr_oeps(# state_name varchar(25)
combined_db_chr_oeps(# );
CREATE TABLE
```

```
combined_db_chr_oeps=# CREATE TABLE metadata (
combined_db_chr_oeps(# measure_ID serial PRIMARY KEY,
combined_db_chr_oeps(# measure_descrip text,
combined_db_chr_oeps(# study_ID smallint
combined_db_chr_oeps(# );
CREATE TABLE
```

```
combined_db_chr_oeps=# CREATE TABLE study (
combined_db_chr_oeps(# study_ID smallint PRIMARY KEY,
combined_db_chr_oeps(# study_name text
combined_db_chr_oeps(# );
CREATE TABLE
```

combined_db_chr_oeps=# ALTER TABLE measure combined_db_chr_oeps-# ADD FOREIGN KEY (measure_ID) combined_db_chr_oeps-# REFERENCES metadata (measure_ID); ALTER TABLE

combined_db_chr_oeps=# ALTER TABLE county
combined_db_chr_oeps-# ADD FOREIGN KEY (state_ID)
combined_db_chr_oeps-# REFERENCES state (state_ID);
ALTER TABLE

```
combined_db_chr_oeps=# ALTER TABLE metadata
combined_db_chr_oeps-# ADD FOREIGN KEY (study_ID)
combined_db_chr_oeps-# REFERENCES study (study_ID);
ALTER TABLE
```

```
combined_db_chr_oeps=# CREATE TABLE county_geography (
combined_db_chr_oeps(# FIPS_ID integer PRIMARY KEY,
combined_db_chr_oeps(# geom geometry
combined_db_chr_oeps(# );
CREATE TABLE
```

```
combined_db_chr_oeps=# ALTER TABLE county_geography
combined_db_chr_oeps-# ADD FOREIGN KEY (FIPS_ID)
combined_db_chr_oeps-# REFERENCES county (FIPS_ID);
ALTER TABLE
```

(I was not able to implement this from the CLI, but this is likely what it **would have** looked like!)

3. Database manipulation (DML)

Preprocessing raw OEPS & CHR data in R

Output preview of preprocessing_oeps.R:

"COUNTYFP", "totPopE", "moudMinDis", " bupMinDis", "methMinDis", "nalMinDis" ,"totUnits","occP","vacantP","mobil eP","lngTermP","rentalP","unitDens" , "rcaUrbP", "rcaSubrbP", "rcaRuralP", "totPop10", "urbPop10", "rurlPop10", " cenRuralP", "areaSqMi", "alcTotal", "a lcDens","alcPerCap","DmySgrg","DmyB lckBlt","PrcNtvRsrv","dissim.b","in ter.bw","iso.b","dissim.h","inter.h w", "iso.h", "dissim.a", "inter.aw",

"FIPS", "State", "County", "% Smokers 2010", "Teen Birth Rate 2010", "% Uninsured 2010", "% Children in Poverty 2010", "Violent Crime Rate 2010", "% Smokers 2011", "Teen Birth Rate 2011", "% Uninsured 2011", "% Children in Poverty 2011", "Violent Crime Rate 2011",

Output preview of preprocessing chr.R:

preprocessed_oeps.csv

. . .

. . .

Pseudocode for preprocessing_oeps.R

preprocessing_oeps.R
This program serves to preprocess OEPS data files.

import libraries: git2r, readr, dplyr, stringr # specify directory containing all OEPS data files

first pass: loop all files and create separate data frame objects
second pass: execute sequential (in order) cumulative pairwise merges

drop columns we don't want (mostly variations of "county")
in fact, skipped some original data files for "atrocious variations"

save preprocessed data as CSV file

Pseudocode for preprocessing_chr.R

preprocessing_chr.R
This program serves to preprocess CHR data files.

import libraries: git2r, readxl, dplyr
specify directory containing all CHR data files

first pass: loop all files and create separate data frame objects
second pass: loop data frames to discover columns common between all years
sequential (in increasing year) pairwise intersections, successively
removing columns until only those found in all years are left

third pass: loop through objects and only keep the common columns
final pass: merge all data by FIPS, State, County

save preprocessed data as CSV file

Importing preprocessed data into PostgreSQL

. . .

I decided to write a "quick" python script to generate an SQL script for data loading (like LoadData.txt from class).

We must define measure_ID attribute in advanced, or we won't know the values for the metadata table.

The measure relation is defined as: measure (FIPS_ID, year_collected, measure_ID, measure_name, value) Here is an excerpt from the result:

INSERT INTO measure VALUES (1001, NULL, 0, 'totPopE', 55200.0);

INSERT INTO measure VALUES (1001, NULL, 1, 'moudMinDis', 15.74711697);

INSERT INTO measure VALUES (1001, NULL, 2, 'bupMinDis', 15.74711697);

Output preview of oeps_sql_loader.py

Importing preprocessed data into PostgreSQL

. . .

The previous slide showcased loading of (cross-sectional) OEPS data.

The process is similar for (longitudinal) CHR data, but we must **resume our measure_ID from where we left off in the OEPS data.** (This is hardcoded.)

The measure relation is defined as: measure (FIPS_ID, year_collected, measure_ID, measure_name, value) Here is an excerpt from the result:

INSERT INTO measure VALUES (1001, 2010, 69, 'Percentage Smokers', 28.14);

INSERT INTO measure VALUES (1001, 2010, 70, 'Teen Birth Rate', 52.6);

INSERT INTO measure VALUES (1001, 2010, 71, 'Percentage Uninsured', 14.0);

Output preview of chr_sql_loader.py

Importing OEPS county shapefiles into PostGIS

stGIS Connection							
	V	ew connection o	details				
nport Export							
Import List							
Shapefile		Schema	Table	Geo Column	SRID	Mode	Rm
D:\Codebase\CSI-695-project\O	EPS-downloaded-	data\OI public	counties2018	geom	0	Create	
	PostGIS Connec Username:	postgres					
	Username:	postgres					
	Password:	•••••					
	Server Host:	localhost	5432				
	Database:	combined_db	_chr_oeps				
Options						Car	ncel
MC 4							
g Window ient_encouing=01ro		OK		_			
onnecting: host=localhost port=		OK		bined_dt	_chr_	oeps	
ient_encoding=UTF8							

aints Parameters Security	SQL
nique Exclude	
	+
Columns	Referenced Table
(geoid) -> (fips_id)	
	Columns

i ?

★ Cancel & Reset

Save 🖥

4. Final combined database

Row counts from final combined database

combined_db_chr_oeps=# SELECT COUNT(*) FROM measure; 394790

combined_db_chr_oeps=# SELECT COUNT(*) FROM county; 2746

combined_db_chr_oeps=# SELECT COUNT(*) FROM county_geography; 3142

combined_db_chr_oeps=# SELECT COUNT(*) FROM state; 51

combined_db_chr_oeps=# SELECT COUNT(*) FROM metadata; 74

combined_db_chr_oeps=# SELECT COUNT(*) FROM study;
2

Available data years from final database

combined_db_chr_oeps=# SELECT DISTINCT year_collected FROM measure;

year_	collected
	2013
	2021
	2020
	2015
	2011
	2014
	2010
	2017
	2019
	2016
	2012
	2018
(13 m)	

(13 rows)

Setup for more complex queries

```
combined db chr oeps=# SELECT * FROM measure LIMIT 0;
fips_id | year_collected | measure_id | measure_name | value | unique_id
    (0 rows)
combined db chr oeps=# SELECT * FROM county LIMIT 0;
fips_id | county_id | county_name | state_id
(0 rows)
combined db chr oeps=# SELECT * FROM state LIMIT 0;
state_id | state_name
(0 rows)
```

Yearly percentage smokers in Fairfax City

combined db chr oeps-# combined db chr oeps-# combined db chr oeps-#

combined db chr oeps=# SELECT year collected, measure name, value FROM measure INNER JOIN county USING(fips_id) INNER JOIN state USING(state_id) WHERE state name = 'Virginia' AND county name = 'Fairfax City' AND year collected IS NOT NULL combined db chr oeps=# AND measure name = 'Percentage Smokers';

year_collected		measure_	name		value
	+-			+	
2010		Percentage	Smokers		2.410
2011		Percentage	Smokers		3.400
2012		Percentage	Smokers		5.700
2013		Percentage	Smokers		6.000
2016		Percentage	Smokers		13.200
2017		Percentage	Smokers		10.729
2018		Percentage	Smokers		11.509
2019		Percentage	Smokers		11.509
2020		Percentage	Smokers		12.665
2021		Percentage	Smokers		11.625

(10 rows)

Time-average percentage smokers in Fairfax City

combined_db_chr_oeps=# SELECT year_collected, measure_name, AVG(value)
combined_db_chr_oeps-# OVER (PARTITION BY fips_id, measure_name) FROM measure
combined_db_chr_oeps-# INNER JOIN county USING(fips_id) INNER JOIN state USING(state_id)
combined_db_chr_oeps-# WHERE state_name = 'Virginia' AND county_name = 'Fairfax City'
combined_db_chr_oeps-# AND year_collected IS NOT NULL
combined_db_chr_oeps-# AND measure name = 'Percentage Smokers';

year_collected	-	_		I	avg
	+ ·			-+-	
2010		Percentage	Smokers		8.87470000000000000
2011		Percentage	Smokers		8.87470000000000000
2012		Percentage	Smokers		8.87470000000000000
2013	I	Percentage	Smokers		8.87470000000000000
2016		Percentage	Smokers		8.8747000000000000
2017		Percentage	Smokers		8.87470000000000000
2018	I	Percentage	Smokers		8.87470000000000000
2019		Percentage	Smokers		8.8747000000000000
2020	I	Percentage	Smokers		8.8747000000000000
2021		Percentage	Smokers		8.8747000000000000

(10 rows)

High time-average percentage smoker VA counties

combined db chr oeps-# combined db chr oeps-# combined db chr oeps-# combined db chr oeps-# combined db chr oeps-#

combined db chr oeps=# SELECT DISTINCT county name, state name, measure name, AVG(value) OVER (PARTITION BY fips id, measure name) FROM measure INNER JOIN county USING(fips id) INNER JOIN state USING(state id) WHERE state name = 'Virginia' AND year collected IS NOT NULL AND measure_name = 'Percentage Smokers' ORDER BY AVG DESC LIMIT 10;

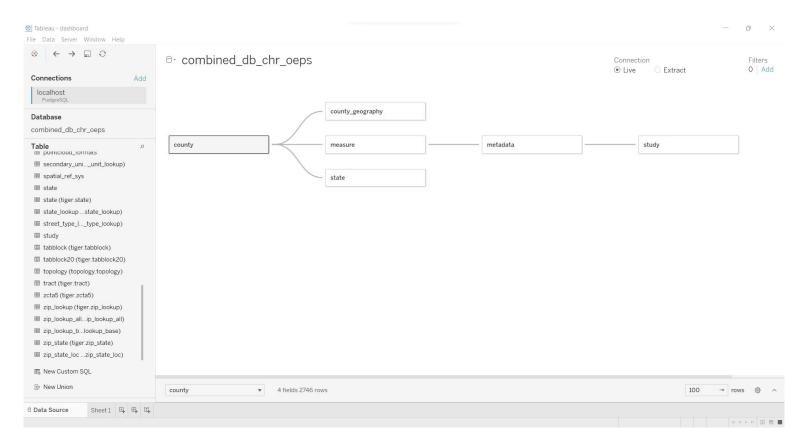
county_name		state_name		measure	_		avg
	+		+-				
Wise		Virginia		Percentage	Smokers		27.4436666666666666
Dickenson		Virginia		Percentage	Smokers		26.9171818181818182
Carroll		Virginia		Percentage	Smokers		26.88133333333333333
Buchanan		Virginia		Percentage	Smokers		25.9701666666666666
Dinwiddie		Virginia		Percentage	Smokers		24.98758333333333333
Pulaski		Virginia		Percentage	Smokers		24.82191666666666667
Lee		Virginia		Percentage	Smokers		24.73141666666666667
Henry		Virginia		Percentage	Smokers		24.42191666666666667
Scott	I	Virginia		Percentage	Smokers		24.0952500000000000
Mecklenburg	I	Virginia		Percentage	Smokers		23.93958333333333333
(10 rows)							

Low time-average percentage smoker VA counties

combined db chr oeps-# combined db chr oeps-# combined db chr oeps-# combined db chr oeps-# combined db chr oeps-#

combined db chr oeps=# SELECT DISTINCT county name, state name, measure name, AVG(value) OVER (PARTITION BY fips id, measure name) FROM measure INNER JOIN county USING(fips id) INNER JOIN state USING(state id) WHERE state name = 'Virginia' AND year collected IS NOT NULL AND measure_name = 'Percentage Smokers' ORDER BY AVG ASC LIMIT 10;

county_name		state_name		measure_	_	I	avg
	-+-						
Fairfax City		Virginia		Percentage	Smokers		8.87470000000000000
York		Virginia		Percentage	Smokers		11.4976666666666666
Fairfax		Virginia		Percentage	Smokers		11.524583333333333333
Loudoun		Virginia		Percentage	Smokers		11.61416666666666667
Arlington		Virginia		Percentage	Smokers		11.66500000000000000
James City		Virginia		Percentage	Smokers		12.3024166666666667
Fluvanna		Virginia		Percentage	Smokers		12.9787000000000000
Albemarle		Virginia		Percentage	Smokers		13.64150000000000000
Botetourt	I	Virginia		Percentage	Smokers		14.43375000000000000
Rockingham		Virginia		Percentage	Smokers		14.6154166666666666
(10 rows)							

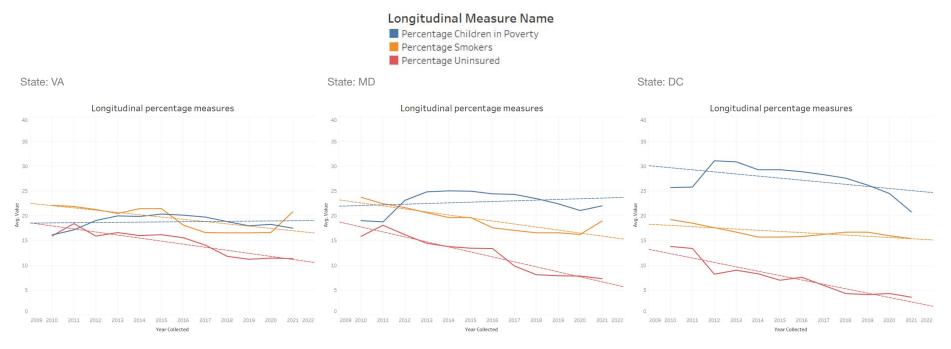

5. Linking PostgreSQL with Tableau

Connecting PostgreSQL with Tableau Desktop

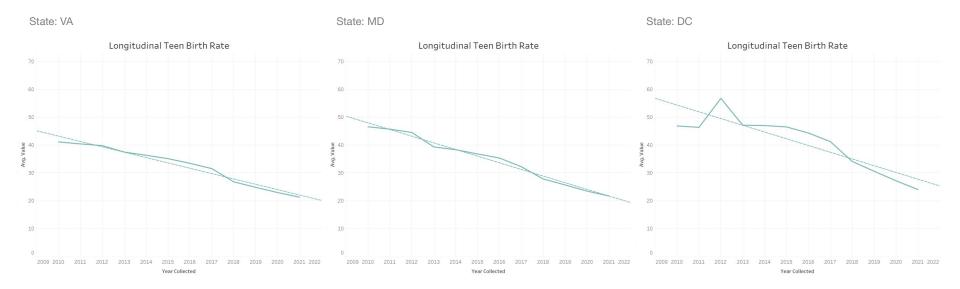
*					
	₽ Search				Sort by Name (a
Connect	Installed Connectors (77)	Google Ads	OneDrive	Other Databases (JDBC)	
	Actian Matrix	Google Analytics	Oracle	Other Databases (ODBC)	
Tableau Server	Actian Vector	Google BigQuery	Oracle Eloqua		
	Alibaba AnalyticDB for MySQL	Google Cloud SQL	Oracle Essbase		
	Alibaba Data Lake Analytics	Google Drive	Pivotal Greenplum Database	Additional Connectors (13) ①	
Microsoft Excel	Alibaba MaxCompute	Google Sheets	PostgreSQL	Actian ODBC by Actian	
Text file	Amazon Athena	Hortonworks Hadoop Hive	Presto	Elasticsearch by Elastic	
JSON file	Amazon Aurora for MySQL	IBM BigInsights	Progress OpenEdge	Incorta Connector by Incorta	
Microsoft Access	Amazon EMR Hadoop Hive	IBM DB2	Qubole Presto	Kyligence Connector by Kyligence	
PDF file	Amazon Redshift	IBM PDA (Netezza)	Salesforce	MarkLogic by MarkLogic	
Spatial file	Anaplan	Impala	Salesforce CDP	Ocient JDBC by Ocient	
Statistical file	Apache Drill	Intuit QuickBooks Online	SAP HANA	Oracle NetSuite by Tableau	
More	Aster Database	Kognitio	SAP NetWeaver Business Warehouse	Qubole Hive by Qubole	
	Azure Data Lake Storage Gen2	Kyvos	SAP Sybase ASE	SAP SuccessFactors by Tableau	
	Azure SQL Database	LinkedIn Sales Navigator	SAP Sybase IQ	SQream DB by SQream Technologies	
Microsoft SQL Server	Azure Synapse Analytics	MapR Hadoop Hive	ServiceNow ITSM	Starburst Enterprise by Starburst	
MySQL	Box	MariaDB	SharePoint Lists	Stratio Crossdata by Stratio BD	
Oracle	Cloudera Hadoop	Marketo	SingleStore	Yellowbrick by Yellowbrick Data	
Amazon Redshift	Databricks	MarkLogic	Snowflake		
More	> Datorama	Microsoft Analysis Services	Spark SQL		
	Denodo	Microsoft PowerPivot	Splunk		
Saved Data Sources	Dremio	Microsoft SQL Server	Teradata		
Sample - Superstore	Dropbox	MonetDB	Teradata OLAP Connector		
World Indicators	Esri ArcGIS Server	MongoDB BI Connector	TIBCO Data Virtualization		
	Exasol	MySQL	Vertica		
	Firebird 3	OData	Web Data Connector		

Connecting PostgreSQL with Tableau Desktop

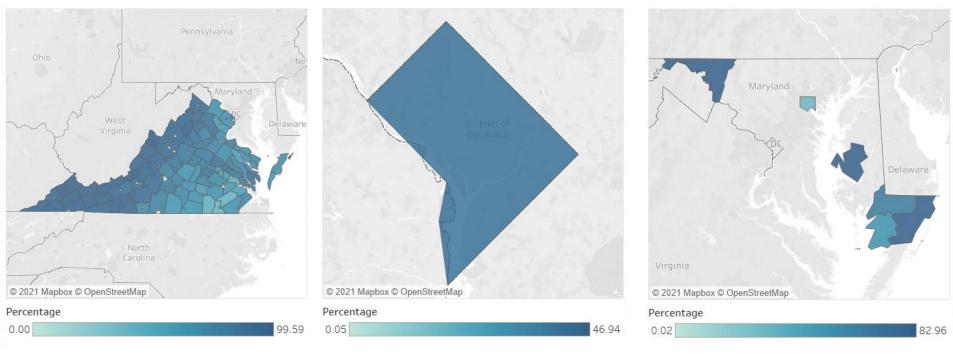
6. Interactive Tableau dashboard


Interactive data dashboard in Tableau Desktop

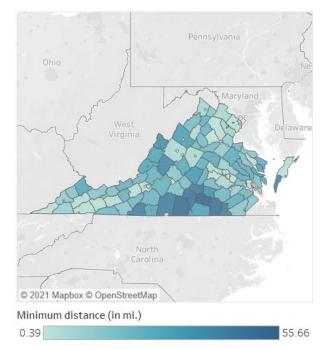
Interactive data dashboard demo.

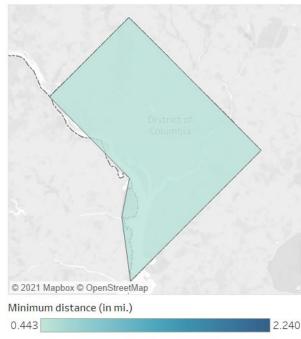

7. Insights and lessons learned

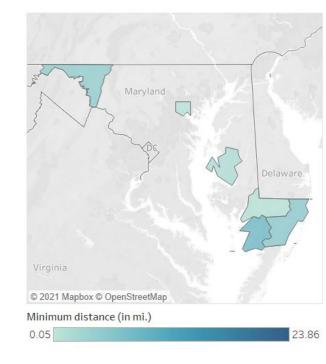
Risk factors (child poverty, smokers, uninsured, teen birth rate) have generally declined in the DMV area from 2010 onward.



Risk factors (child poverty, smokers, uninsured, teen birth rate) have generally declined in the DMV area from 2010 onward.


Cross-sectional maps of percentage population by race (e.g., white) seem to correlate spatially with minimum distance to clinics (e.g., naloxone).


County % composition (by race) - whiteP



Cross-sectional maps of percentage population by race (e.g., white) seem to correlate spatially with minimum distance to clinics (e.g., naloxone).

Minimum distance b/w opioid clinics (in mi.) - nalMinDis

Lessons learned: computational bottlenecks

Despite **nearly 400,000 rows of data**, PostgreSQL DBMS was able to **execute queries lightning fast (on the order of seconds).**

However, Tableau (and every other GUI-based interface I used) exhibited **major processing speed bottlenecks (especially at "county" granularity).**

Takeaway: it may be useful to **query a smaller subset of the data** prior to sending it to the data visualization dashboard.

Lessons learned: data harmonization

While the prototype dashboard is a start, there are a lot of different variables at **different spatial scales that must be harmonized** in order to plot all data together in an **integrated dashboard**.

With so many different variables at **different measurement scales**, application of some sort of **scaling factor** may be necessary.

Lessons learned: analytics & research questions

Policymakers and stakeholders **may have very different questions than mine;** performing traditional **user-experience experiments** may prove helpful in **identifying the most pertinent questions** for our end users.

Some sort of **composite statistical index** may provide a useful single-value representation of this **extremely high-dimensional data**.

References

- Kolak, M. A., Chen, Y. T., Joyce, S., Ellis, K., Defever, K., McLuckie, C., Friedman, S., & Pho, M. T. (2020). Rural risk environments, opioid-related overdose, and infectious diseases: A multidimensional, spatial perspective. *International Journal of Drug Policy*, 85. https://doi.org/10.1016/j.drugpo.2020.102727
- Kolak, M., Lin, Q., Paykin, S., Menghaney, M., & Li, A. (2021). GeoDaCenter/opioid-policy-scan: Opioid environment policy scan data warehouse (v0.1-beta) [Software]. Zenodo. https://doi.org/10.5281/zenodo.4747876
- *Opioid overdose crisis*. (2021, March 11). National Institute on Drug Abuse. Retrieved November 16, 2021, from https://www.drugabuse.gov/drug-topics/opioids/opioid-overdose-crisis
- University of Wisconsin Population Health Institute & Robert Wood Johnson Foundation. (n.d.). *County health rankings*. County Health Rankings & Roadmaps. Retrieved November 16, 2021, from https://www.countyhealthrankings.org/
- U.S. Department of Health and Human Services. (2021, October 27). *About the epidemic*. HHS.Gov/Opioids. Retrieved November 16, 2021, from https://www.hhs.gov/opioids/about-the-epidemic/index.html