
Final project report:
An interactive spatial and longitudinal data dashboard

Faysal Shaikh

CSI 695 - Fall 2021

Page 1 of 46

Final project report: An interactive
spatial and longitudinal data dashboard

Faysal Shaikh CSI 695 - Fall 2021

Table of contents

List of figures . 3

1 Background and data sources . 4
1.1 The United States “opioid epidemic” . 4

1.1.1 Origins: The undertreatment of pain and rise of opioid drugs 4
1.1.2 Today: The opioid overdose crisis . 5

1.2 Sources of data relevant to the opioid epidemic . 5
1.2.1 The Opioid Environmental Policy Scan (OEPS) dataset 6
1.2.2 The County Health Rankings & Roadmaps (CHR) dataset 7

2 Database design and creation . 10
2.1 Special considerations for spatial OEPS data . 10
2.2 Special considerations for longitudinal CHR data 10
2.3 Choice of database management system (DBMS) 10
2.4 Conceptual database design . 11

2.4.1 Development of entity-relationship (ER) models 11
2.4.2 Reduction of ER models to relational schema 16

2.5 Database creation via PostgreSQL . 17
2.5.1 Setup and preliminary steps . 17
2.5.2 Data definition language (DDL) . 18

3 Database manipulation . 22
3.1 Data preprocessing via R . 22
3.2 Data manipulation language (DML) . 22
3.3 Data loading via Python . 23
3.4 Importing geographical data via PostGIS . 24

4 Final combined database . 25
4.1 Simple queries . 25
4.2 More complex queries . 26

5 Linking database with interactive data dashboard 30
5.1 Choice of interactive data dashboard software . 30

5.1.1 Free educational licenses for Tableau Desktop 30
5.1.2 Data linkage interface . 30

5.2 Special considerations for Tableau Public . 32

Page 1 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

6 Interactive data dashboard . 33
6.1 Longitudinal CHR trends data visualization . 33
6.2 Cross-Sectional OEPS spatial data visualization . 34

7 Acknowledgments . 36

8 References . 37

A Appendix of relevant code . 39
A.1 Data preprocessing scripts in R . 39

A.1.1 preprocessing oeps.R . 39
A.1.2 preprocessing chr.R . 40

A.2 Data loading scripts in Python . 42
A.2.1 oeps sql loader.py . 42
A.2.2 chr sql loader.py . 43

Page 2 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

List of figures

1.1 Diagram of OEPS dataset. 6
1.2 OEPS Explorer data download interface. 7
1.3 Diagram of CHR dataset. 8
1.4 CHR historic data files download page. 9

2.1 ER model for cross-sectional and spatial OEPS data. 13
2.2 ER model for longitudinal CHR data. 14
2.3 ER model for combined data. 15
2.4 Relational schema for combined data. 17
2.5 Relational schema including explicit data types for combined data. 17
2.6 Initializing pg ctl and starting PostgreSQL. 18
2.7 Specifying database storage location via TABLESPACE. 18
2.8 DDL commands in SQL to create desired relations. 19
2.9 DDL commands in SQL for foreign key specification. 20
2.10 Hypothetical DDL commands in SQL to generate county geography relation. . . . 20
2.11 Necessary DDL commands in SQL to complete PostGIS setup. 21

3.1 Excerpt of DML commands in SQL to import OEPS data into the “measure” table. 23
3.2 Excerpt of DML commands in SQL to import CHR data into the “measure” table. . 23
3.3 Demonstration executing data loader SQL DML scripts in PostgreSQL CLI. 23
3.4 PostGIS Shapefile import/export manager screen. 24

4.1 Queries to return row counts for each relation (“table”). 25
4.2 Query to return available data years. 26
4.3 Printing relation attributes in preparation for more complex queries. 26
4.4 Query of yearly “Percentage Smokers” for Fairfax City. 27
4.5 Query of time-average “Percentage Smokers” for Fairfax City. 28
4.6 Query of highest 10 time-average “Percentage Smokers” counties in Virginia. 29
4.7 Query of lowest 10 time-average “Percentage Smokers” counties in Virginia. 29

5.1 Initial DBMS linkage screen on Tableau Desktop. 31
5.2 Successful DBMS linkage screen on Tableau Desktop. 31

6.1 Longitudinal component of interactive data dashboard. 33
6.2 Spatial component of interactive data dashboard. 34

Page 3 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

1 Background and data sources

The purpose of this project is to create an interactive data dashboard tool consolidating longitu-
dinal and spatial data from different sources to allow policy leaders and other relevant stakeholders
to sift through and ask questions of relevant data. This project is in part a collaboration with
the Justice Community Opioid Innovation Network (JCOIN) and is thus also inspired by work of
the National Institutes of Health (NIH) Helping End Addiction Long-term (HEAL) Initiative (NIH
HEAL Initiative, 2021). As such, this project utilizes data relevant to the United States “opioid
epidemic” introduced below.

1.1 The United States “opioid epidemic”

1.1.1 Origins: The undertreatment of pain and rise of opioid drugs

Prior to the 1980s, opioid drugs were not considered commonplace treatments for chronic pain
in the United States. There is actually considerable evidence of a characteristic “opiopohobia,”
especially following the 1914 Harrison Narcotic Tax Act (Jones et al., 2018). The addictive potential
of opioid drugs was understood following the American Civil War, during which these drugs were
used in field hospitals to relieve surgery pains (Provine, 2011).

As such, this time period saw opioid addiction generally viewed through a medical lens. Unbe-
knownst to many, buildup to the passage of the Harrison Act potentially served as early warning
signs of the impending nefarious “War on Drugs.“ In fact, President Theodore Roosevelt’s appointed
Opium Commissioner in 1908 had used explicitly racial claims, blaming opium for illicit sexual rela-
tions between white women and Chinese men and blaming cocaine for violence in African American
men, to push for drug control at the federal level (Provine, 2011). We now know that similar tech-
niques were used by Henry Anslinger, who from 1930 until 1962 served as the first commissioner
of the Federal Bureau of Narcotics, to incite racial fearmongering and reshape the general view of
addiction towards one of criminality via what we call today the “War on Drugs” (Provine, 2011).

Views of opioid medications began to change during the 1980s, as literature emerged highlighting
the undertreatment of pain in the United States. These findings coincided with the surfacing of
two pieces of literature, neither of which are considered to meet today’s standard for scientific
rigor, regarding an apparent low addiction potential for opioid drugs (Jones et al., 2018). Prior to
this time, opioid prescriptions were typically reserved for short-term pain relief following surgery or
cancer patients suffering from terminal illness. However, a burgeoning interest in the utility of opioid
drugs for non-cancer pain, at times driven by misconceptions of non-cancer pain by underinformed
cancer pain specialists, began to take hold of the medical community (Jones et al., 2018) and would
lead to a gradual increase of opioid prescriptions during this time period (DeWeerdt, 2019).

The following years saw many notable patient advocacy and regulatory organizations, such
as the American Pain Society (launching their “pain as a fifth vital sign” campaign in 1995),
the Veteran’s Health Administration (moving to adopt “pain as a fifth vital sign” in 1999), the
Joint Commission (publishing standards for pain management in 2000), the Institute of Medicine,
the Federation of State Medical Boards, and even the United States Drug Enforcement Agency,
synergistically pushed for a more structured approach to pain assessment and management that
heavily relied upon the prescription of opioid drugs (Jones et al., 2018). It was also this time period

Page 4 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

that saw pharmaceutical companies devote significant resources towards lobbying, sponsorships,
and marketing to promote their opioid products to the greatest extent possible (DeWeerdt, 2019).
Some pharmaceutical companies took advantage of these opportunistic circumstances by peddling
fraudulent claims to sell their opioid products. Purdue Pharma falsely marketed OxyContin, a new
sustained-release formulation of the highly-addictive opioid drug oxycodone, as less addictive than
other opioid painkillers; Purdue Pharma later admitted their knowledge of OxyContin as addictive
in a 2007 lawsuit (DeWeerdt, 2019). Purdue even focused their initial marketing of OxyContin
towards white communities, knowing that the image of the typical drug addict painted by Anslinger
and the ensuing War on Drugs would serve their message of OxyContin as a non-addictive drug
(DeWeerdt, 2019). As a result of these efforts, OxyContin prescriptions rose sharply from 670,000
in 1970 to 6.2 million in 2002 (Jones et al., 2018).

Despite best efforts from the pharmaceutical industry to hide the truth about the addictive
potential of opioid drugs, it was only a matter of time before the reality of the situation would
reveal itself.

1.1.2 Today: The opioid overdose crisis

The modern opioid epidemic in the United States is often described as taking place in 3 overlap-
ping phases (DeWeerdt, 2019). The first phase began with the overprescription and abuse of opioid
pharmaceuticals described earlier. The second phase, heavily involving heroin, saw heroin overdose
deaths increase nearly fivefold in the United States from 2010 to 2016 (DeWeerdt, 2019). The early
days of the third (present) phase saw the involvement of cheaper yet more potent opioids, namely
fentanyl, such that opioid deaths from fentanyl and similar molecules increased by 88% per year
between 2013 and 2016 (DeWeerdt, 2019).

American opioid overdose deaths in 2016 surpassed 42,000, at that point in time more than any
previous year on record (U.S. Department of Health and Human Services, 2021). This record was
subsequently broken by over 47,000 opioid overdose deaths in 2017 (National Institute on Drug
Abuse, 2021). Despite the declaration of the opioid epidemic as a public health emergency in 2017
(U.S. Department of Health and Human Services, 2021), which saw a decline in opioid overdose
deaths from 2017 to 2018, the previous record was surpassed once again by nearly 50,000 opioid
overdose deaths in 2019 (National Institute on Drug Abuse, 2021).

Although pandemic coronavirus disease 2019 (COVID-19) has resulted in challenges obtaining
recent unbiased estimates of opioid use (Haley & Saitz, 2020), we can safely continue to assume the
omnipresence of the opioid epidemic in the United States today.

1.2 Sources of data relevant to the opioid epidemic

While numbers of opioid overdose deaths and other opioid-use-specific measures may provide
useful information in understanding the scope of the opioid epidemic, they certainly do not provide
the entire picture. Considering various social determinants of health (SDoH), the importance of
which was especially validated in monitoring disease spread during the COVID-19 pandemic, may
be required to better understand the factors that may contribute to opioid overdose outcomes.

Additionally, statistical relationships are necessarily derived at a group level. Thus we must
ensure our perspective is not of individuals but of larger units of aggregation, e.g., geospatial

Page 5 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

neighborhoods. An additional benefit of considering these larger units is the ability to compare
areas based on their differing profiles of SDoH and other environmental factors, for example by
quantifying a multi-dimensional “risk environment” as described by Rhodes (2002).

As such, this work serves to highlight two distinct data sources which may prove relevant in
understanding SDoH and additional environmental factor profiles of specific levels of geospatial
aggregation: the University of Chicago Opioid Environmental Policy Scan (OEPS) dataset (Kolak
et al., 2021), and the University of Wisconin County Health Rankings & Roadmaps (CHR) dataset
(University of Wisconsin Population Health Institute & Robert Wood Johnson Foundation, n.d.).

1.2.1 The Opioid Environmental Policy Scan (OEPS) dataset

The OEPS dataset, developed by Kolak et al. (2021) as a collaboration between the University
of Chicago Healthy Regions & Policies Lab and the University of Chicago Center for Spatial Data
Science, utilizes a “risk environment framework” approach, as first described by Rhodes (2002), to
consolidate data from various sources into six “spheres of influence”: policy, health, demographic,
economic, built environment, and COVID-19 (Kolak et al., 2021). This conceptual model for this
data is shown in Figure 1.1 below (on page 6).

Figure 1.1: Diagram of OEPS dataset.

The OEPS dataset is a nationwide extension of previous work by M.A. Kolak et al. (2020)
highlighting the utility of the risk environment approach in understanding various health outcomes,
including opioid-related overdose, in rural Southern Illinois between 2015 and 2017. In appreciation

Page 6 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

of “rural risk environment” analyses (M.A. Kolak et al., 2020) and of the expertise of the Univer-
sity of Chicago as the JCOIN Methodology and Advanced Analytics Resource Center (MAARC)
(Kolak et al., 2021), this project hopes to utilize OEPS data to start with a multi-dimensional risk
environment framework of the opioid epidemic at varying geospatial scales across the entire United
States.

OEPS data were obtained via the “Filter Data and Download” section of the OEPS Explorer
web application (https://oeps.netlify.app/download). “County” was selected under the “Filter by
Scale” heading and downloaded to the project working directory. The data download interface is
shown below in Figure 1.2 (on page 7).

Figure 1.2: OEPS Explorer data download interface.

1.2.2 The County Health Rankings & Roadmaps (CHR) dataset

The CHR dataset (University of Wisconsin Population Health Institute & Robert Wood Johnson
Foundation, n.d.), released annually since 2010, is a collaborative effort between the University of
Wisconsin Population Health Institute and the Robert Wood Johnson Foundation to consolidate
data from various sources and publish health rankings that consider both health outcomes and
modifiable health factors for each of over 3,000 counties and county equivalents in the United
States (Remington et al., 2015). The conceptual model for CHR data is shown in Figure 1.3 (on
page 8) below.

Page 7 of 46

https://oeps.netlify.app/download

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

Figure 1.3: Diagram of CHR dataset.

Although CHR data provide a more general picture of health and health factors when compared
to the more opioid-use-related focus of OEPS data, the utility of these data in drawing conclusions
of health within a county are well-demonstrated. For example, Remington et al. (2015) analyzed
2014 CHR data and found premature death rates to be more than twice as high in bottom five

Page 8 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

healthy counties when compared with top five healthy counties in each state.

While the dimensional richness of the multifaceted opioid risk environment is a strength of the
OEPS dataset, data for each geospatial entity (without considering dis-/re- aggregation across mul-
tiple spatial scales) are only collected at a single timepoint, or “cross-sectionally” in time. As a
result, face-value similiarites (or differences) seen “between subjects” (in this case, between geospa-
tial entities, such as counties) may otherwise be characterized differently when taking into account
a bigger picture that also includes “within-subject” variation over time (for example, repeated mea-
surements of within the same geospatial entity), also known as “longitudinal” data. By nature of
its yearly releases, CHR data are in fact longitudinal. This project thus attempts to consolidate
cross-sectional and longitudinal data regarding SDoH and other environmental factors by merg-
ing the OEPS and CHR datasets in order to paint a more detailed multidimensional spatial and
longitudinal picture of the opioid risk environment in the United States.

CHR data were obtained via either the “Rankings Data & Documentation” section (https:
//www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation) for 2020-
2021 data, or via the “National Data & Documentation: 2010-2019” (https://www.countyhealthrankings.
org/explore-health-rankings/rankings-data-documentation/national-data-documentation-2010-2019)
section for historic data, previewed below in Figure 1.4 (on page 9). Relevant “County Health Rank-
ings National Data” files were downloaded to the project working directory.

Figure 1.4: CHR historic data files download page.

Page 9 of 46

https://www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation
https://www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation
https://www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation/national-data-documentation-2010-2019
https://www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation/national-data-documentation-2010-2019

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

2 Database design and creation

Following the introduction of these data sources, this work now turns to the discussion of de-
signing a suitable database to store the data and later serve as the data source for the interactive
dashboard.

2.1 Special considerations for spatial OEPS data

As previously mentioned OEPS data contain numerical measures of various variables in relevant
risk environment framework spheres of influence. However, OEPS data also includes geographic
Shapefiles for utilization with geographic information system (GIS) softwares and packages. As the
end goal for this project is to create an interactive data dashboard that adequately visualizes spatial
data, the primary software tools utilized in this project (including the database itself) must be able
to handle and store these geographic Shapefiles appropriately.

2.2 Special considerations for longitudinal CHR data

Additionally, CHR data have been described previously to have been collected annually per
county since 2010. While there exist specific software solutions designed as databases for lon-
gitudinal data storage, the primary issues arising with longitudinal data are less about software
compatibility and more about database design. More clearly, longitudinal data are characterized as
repeated measurements of the same variables so the database solution utilized for this project thus
must be designed by the database developer to support repeated measures in two unique use-cases:
(1) clear distinction of data from the same geospatial entity collected during different years, and
(2) aggregation of the same measure across specific time period for time-averaging purposes.

2.3 Choice of database management system (DBMS)

After evaluating the requirements to store and manage our desired data, the time now comes
to select a database management system (DBMS) software solution for our data. For its excellent
compliance with structured query language (SQL), extensive documentation base, consistent release
schedule, high compatibility in linking with other software tools, and myriad of features, this project
has selected PostgreSQL (The PostgreSQL Global Development Group, 2021) as the DBMS for
storage of OEPS and CHR data.

PostgreSQL began as POSTGRES in 1986 at the University of California at Berkeley and has
seen around 30 years of active development since. As such, PostgreSQL is still often referred to
as “Postgres” today. PostgreSQL is an open-source “object-relational database system” that is
compatible with all major operating systems, and has maintained compliance with the popular
“atomicity, consistency, isolation, and durability” (ACID) database transactions standard since
2001 (The PostgreSQL Global Development Group, 2021). These reasons make PostgreSQL a fine
choice for most standard DBMS use-cases.

PostgreSQL is also an excellent choice for handling both spatial and longitudinal data. Post-
greSQL is known for the extremely powerful PostGIS extension (Open Geospatial Consortium,
2021) that extends compatibility of PostgreSQL to handle and store geographic Shapefiles while
also providing additional functionality such as geographic queries. While there exist dedicated lon-
gitudinal database management systems (e.g., TimescaleDB: https://www.timescale.com/, which

Page 10 of 46

https://www.timescale.com/

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

is built on top of PostgreSQL), any standard relational DBMS can be utilized to handle repeated
measures in a similar manner to “long” (versus “wide”) tabular data format. For the sake of brevity,
additional specification of longitudinal data storage for this project will be reserved for the following
sections.

2.4 Conceptual database design

We now shift our focus towards the task of the database developer to architecture an appropriate
relational database that will meet the requirements of our data while keeping simple our downstream
tasks connecting the DBMS to our data dashboard.

2.4.1 Development of entity-relationship (ER) models

An entity-relationship (ER) model utilizes domain knowledge alongside database design concepts
to transform a combination of data and database use requirements into a model connecting relevant
“entities” to one another via appropriate “relationships.” This is generally an open-ended problem
where any of several possible sets of entities and relationships may adequately serve the purposes
of the end user. Some potential ER models may be better (or worse) suited than others, especially
when considering downstream steps for the data (e.g., linking an interactive data dashboard), so
domain knowledge is extremely valuable in this design process.

Despite this flexibility in conceptualization of ER models, the ER diagram generation procedure
typically follows several conventions: an entity is typically represented as a square or rectangle; one
of potentially multiple attributes of an entity is typically represented as an ellipse; a relationship be-
tween two entities is typically represented as rhombus (or colloquially a “diamond”); line segments
typically connecting the aforementioned shapes where appropriate. Additionally, relationships be-
tween entities may be specified as “one-to-one,” “one-to-many” (or vice versa), or “many to many,”
where “one-to-” sides of relationships contain visual arrowheads as a distinction from “many-to-”
sides of relationships (which do not contain arrowheads). The aforementioned conventions were
used in generating the pertinent ER diagrams included below (Figure 2.1 on page 13, Figure 2.2 on
page 14, and Figure 2.3 on page 15).

Cross-sectional and spatial OEPS dataset. We begin this design process by considering the
cross-sectional OEPS dataset. Let us consider the relevant heirarchical geographic information of
a given geospatial “entity”, e.g., a county, by specifying the following entities in our ER model:
“county,” “state,” and “geography.”

The “geography” entity is meant to serve as an oversimplified generalization of any Shapefile
and related geometric GIS object data. We represent this in our ER diagram as an attribute called
“geom.” We consider the “geography” entity to have a one-to-one relationship with our “county”
entity, such that every county may be described by one and only one geometry component (for lack
of a better term), and vice versa.

We consider our “county” entity to showcase a many-to-one relationship with our “state” entity,
such that each county may belong to only one state, but each state may contain many counties.
Our “state” entity will only consist of a unique “state name” attribute. However, a “county” will
exhibit a “FIPS ID” attribute (leading to derived attributes of “county ID” and “state ID”) as well
as a “county name” attribute.

Page 11 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

We then turn our focus towards the measures included in the dataset. As a way of handling mea-
sures in an extremely general, topic-agnostic manner, we resort to creation of a generic “measure”
entity and a corresponding “metadata” entity.

The “measure” entity is considered to exhibit a many-to-many relationship with the “county”
entity, such that each measure may be taken in multiple counties and each county may have mul-
tiple measures taken. Relevant attributes of the “measure” entity include a “measure ID,” “mea-
sure name,” “value,” and “unique ID.” This “unique ID” attribute plays particular importance that
will be revealed in a later ER diagram and the ensuing derived relational schema.

Our “metadata” entity serves to hold any additional information for a “measure” not worth
storing as a direct attribute of the “measure” entity itself. We specify a one-to-one relationship
between the “measure” and “metadata” entities, such that each measure corresponds with one
specific corresponding entry of metadata (and vice versa). We shall specify the only attribute of
the “metadata” entity as a “measure descrip” to reference for each “measure.”

This concludes our specification of our ER model for our cross-sectional OEPS dataset. Many
of these entities and relationships will be preserved across different datasets (as especially becomes
apparent upon combinind the datasets), so these descriptions will not be repeated in the ensuing
descriptions of the ER model for the longitudinal CHR dataset as well as for the combined OEPS
and CHR dataset.

The resulting ER diagram that corresponds with our specification of the OEPS data can be seen
in Figure 2.1 below (on page 13).

Page 12 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

Figure 2.1: ER model for cross-sectional and spatial OEPS data.

Longitudinal CHR dataset. We then turn our attention to developing an ER model for the
longitudinal CHR dataset. We notably do not explicitly consider a spatial component of this data
at this point so the previous “geography” entity has been removed. The remainder of entities,
relationships, and attributes remain the same from our OEPS ER model with the exception of an
added “year collected” attribute to our “measure” entity.

As briefly highlighted previously, inclusion of a “year collected” attribute to our “measure”
entity effectively allows us to store longitudinal data in our model in the “long” tabular data

Page 13 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

format. Each unique pair of “measure ID” (or equivalently “measure ID”) and “year collected”
can effectively define each unique row (or “tuple”) of a data table in “long” format. As we had
previously alluded to the importance of our “unique ID” attribute in the previous ER model, this
attribute effectively serves as a unique identifier for each point in measure-time space. We will see
the added importance of this attribute when combining OEPS and CHR data in our combined ER
model further below.

The resulting ER diagram that corresponds with our specification of the CHR data can be seen
in Figure 2.2 below (on page 14).

Figure 2.2: ER model for longitudinal CHR data.

Combined OEPS and CHR dataset. Finally, we turn to the problem of designing an ER
model for a consolidated dataset combining our cross-sectional and spatial OEPS dataset with our
longitudinal CHR dataset.

The resultant ER model of our combined dataset contains the union of all entities, relationships,
and attributes contained in both our OEPS ER model and our CHR ER model. The visualized ER
model for our combined dataset can be seen below in Figure 2.3 below (on page 15).

Page 14 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

Figure 2.3: ER model for combined data.

As seen in the ER diagram, a new entity has been introduced for our combined dataset that
was not present previously: “study”. This entity serves to provide human-readable identifiers, in
the form of “study ID” and “study name” attributes of the “study” entity, to distinguish between
measures originally taken from the OEPS dataset versus those originally taken from from the CHR
dataset. Additionally, this entity allows for data from additional studies (currently unspecified for
this project) to be added-in later.

Interestingly enough, this “study” entity is to some extent redundant, as the “unique ID” at-

Page 15 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

tribute of the “measure” entity introduced above already does contain this information. Cross-
sectional data from the OEPS dataset are to be introduced into the current ER model with a
value of NULL for the “year collected” attribute of the “measure” entity. This will allow for the
“unique ID” attribute of the “measure” entity to generate distinct “unique ID” values for any
measures that may be shared between the OEPS and CHR (or potentially future to-be-included)
datasets! (Remember that “unique ID” was previously described as a unique identifier for every
unique pairing of “measure name,” or effectively “measure ID,” and “year collected.”)

As our ER model for our combined dataset seems to afford us enough flexibility to adequately
manage our current data, and additionally has considerations for potential future data, we can feel
comfortable with moving forward to reduce our ER model into relational schema and continue to
design our database.

2.4.2 Reduction of ER models to relational schema

As one step closer from ER data model to implemented software database, relational schema
serve to describe how data can be stored in the database as “relations” (also commonly referred to
as tables). Relational schema share some overlap in components with ER diagrams, as previously-
specified relationship cardinalities (i.e., “one-to-one,” “one-to-many,“ or vice versa, and many-to-
many”) still seem to find their way into relational schema diagrams. ER model attributes, each of
which are restricted to belonging exclusively to one entity in standard ER model convention, are
sometimes shown in relational schema as “foreign-keys” that serve to link relations that sharing one
or more common attributes.

Entities and relationships from our ER model are transformed into relations. Our previous
“measure,” “county,” “state,” “metadata,” and “study” entities all become namesake tables. (For
clarity’s sake, we have renamed our “geography” entity from previously to “county geography” to
represent its connection to the “county” relation here, as opposed to the “state” relation.) “Foreign-
key” (FK) attributes, as briefly described above, seem to be the specific way that ER relationships
seem to exert themselves within the data.

In our relational schema we also notice the introduction of a “primary-key” concept that exists
at the software level but was not as emphasized (though did exist in the form of underlined attribute
names) in the ER model. In this case, a “primary-key” (PK) is an attribute (or more generally,
a combination of multiple attributes) that serves to uniquely identify each “tuple” (or row) in a
relation. For an attribute(s) that is specified as a primary-key within a relation, that attribute(s)
cannot have any duplicates within that relation. This describes the relational database model.

As such, the relevant attributes and their designation within relations as primary-key (PK),
foreign-key (FK), or none are shown in the relational schema diagram for the combined dataset in
Figure 2.4 below (on page 17).

Additionally, relational schema are often times shown with explicit data types for each attribute
as well as primary-key/foreign-key designations as one step even closer to the software implemen-
tation. A relational schema diagram for the combined dataset in this style with explicitly specified
data types for each attribute is shown below in Figure 2.5 (on page 17) as well.

Page 16 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

Figure 2.4: Relational schema for combined data.

Figure 2.5: Relational schema including explicit data types for combined data.

Following the successful reduction of our ER model to relational schema, we now turn to the
more concrete steps involved in creating the database from a software perspective.

2.5 Database creation via PostgreSQL

This project utilizes PostgreSQL version 13.4 (The PostgreSQL Global Development Group,
2021) and PostGIS version 3.1.4 (Open Geospatial Consortium, 2021). Prior to completing the
below steps, these software packages were downloaded from the original websites and installed to
the Windows computer used for this project. Following installation of required software, any sub-
sequent terminal commands below were executed in Microsoft PowerShell version 7.2.0 in Windows
Terminal.

2.5.1 Setup and preliminary steps

Following installation of PostgreSQL, the pg ctl service must be started to access PostgreSQL.
Figure 2.6 below (on page 18) showcases the specific commands run to start pg ctl and enter
PostgreSQL from the command line interface (CLI) as the postgres user.

Page 17 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

1 PS project_path > pg_ctl start

2 waiting for server to start done

3 server started

4

5 PS project_path > psql -U postgres

6 Password for user postgres:

7 psql (13.4)

8 WARNING: Console code page (437) differs from Windows code page (1252)

9 8-bit characters might not work correctly. See psql reference

10 page "Notes for Windows users" for details.

11 Type "help" for help.

12

13 postgres=#

Figure 2.6: Initializing pg ctl and starting PostgreSQL.

This project also specifies the storage location file path for the database using the TABLESPACE
function in PostgreSQL. This is illustrated in Figure 2.7 (on page 18) below.

1 postgres =# CREATE TABLESPACE csi695

2 postgres -# LOCATION ’D:\ Codebase\CSI -695- project\combined -db_CHR -OEPS’;

3 CREATE TABLESPACE

4

5 postgres =# CREATE DATABASE combined_db_chr_oeps

6 postgres -# WITH TABLESPACE = csi695;

7 CREATE DATABASE

Figure 2.7: Specifying database storage location via TABLESPACE.

While the CREATE TABLESPACE command may have not been expressly required to achieve the
goals of the project, we hoped to perform this command to ensure all data, documentation, and
software were stored together in the same directory (specified by the file path above).

2.5.2 Data definition language (DDL)

It is now time to create our relations as tables in line with the design work we have done in cre-
ating our relational schema. As previously mentioned, PostgresQL touts excellent compliance with
structured query language (SQL), the standard language used in database design and manipulation
today. As such, the specific SQL used in table creation is considered “data definition language”
(DDL). Figure 2.8 below (on page 19) contains the relevant SQL DDL commands executed in Post-
greSQL to create empty tables with specifications given by our relational schema in Figures 2.4 and
2.5 previously.

Page 18 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

1 postgres =# \connect combined_db_chr_oeps

2 You are now connected to database "combined_db_chr_oeps" as user "postgres".

3

4 combined_db_chr_oeps =# CREATE TABLE measure (

5 combined_db_chr_oeps (# unique_ID smallserial PRIMARY KEY ,

6 combined_db_chr_oeps (# FIPS_ID integer ,

7 combined_db_chr_oeps (# year_collected smallint ,

8 combined_db_chr_oeps (# measure_ID smallint ,

9 combined_db_chr_oeps (# measure_name text ,

10 combined_db_chr_oeps (# value numeric (10 ,3),

11 combined_db_chr_oeps (#);

12 CREATE TABLE

13

14 combined_db_chr_oeps =# CREATE TABLE county (

15 combined_db_chr_oeps (# FIPS_ID integer PRIMARY KEY ,

16 combined_db_chr_oeps (# county_ID smallint ,

17 combined_db_chr_oeps (# county_name varchar (50),

18 combined_db_chr_oeps (# state_ID smallint

19 combined_db_chr_oeps (#);

20 CREATE TABLE

21

22 combined_db_chr_oeps =# CREATE TABLE state (

23 combined_db_chr_oeps (# state_ID smallint PRIMARY KEY ,

24 combined_db_chr_oeps (# state_name varchar (25)

25 combined_db_chr_oeps (#);

26 CREATE TABLE

27

28 combined_db_chr_oeps =# CREATE TABLE metadata (

29 combined_db_chr_oeps (# measure_ID serial PRIMARY KEY ,

30 combined_db_chr_oeps (# measure_descrip text ,

31 combined_db_chr_oeps (# study_ID smallint

32 combined_db_chr_oeps (#);

33 CREATE TABLE

34

35 combined_db_chr_oeps =# CREATE TABLE study (

36 combined_db_chr_oeps (# study_ID smallint PRIMARY KEY ,

37 combined_db_chr_oeps (# study_name text

38 combined_db_chr_oeps (#);

39 CREATE TABLE

Figure 2.8: DDL commands in SQL to create desired relations.

Notably we have waited to define all tables above with their attributes and corresponding explicit
data types prior to linking any tables to one another through foreign-keys. This next step of
specifying foreign keys was done below in Figure 2.9 (on page 20).

Page 19 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

1 combined_db_chr_oeps =# ALTER TABLE measure

2 combined_db_chr_oeps -# ADD FOREIGN KEY (measure_ID)

3 combined_db_chr_oeps -# REFERENCES metadata (measure_ID);

4 ALTER TABLE

5

6 combined_db_chr_oeps =# ALTER TABLE county

7 combined_db_chr_oeps -# ADD FOREIGN KEY (state_ID)

8 combined_db_chr_oeps -# REFERENCES state (state_ID);

9 ALTER TABLE

10

11 combined_db_chr_oeps =# ALTER TABLE metadata

12 combined_db_chr_oeps -# ADD FOREIGN KEY (study_ID)

13 combined_db_chr_oeps -# REFERENCES study (study_ID);

14 ALTER TABLE

Figure 2.9: DDL commands in SQL for foreign key specification.

This project has at this point not defined a table corresponding to the “county geography”
relation described earlier in Figures 2.4 and 2.5 above. This project includes hypothetical SQL
commands intended to complete these steps below in Figure 2.10 (on page 20), however the actual
implementation of this step was completed via the graphical user interface (GUI) rather than the
CLI.

1 combined_db_chr_oeps =# CREATE TABLE county_geography (

2 combined_db_chr_oeps (# FIPS_ID integer PRIMARY KEY ,

3 combined_db_chr_oeps (# geom geometry

4 combined_db_chr_oeps (#);

5 CREATE TABLE

6

7 combined_db_chr_oeps =# ALTER TABLE county_geography

8 combined_db_chr_oeps -# ADD FOREIGN KEY (FIPS_ID)

9 combined_db_chr_oeps -# REFERENCES county (FIPS_ID);

10 ALTER TABLE

Figure 2.10: Hypothetical DDL commands in SQL to generate county geography relation.

Finally, in order to complete the setup of PostGIS, this project performed several CREATE

EXTENSION SQL commands as specified in the PostGIS installation instructions (Open Geospa-
tial Consortium, 2021); these commands are shown in Figure 2.11 (on page 21) below.

Page 20 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

1 combined_db_chr_oeps =# CREATE EXTENSION postgis;

2 CREATE EXTENSION

3 combined_db_chr_oeps =# CREATE EXTENSION postgis_raster;

4 CREATE EXTENSION

5 combined_db_chr_oeps =# CREATE EXTENSION postgis_topology;

6 CREATE EXTENSION

7 combined_db_chr_oeps =# CREATE EXTENSION postgis_sfcgal;

8 CREATE EXTENSION

9 combined_db_chr_oeps =# CREATE EXTENSION fuzzystrmatch;

10 CREATE EXTENSION

11 combined_db_chr_oeps =# CREATE EXTENSION address_standardizer;

12 CREATE EXTENSION

13 combined_db_chr_oeps =# CREATE EXTENSION address_standardizer_data_us;

14 CREATE EXTENSION

15 combined_db_chr_oeps =# CREATE EXTENSION postgis_tiger_geocoder;

16 CREATE EXTENSION

Figure 2.11: Necessary DDL commands in SQL to complete PostGIS setup.

Page 21 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

3 Database manipulation

Following design of our database via ER modeling and reduction to relational schema, as well as
creation of empty database tables via SQL DDL commands, we now turn to the problem of storing
our data into the database. We begin this process by performing relevant preprocessing steps.

3.1 Data preprocessing via R

Consolidation and loading of the extremely extensive OEPS and CHR datasets requires a sig-
nificant preprocessing effort. We dedicated specific scripts for each of the separate data sources
to handle the distinct directory structures, file types, and variable naming conventions utilized in
each project. Relevant preprocessing scripts were created using the R language and environment
for statistical computing version 4.1.2 (R Core Team, 2021) and can be found for OEPS data in
Appendix A.1.1 on page 39 and for CHR data in Appendix A.1.2 on page 40, respectively. The
general preprocessing methodologies for both OEPS and CHR datasets are described as follows.

OEPS data were initially separated into several spreadsheet files by original data source (the
OEPS data are consolidated from several data sources themselves). The preprocessing algorithm
for OEPS data involved a first pass through all data files to create separate R data frame objects
for each file. This was followed by a second pass executing sequential (in alphabetical filename
order) and cumulative pairwise merges of these data frames. A third (final) pass was executed on
the resultant cumulative data frame object and involved dropping columns that were repeated or
otherwise not needed for future analyses.

CHR data were initially separated into several spreadsheet files by year of reporting (as they were
downloaded from the original data website). The preprocessing algorithm for CHR data involved
a first pass through all data files to create separate R data frame objects for each file. This was
followed by a second pass discovering common columns between all years by performing sequential
(in increasing year order) pairwise intersections of column name lists, successively removing column
names until only those columns from the earliest (2010) data that were preserved through the most
recent (2021) data are remaining. A third pass was executed to drop all non-preserved columns
(those not discovered in the second pass) in each of the yearly data frame objects. The fourth
(final) pass was executed to perform cumulative pairwise merges of all data frames by county-level
geographic columns (i.e., FIPS, county, and state).

Following the preprocessing phase, our OEPS and CHR datasets were each saved as individ-
ual comma-separated value (CSV) files to minimize file size and to allow for compatibility with
downstream steps of the project.

3.2 Data manipulation language (DML)

As we had previously described PostgreSQL’s compliance with SQL and typical DDL commands
for generating tables from the relational schema, SQL also contains commands corresponding to a
“data manipulation language” (DML) that can be used to execute database transactions to SELECT

data, PARTITION data, INSERT data, and perform many more related tasks.

Brief excerpts of the exact DML SQL commands used to add OEPS data (Figure 3.1 on page
23) and CHR data (Figure 3.2 on page 3.2) are included below.

Page 22 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

1 INSERT INTO measure VALUES (1001, NULL , 0, ’totPopE ’, 55200.0);

2 INSERT INTO measure VALUES (1001, NULL , 1, ’moudMinDis ’, 15.74711697);

3 INSERT INTO measure VALUES (1001, NULL , 2, ’bupMinDis ’, 15.74711697);

Figure 3.1: Excerpt of DML commands in SQL to import OEPS data into the “measure” table.

1 INSERT INTO measure VALUES (1001, 2010, 69, ’Percentage Smokers ’, 28.14);

2 INSERT INTO measure VALUES (1001, 2010, 70, ’Teen Birth Rate’, 52.6);

3 INSERT INTO measure VALUES (1001, 2010, 71, ’Percentage Uninsured ’, 14.0);

Figure 3.2: Excerpt of DML commands in SQL to import CHR data into the “measure” table.

Even despite the extensive subsetting of the original OEPS and CHR datasets performed above
in the preprocessing phase, our data are still so numerous that manually executing individual INSERT
DML commands for each tuple would be extremely error-prone and inefficient. As such, we turn
to the power of automation to accomplish the task of creating SQL scripts containing our desired
DML commands for data loading.

3.3 Data loading via Python

In order to generate the relevant DML SQL commands, we once more dedicate individual
scripts to loading the OEPS and CHR preprocessed CSV files. Relevant scripts created to gen-
erate end-result SQL DML data loading scripts were created using the Python language version
3.9.9 (“Python”, 2021) and can be found for OEPS data in Appendix A.2.1 on page 42 and for
CHR data in Appendix A.2.2 on page 43, respectively.

The algorithms for these two scripts were however extremely similar. Both scripts attempted to
scan relevant CSV files and write-to-file preformatted SQL DML INSERT commands that contained
the corresponding values from each row to input as a tuple. Both scripts each contained sepa-
rate segments devoted to SQL DML INSERT commands for the previously-constructed “measure,”
“metadata,” and “study” tables, but only the OEPS data script generated SQL DML INSERT com-
mands for the “county” and “state” tables. Notably the “county geography” table did not feature
data loading in these scripts, as this was taken care of via the PostGIS GUI in the next section.

As previously alluded to, the SQL DML INSERT commands were written to files oeps loader.sql

and chr loader.sql for OEPS and CHR data, respectively. However, these files were not included
in this report due to their sheer size. These SQL scripts were then executed in a Windows Terminal
CLI open to PostgreSQL and connected to the previously-designed database via the \i (or \ir for
use with relative paths) command as demonstrated in Figure 3.3 (on page 23) below.

1 combined_db_chr_oeps =# \ir oeps_loader.sql \ir chr_loader.sql;

Figure 3.3: Demonstration executing data loader SQL DML scripts in PostgreSQL CLI.

Page 23 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

3.4 Importing geographical data via PostGIS

As described previously, the loading of geographic Shapefile data was handled via the PostGIS
GUI rather than the PostgreSQL CLI. The GUI was extremely user-friendly and simply required
connection with the desired PostgreSQL database and specification of file path for the desired
Shapefiles. This is shown below in Figure 3.4 (on page 24).

Figure 3.4: PostGIS Shapefile import/export manager screen.

Following the loading of geographic Shapefiles into the “county geography” table, we have now
fully loaded all data into our database and are ready to continue with downstream project steps.

Page 24 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

4 Final combined database

Now that our data are loaded into our desired PostgreSQL (with PostGIS extension enabled),
we can begin to perform several queries to inspect our work. We begin with simple queries and
move towards a few more complex queries by the end of this section.

4.1 Simple queries

To initiate our queries, we may be interested in seeing the results of our data loading work. In
order to see the number of records (in other words, number of rows or “tuples”) in each table, we
can use the SELECT COUNT(*) FROM SQL command. We utilize this command in Figure 4.1 below
(on page 25). It seems that our final database contains nearly 400,000 records in the “measure”
table alone!

1 combined_db_chr_oeps =# SELECT COUNT (*) FROM measure;

2 394790

3

4 combined_db_chr_oeps =# SELECT COUNT (*) FROM county;

5 2746

6

7 combined_db_chr_oeps =# SELECT COUNT (*) FROM county_geography;

8 3142

9

10 combined_db_chr_oeps =# SELECT COUNT (*) FROM state;

11 51

12

13 combined_db_chr_oeps =# SELECT COUNT (*) FROM metadata;

14 74

15

16 combined_db_chr_oeps =# SELECT COUNT (*) FROM study;

17 2

Figure 4.1: Queries to return row counts for each relation (“table”).

Perhaps we may be interested in learning of the available data years we have in our data. We
utilize the SELECT DISTINCT command below in Figure 4.2 (on page 26). Our count of 13 rows
returned reflect the 12 years of longitudinal data we have from the CHR dataset (2010 to 2021) as
well as the NULL value for “year collected” we chose to assign data from the OEPS dataset.

Page 25 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

1 combined_db_chr_oeps =# SELECT DISTINCT year_collected FROM measure;

2

3 year_collected

4 ----------------

5 2013

6 2021

7 2020

8

9 2015

10 2011

11 2014

12 2010

13 2017

14 2019

15 2016

16 2012

17 2018

18 (13 rows)

Figure 4.2: Query to return available data years.

Finally, we decide to utilize the SELECT * command in combination with LIMIT 0 in Figure
4.3 (on page 26) below to list attribute names for our “measure,” “county,” and “state,” tables (in
preparation for more complex queries in the next section).

1 combined_db_chr_oeps =# SELECT * FROM measure LIMIT 0;

2 fips_id | year_collected | measure_id | measure_name | value | unique_id

3 ---------+----------------+------------+--------------+-------+-----------

4 (0 rows)

5

6

7 combined_db_chr_oeps =# SELECT * FROM county LIMIT 0;

8 fips_id | county_id | county_name | state_id

9 ---------+-----------+-------------+----------

10 (0 rows)

11

12

13 combined_db_chr_oeps =# SELECT * FROM state LIMIT 0;

14 state_id | state_name

15 ----------+------------

16 (0 rows)

Figure 4.3: Printing relation attributes in preparation for more complex queries.

4.2 More complex queries

At this point, we would like to ask more complex questions of our database. For example, What
were all of the longitudinal (derived from the CHR dataset) “Percentage Smokers” values for Fairfax
City in Virginia? We utilize the typical textttSELECT command in combination with INNER JOIN

Page 26 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

first on the “county” table and then the “state” table, followed by the WHERE command to specify
additional filters based on our question. Notably we specify year collected IS NOT NULL in order
to ensure we are taking from the CHR dataset, based on our previous specification. This query is
showcased below in Figure 4.4 (on page 27).

1 combined_db_chr_oeps =# SELECT year_collected , measure_name , value

2 combined_db_chr_oeps -# FROM measure

3 combined_db_chr_oeps -# INNER JOIN county USING(fips_id)

4 combined_db_chr_oeps -# INNER JOIN state USING(state_id)

5 combined_db_chr_oeps -# WHERE state_name = ’Virginia ’

6 combined_db_chr_oeps -# AND county_name = ’Fairfax City’

7 combined_db_chr_oeps -# AND year_collected IS NOT NULL

8 combined_db_chr_oeps =# AND measure_name = ’Percentage Smokers ’;

9

10 year_collected | measure_name | value

11 ----------------+--------------------+--------

12 2010 | Percentage Smokers | 2.410

13 2011 | Percentage Smokers | 3.400

14 2012 | Percentage Smokers | 5.700

15 2013 | Percentage Smokers | 6.000

16 2016 | Percentage Smokers | 13.200

17 2017 | Percentage Smokers | 10.729

18 2018 | Percentage Smokers | 11.509

19 2019 | Percentage Smokers | 11.509

20 2020 | Percentage Smokers | 12.665

21 2021 | Percentage Smokers | 11.625

22 (10 rows)

Figure 4.4: Query of yearly “Percentage Smokers” for Fairfax City.

We may be additionally be interested in the time-average of the “Percentage Smokers” variable
across all timepoints available for Fairfax City, Virginia. We can answer this question with slight
modifications to include AVG(value) in place of value in our original query, and to include OVER

(PARTITION BY fips id, measure name) between the SELECT portion and FROM portion of our
original query. The SQL AVG() function simply performs an average of the selection as expected,
while the OVER window function takes the specified PARTITION BY clause and computes our desired
quantities over the specified window. This modified query is showcased below in Figure 4.5 (on
page 28). Since we chose to include the same variables in the SELECT portion of the command,
the time-average is included at the end of the previously-seen table and repeated for each relevant
entry utilized to calculate the time-average. We may have been able to avoid this problem had we
utilized a SELECT DISTINCT statement instead, like we do in the following queries.

Page 27 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

1 combined_db_chr_oeps =# SELECT year_collected , measure_name , AVG(value)

2 combined_db_chr_oeps -# OVER (PARTITION BY fips_id , measure_name)

3 combined_db_chr_oeps -# FROM measure

4 combined_db_chr_oeps -# INNER JOIN county USING(fips_id)

5 combined_db_chr_oeps -# INNER JOIN state USING(state_id)

6 combined_db_chr_oeps -# WHERE state_name = ’Virginia ’

7 combined_db_chr_oeps -# AND county_name = ’Fairfax City’

8 combined_db_chr_oeps -# AND year_collected IS NOT NULL

9 combined_db_chr_oeps -# AND measure_name = ’Percentage Smokers ’;

10

11 year_collected | measure_name | avg

12 ----------------+--------------------+--------------------

13 2010 | Percentage Smokers | 8.8747000000000000

14 2011 | Percentage Smokers | 8.8747000000000000

15 2012 | Percentage Smokers | 8.8747000000000000

16 2013 | Percentage Smokers | 8.8747000000000000

17 2016 | Percentage Smokers | 8.8747000000000000

18 2017 | Percentage Smokers | 8.8747000000000000

19 2018 | Percentage Smokers | 8.8747000000000000

20 2019 | Percentage Smokers | 8.8747000000000000

21 2020 | Percentage Smokers | 8.8747000000000000

22 2021 | Percentage Smokers | 8.8747000000000000

23 (10 rows)

Figure 4.5: Query of time-average “Percentage Smokers” for Fairfax City.

Perhaps we may be interested in a ranking-/sorting-based question, such as the following: which
Virginia Counties (or County equivalents, e.g., Fairfax City) have the top 10 highest or top 10
lowest time-average “Percentage Smokers” values? In answering this question we would likely only
want 1 row per County (or County equivalent), and thus modify our previous query to utilize
SELECT DISTINCT command alluded to earlier, rather than the plain SELECT command. As a final
modification, we may end our query with either ORDER BY AVG DESC LIMIT 10 (first 10 of averages
in descending order) for our “top 10” case or ORDER BY AVG ASC LIMIT 10 (first 10 of averages in
ascending order) for our “bottom 10” scenarios. These SQL queries resultant output can be seen
in Figure 4.6 (on page 29) for the 10 highest time-average and in Figure 4.7 (on page 29) for the
10 lowest time-average “Percentage Smokers” Counties (and County equivalents) in the state of
Virginia from 2010-2021.

(Note: Figures 4.6 and 4.7 were produced with smaller font sizes to fit together on the same page.)

Page 28 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

1 combined_db_chr_oeps =# SELECT DISTINCT county_name , state_name , measure_name , AVG(value)

2 combined_db_chr_oeps -# OVER (PARTITION BY fips_id , measure_name)

3 combined_db_chr_oeps -# FROM measure

4 combined_db_chr_oeps -# INNER JOIN county USING(fips_id)

5 combined_db_chr_oeps -# INNER JOIN state USING(state_id)

6 combined_db_chr_oeps -# WHERE state_name = ’Virginia ’

7 combined_db_chr_oeps -# AND year_collected IS NOT NULL

8 combined_db_chr_oeps -# AND measure_name = ’Percentage Smokers ’

9 combined_db_chr_oeps -# ORDER BY AVG DESC LIMIT 10;

10

11 county_name | state_name | measure_name | avg

12 -------------+------------+--------------------+---------------------

13 Wise | Virginia | Percentage Smokers | 27.4436666666666667

14 Dickenson | Virginia | Percentage Smokers | 26.9171818181818182

15 Carroll | Virginia | Percentage Smokers | 26.8813333333333333

16 Buchanan | Virginia | Percentage Smokers | 25.9701666666666667

17 Dinwiddie | Virginia | Percentage Smokers | 24.9875833333333333

18 Pulaski | Virginia | Percentage Smokers | 24.8219166666666667

19 Lee | Virginia | Percentage Smokers | 24.7314166666666667

20 Henry | Virginia | Percentage Smokers | 24.4219166666666667

21 Scott | Virginia | Percentage Smokers | 24.0952500000000000

22 Mecklenburg | Virginia | Percentage Smokers | 23.9395833333333333

23 (10 rows)

Figure 4.6: Query of highest 10 time-average “Percentage Smokers” counties in Virginia.

1 combined_db_chr_oeps =# SELECT DISTINCT county_name , state_name , measure_name , AVG(value)

2 combined_db_chr_oeps -# OVER (PARTITION BY fips_id , measure_name)

3 combined_db_chr_oeps -# FROM measure

4 combined_db_chr_oeps -# INNER JOIN county USING(fips_id)

5 combined_db_chr_oeps -# INNER JOIN state USING(state_id)

6 combined_db_chr_oeps -# WHERE state_name = ’Virginia ’

7 combined_db_chr_oeps -# AND year_collected IS NOT NULL

8 combined_db_chr_oeps -# AND measure_name = ’Percentage Smokers ’

9 combined_db_chr_oeps -# ORDER BY AVG ASC LIMIT 10;

10

11 county_name | state_name | measure_name | avg

12 --------------+------------+--------------------+---------------------

13 Fairfax City | Virginia | Percentage Smokers | 8.8747000000000000

14 York | Virginia | Percentage Smokers | 11.4976666666666667

15 Fairfax | Virginia | Percentage Smokers | 11.5245833333333333

16 Loudoun | Virginia | Percentage Smokers | 11.6141666666666667

17 Arlington | Virginia | Percentage Smokers | 11.6650000000000000

18 James City | Virginia | Percentage Smokers | 12.3024166666666667

19 Fluvanna | Virginia | Percentage Smokers | 12.9787000000000000

20 Albemarle | Virginia | Percentage Smokers | 13.6415000000000000

21 Botetourt | Virginia | Percentage Smokers | 14.4337500000000000

22 Rockingham | Virginia | Percentage Smokers | 14.6154166666666667

23 (10 rows)

Figure 4.7: Query of lowest 10 time-average “Percentage Smokers” counties in Virginia.

Page 29 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

5 Linking database with interactive data dashboard

Now that we have verified our data were loaded successfully into our DBMS and asked a few
preliminary questions of our data, it is time for us to select a software solution for our interactive
data dashboard and connect our data source.

5.1 Choice of interactive data dashboard software

The original intention of this project was to utilize the RStudio Shiny project (https://shiny.
rstudio.com/) team to create the interactive data due to its open source nature. However, initial
efforts in learning the Shiny framework proved excessively time-consuming to the point that this
project changed directions to utilize a more familiar product for this goal.

As such, this project began to explore software options developed by Tableau Software LLC, such
as Tableau Public and Tableau Desktop (Tableau Software, LLC, 2021). A combination of prior
experience with developing a geospatial data dashboard in Tableau Public alongside the availability
of free temporary educational licenses for Tableau Desktop led to this project’s selection of Tableau
Desktop as the software tool for development of an interactive data dashboard.

5.1.1 Free educational licenses for Tableau Desktop

The developers of Tableau have a few different software offerings. Tableau Public (https://
public.tableau.com/en-us/s/) is a free software with many of the same functionalities as Tableau
desktop. However, the ability to link PostgreSQL and additional DBMS software solutions to a
Tableau visualization is a feature restricted to the paid Tableau Desktop software.

However, Tableau seems to offer free one-year software licenses for Tableau Desktop via their
“Tableau for Students” program (https://www.tableau.com/academic/students). The process to
obtain an educational license is relatively straightforward, involving a simple form submission using
a university.edu email address and clicking an email confirmation link. Following this process, this
project utilizes Tableau Desktop version 2021.3.3 (Tableau Software, LLC, 2021) as the software
solution for the interactive data dashboard.

Additionally of note, Tableau seems to offer renewable 1-year licenses for instructors and non-
commercial academic researchers via their Tableau for Teaching program (https://www.tableau.
com/academic/teaching).

5.1.2 Data linkage interface

As previously described, Tableau Desktop has an excellent selection of connections to various
data sources, including PostgreSQL. The wide variety of available options for data source connec-
tions is showcased in Figure 5.1 (on page 31) below.

The process for linking Tableau with PostgreSQL was similar to that with linking PostGIS with
PostgreSQL. After providing the relevant database login information, Tableau Desktop showed the
appropriate tables and links on the screen reproduced in Figure 5.2 (on page 31) below.

Our PostgreSQL database is now successfully linked to Tableau Desktop.

Page 30 of 46

https://shiny.rstudio.com/
https://shiny.rstudio.com/
https://public.tableau.com/en-us/s/
https://public.tableau.com/en-us/s/
https://www.tableau.com/academic/students
https://www.tableau.com/academic/teaching
https://www.tableau.com/academic/teaching

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

Figure 5.1: Initial DBMS linkage screen on Tableau Desktop.

Figure 5.2: Successful DBMS linkage screen on Tableau Desktop.

Page 31 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

5.2 Special considerations for Tableau Public

As mentioned previously, Tableau Public is the name of the free software tool created by the
Tableau developers with restricted functionality from Tableau Desktop. However, Tableau Public
is also somehow tied to free web hosting of Tableau dashboards.

As such, exporting the interactive data dashboard from Tableau Desktop onto Tableau Pub-
lic (for web hosting) runs into previously-described issues regarding data source linkage. How-
ever, Tableau Desktop provides functionality to save a data extract to allow for compatibility with
Tableau Public. More information on generating Tableau data extracts can be found on the Tableau
website (https://help.tableau.com/current/pro/desktop/en-us/extracting data.htm).

Page 32 of 46

https://help.tableau.com/current/pro/desktop/en-us/extracting_data.htm

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

6 Interactive data dashboard

We now shift our focus from the design phase to sharing the results of our efforts. A persistent
link to the web-hosted interactive data dashboard on Tableau Public is as follows: https://public.
tableau.com/views/oeps-chr-combined-data-dashboard/OEPSCHRcombineddatadashboard?:language=
en-US&:display count=n&:origin=viz share link. Screenshots of the longitudinal and spatial com-
ponents of our data dashboard can be seen below in Figures 6.1 (on page 33) and 6.2 (on page
34), respectively. We turn now to provide explanation of each component of the interactive data
dashboard separately.

6.1 Longitudinal CHR trends data visualization

Figure 6.1: Longitudinal component of interactive data dashboard.

As seen in Figure 6.1 above, our longitudinal data are visualized in 2 columns. On the left side we
have longitudinal trajectories for 3 percentage measures (percentage children in poverty, percentage
smokers, and percentage uninsured) visualized throughout the CHR data collection period (from
2010 to 2021). On the right side we have the longitudinal trajectory for a non-percentage measure
(in this case, teen birth rate) also visualized throughout the CHR data collection period. On both
trajectory visualizations we see solid lines representing the actual data trajectories and dashed lines
representing simple autogenerated lines of best fit. Near the top of the right side we see a dropdown
box (along with a linked slider) that allows a user to select a state to visualize.

Although not yet implemented, we would like to implement an additional dropdown box to select

Page 33 of 46

https://public.tableau.com/views/oeps-chr-combined-data-dashboard/OEPSCHRcombineddatadashboard?:language=en-US&:display_count=n&:origin=viz_share_link
https://public.tableau.com/views/oeps-chr-combined-data-dashboard/OEPSCHRcombineddatadashboard?:language=en-US&:display_count=n&:origin=viz_share_link
https://public.tableau.com/views/oeps-chr-combined-data-dashboard/OEPSCHRcombineddatadashboard?:language=en-US&:display_count=n&:origin=viz_share_link

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

between all-County (and County equivalents) average trajectories for a given State or County-level
trajectories for a given County or County equivalent. We would also like to implement an additional
dropdown box to allow for the right column measure to be selected from a list of potential measures.

This visualization provides an at-a-glance view of how different longitudinal measures have
changed throughout the past decade. This would hopefully serve as a quick way for policymakers
or researchers to understand the longitudinal trends in various social determinants of health in a
given geospatial entity to have a more nuanced understanding of environmental factors faced by a
given population than is possible with a static cross-sectional snapshot.

6.2 Cross-Sectional OEPS spatial data visualization

Figure 6.2: Spatial component of interactive data dashboard.

As seen in Figure 6.2 above, our cross-sectional spatial data are also visualized in 2 columns.
In the left column we see a spatial visualization of the County (and County equivalent) percentage
composition by race. In the right column we see a spatial visualization of the minimum distance
between opioid clinics. Both columns feature dropdown boxes that allow for selection of either dif-
ferent race categories for percent composition (left column) or minimum distance between different
types of opioid treatment clinics (right column). Both columns also have a dropdown at the top to
select the State viewed, but the intention is for both maps to show the same State.

Although not yet implemented, we would like to implement a single dropdown box that controls
the State selected for both columns. We would additionally like to implement novel composite

Page 34 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

measures (such as a composite risk score created from several socioeconomic variables on the left
and a composite access score created from several minimum distance variables on the right) and have
those serve as the default views of this visualization as they would offer the most information to the
user at once. We would ideally like to also implement the longitudinal dashboard as a “hover-over”
window to pop up when the user’s mouse is on a specific County or County equivalent.

This visualization provides an at-a-glance view of potential spatial correlation as well as “hotspot”
sighting that can allow policymakers a quick look into which Counties (or County equivalents) in a
given State are facing harsher socioeconomic or access scenarios than others. The additional context
provided by a spatial dashboard may serve a policymaker in understanding more than they would
otherwise by considering these factors outside of a spatial context.

Page 35 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

7 Acknowledgments

This material is based upon work supported by the National Science Foundation grant IIS:
1945764 (EAGER: An Open Data Sharing Platform for Substance Use Disorders), and was also
supported in part by the NSF grant DGE: 1922598 (NRT-HDR: Transdisciplinary Graduate Train-
ing Program in Data-Driven Adaptive Systems of Brain-Body Interactions). Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

Page 36 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

8 References

DeWeerdt, S. (2019). Tracing the us opioid crisis to its roots. Nature (London), 573 (7773), S10–S12.
https://doi.org/10.1038/d41586-019-02686-2

Haley, D. F., & Saitz, R. (2020). The Opioid Epidemic During the COVID-19 Pandemic. JAMA,
324 (16), 1615–1617. https://doi.org/10.1001/jama.2020.18543

Jones, M. R., Viswanath, O., Peck, J., Kaye, A. D., Gill, J. S., & Simopoulos, T. T. (2018). A brief
history of the opioid epidemic and strategies for pain medicine. Pain and Therapy, 7 (1),
13–21. https://doi.org/10.1007/s40122-018-0097-6

Kolak, Lin, Paykin, Menghaney, & Li. (2021). Geodacenter/opioid-policy-scan: Opioid environment
policy scan data warehouse (comp. software; Version v0.1-beta). Zenodo. https://doi.org/
10.5281/zenodo.4747876

Kolak, M.A., Chen, Y.T., Joyce, S., Ellis, K., Defever, K., McLuckie, C., Friedman, S., & Pho,
M.T. (2020). Rural risk environments, opioid-related overdose, and infectious diseases: A
multidimensional, spatial perspective. International Journal of Drug Policy, 85. https://doi.
org/10.1016/j.drugpo.2020.102727

National Institute on Drug Abuse. (2021, March 11). Opioid overdose crisis. Retrieved November
16, 2021, from https://www.drugabuse.gov/drug-topics/opioids/opioid-overdose-crisis

NIH HEAL Initiative. (2021, November 2). Justice community opioid innovation network. Retrieved
December 7, 2021, from https://heal.nih.gov/research/research-to-practice/jcoin

Open Geospatial Consortium. (2021, September 4). Postgis (comp. software; Version 3.1.4). https:
//postgis.net/

Provine, D. M. (2011). Race and inequality in the war on drugs. Annual review of law and social
science, 7 (1), 41–60. https://doi.org/10.1146/annurev-lawsocsci-102510-105445

Python (comp. software; Version 3.9.9). (2021, November 15). https://www.python.org/

R Core Team. (2021, November 1). R: A language and environment for statistical computing (comp.
software; Version 4.1.2). Vienna, Austria. https://www.R-project.org/

Remington, P. L., Catlin, B. B., & Gennuso, K. P. (2015). The county health rankings: Rationale
and methods. Population Health Metrics, 13 (1). https://doi.org/10.1186/s12963-015-0044-2

Rhodes, T. (2002). The ‘risk environment’: A framework for understanding and reducing drug-
related harm. International Journal of Drug Policy, 13 (2), 85–94. https://doi.org/https:
//doi.org/10.1016/S0955-3959(02)00007-5

RStudio Team. (2021). Rstudio: Integrated development environment for r (Version 2021.9.1.372).
Boston, MA. http://www.rstudio.com/

Tableau Software, LLC. (2021). Tableau desktop professional edition (comp. software; Version 2021.3.3).
https://www.tableau.com

Page 37 of 46

https://doi.org/10.1038/d41586-019-02686-2
https://doi.org/10.1001/jama.2020.18543
https://doi.org/10.1007/s40122-018-0097-6
https://doi.org/10.5281/zenodo.4747876
https://doi.org/10.5281/zenodo.4747876
https://doi.org/10.1016/j.drugpo.2020.102727
https://doi.org/10.1016/j.drugpo.2020.102727
https://www.drugabuse.gov/drug-topics/opioids/opioid-overdose-crisis
https://heal.nih.gov/research/research-to-practice/jcoin
https://postgis.net/
https://postgis.net/
https://doi.org/10.1146/annurev-lawsocsci-102510-105445
https://www.python.org/
https://www.R-project.org/
https://doi.org/10.1186/s12963-015-0044-2
https://doi.org/https://doi.org/10.1016/S0955-3959(02)00007-5
https://doi.org/https://doi.org/10.1016/S0955-3959(02)00007-5
http://www.rstudio.com/
https://www.tableau.com

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

The PostgreSQL Global Development Group. (2021, August 12). Postgresql (comp. software; Ver-
sion 13.4). https://www.postgresql.org/

University of Wisconsin Population Health Institute, & Robert Wood Johnson Foundation. (n.d.).
County health rankings. Retrieved November 16, 2021, from https://www.countyhealthrankings.
org

U.S. Department of Health and Human Services. (2021, October 27). About the epidemic. Retrieved
November 16, 2021, from https://www.hhs.gov/opioids/about-the-epidemic/index.html

Page 38 of 46

https://www.postgresql.org/
https://www.countyhealthrankings.org
https://www.countyhealthrankings.org
https://www.hhs.gov/opioids/about-the-epidemic/index.html

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

A Appendix of relevant code

This section serves to provide complete code used in this project. Earlier text may reference this
section to retain focus on the outcomes of the work rather than on the code.

A.1 Data preprocessing scripts in R

Preprocessing scripts were created using R version 4.1.2 (R Core Team, 2021) in RStudio version
2021.9.1.372. (RStudio Team, 2021)

A.1.1 preprocessing oeps.R

1 # preprocessing_oeps.R

2 # Faysal Shaikh

3 # fshaikh4@gmu.edu

4 # Nov. 16, 2021

5 #

6 # This program serves to preprocess OEPS data files.

7 # For access to OEPS data see

8 #

9 library(git2r)

10 library(readr)

11 library(dplyr)

12 library(stringr)

13

14 # # establish top of git repository for file path purposes

15 # repo <- repository (’.’) # if placed in same repo as listed above

16 # cwd <- workdir(repo)

17

18 # # specify file paths relative to top of git repository

19 # OEPS_data_path <- file.path(cwd , ’data_final ’)

20 # all_files <- list.files(OEPS_data_path)

21

22 # TEMPORARY: set cwd as file path of specifically -downloaded OEPS data for

project

23 cwd <- file.path(’./OEPS -downloaded -data/OEPS_DOWNLOAD_2021 -11 -16/data/’) # 23

files , less than 92 from above

24 data_fnames <- list.files(cwd)

25

26 # initialize empty lists for file names and variable names to add to later

27 OEPS_fnames_list <- list()

28 OEPS_df_list <- list()

29

30 # first pass: loop through all data files and create R objects

31 for (fname in data_fnames) {

32 # use fname to name data frame

33 name_stem <- str_split(fname , ’_’)[[1]][1] # pull text before underscore

34

35 OEPS_fnames_list[as.character(name_stem)] = file.path(cwd , fname) # add fnames

to empty OEPS_fnames_list created above

36 OEPS_df_list

37

38 assign(paste0(’OEPS_data_’, name_stem), # add data frames to appropriately -

named R objects

Page 39 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

39 read_csv(file.path(cwd , fname),

40 col_types = cols(COUNTYFP = col_integer (), STATEFP = col_

integer ())

41) %>% rename_with(toupper , ends_with(’ear’)) # handle issue with Year vs

year vs YEAR

42)

43

44 OEPS_df_list[name_stem] = paste0(’OEPS_data_’, name_stem) # tie R object names

to name_stems in empty OEPS_df_list created above

45 }

46

47 # second pass: loop through all R objects and execute sequential (in order)

cumulative pairwise merges

48 OEPS_data_combined <- get(OEPS_df_list [[1]]) # start with first

49 # for (df_name in OEPS_df_list [2: length(OEPS_df_list)]) {

50 for (df_name in OEPS_df_list [2: length(OEPS_df_list)]) {

51 OEPS_data_combined <- OEPS_data_combined %>% merge(get(df_name))

52 }

53

54 # drop columns we don ’t want

55 OEPS_data_combined <- OEPS_data_combined %>%

56 subset(select = -c(YEAR , STATEFP , state , name , note , county))

57

58 # save preprocessed data as CSV file

59 OEPS_data_combined %>% write.csv(file.path(cwd , ’OEPS_data_combined.csv’), row.

names = FALSE)

A.1.2 preprocessing chr.R

1 # preprocessing_chr.R

2 # Faysal Shaikh

3 # fshaikh4@gmu.edu

4 # Nov. 15, 2021

5 #

6 # This program serves to preprocess CHR data files.

7 # For more information see https://github.com/fshaikh4/CHR -data -repo

8 #

9 library(git2r)

10 library(readxl)

11 library(dplyr)

12

13 # establish top of git repository for file path purposes

14 repo <- repository(’.’)

15 cwd <- workdir(repo)

16

17 # specify file paths relative to top of git repository

18 CHR_national_data_path <- file.path(cwd , ’data_raw’, ’national -data -excel -files’

)

19 all_national_files <- list.files(CHR_national_data_path)

20

21 # initialize empty lists for file names and variable names to add to later

22 CHR_fnames_list <- list()

23 CHR_varnames_list <- list()

24

Page 40 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

25 # first pass: loop through all national data files and create R objects

26 for (national_file in all_national_files) {

27 # pull year and save filenames for each year into empty CHR_fnames_list

created above

28 year <- substr(national_file , 1, 4) # slice year from filename

29 CHR_fnames_list[year] = file.path(CHR_national_data_path , national_file) # add

fnames to fname list

30

31 # create separate data frames for each excel file

32 assign(paste0(’CHR_data_’, year), # assign each data frame to ’CHR_data_year ’

variable

33 read_excel(

34 file.path(CHR_national_data_path , national_file),

35 sheet = ’Ranked Measure Data’,

36 skip = 1

37) %>% select(-matches(c(’...[0 -9]’, ’Unreliable ’))) # ignore numbered

(duplicate) or "unreliable" variables

38)

39

40 # add each variable name to empty CHR_df_list created above

41 CHR_varnames_list[year] = paste0(’CHR_data_’, year)

42 }

43

44 # second pass: loop through created R objects and discover columns common

between all years

45 keep_cols <- CHR_varnames_list [[1]] %>% get() %>% names() # start with first set

of variables

46 for (varname in CHR_varnames_list){

47 # each pass , successively remove columns until only those found in all years

are left

48 keep_cols <- keep_cols %>% intersect(varname %>% get() %>% names())

49 }

50

51 # third pass: loop through objects and only keep the common columns

52 for (varname in CHR_varnames_list){

53 assign(varname , varname %>% get() %>% select(keep_cols) %>%

54 # also add year suffix to changing variables (not FIPS , state , county)

55 rename_with(~paste(., varname %>% substr (10 ,14)), -c(FIPS , State , County)) #

add year to end

56)

57 }

58

59 # final pass: merge all data by FIPS , State , County

60 CHR_data_combined <- CHR_varnames_list [[1]] %>% get() # start with first set as

combined

61 for (varname in CHR_varnames_list [2: length(CHR_varnames_list)]) { # since above

uses 1st variable , loop range starts from 2nd variable and beyond

62 CHR_data_combined <- CHR_data_combined %>% merge(varname %>% get())

63 }

64

65 CHR_varnames_list[’combined ’] = ’CHR_data_combined ’ # add to list after loop

66

67 # save preprocessed data as CSV file

Page 41 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

68 CHR_data_combined %>% write.csv(file.path(cwd , ’data_processed ’, ’CHR_data_

combined.csv’), row.names=FALSE)

A.2 Data loading scripts in Python

Data loader scripts were created using Python version 3.9.9 (“Python”, 2021).

A.2.1 oeps sql loader.py

1 # oeps_sql_loader.py

2 # Faysal Shaikh

3 # fshaikh4@gmu.edu

4 # Nov. 17, 2021

5 #

6 # This program creates an SQL loading script for OEPS_data_combined.csv

7 #

8

9 from pathlib import Path

10 import pandas as pd

11

12 # current file location: D:/ Codebase/CSI -695- project

13 # target data file (OEPS_combined_data.csv) is located in:

14 # D:\ Codebase\CSI -695- project\OEPS -downloaded -data\OEPS_DOWNLOAD_2021 -11 -16\ data

15 source_path = Path(’.’).resolve ()

16 data_path = source_path / ’OEPS -downloaded -data’ / ’OEPS_DOWNLOAD_2021 -11-16’ /

’data’

17 fp = data_path / ’OEPS_data_combined.csv’

18

19

20

21 ### read data into pandas data frame

22 oeps_df = pd.read_csv(fp)

23

24

25

26 ### create empty list to hold all SQL queries

27 sql_list = []

28

29

30

31 ### populate relevant tables: measure , metadata , study , county , state

32 ## INSERT INTO measure VALUES (FIPS_ID , year_collected , measure_ID , measure_name

, value)

33 # keep list of measures

34 measures = oeps_df.columns [1:] # do not include "FIPS_ID" as a measure

35 measures_dict = {measure_ID:measure_name for measure_ID ,measure_name in

enumerate(measures)} # generate incremental IDs for non -FIPS measures

36 next_measure_ID = max(measures_dict.keys()) + 1 # needed to pickup measure_IDs

later

37

38 measure_DML_list = [] # empty list for this set of DML queries

39

40 # define static variables

41 measure_prefix = ’INSERT INTO measure VALUES (’

Page 42 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

42 year_collected = ’NULL’ # for cross -sectional OEPS data

43

44 for row_index in range(oeps_df.shape [0]): # every row gets inserted

45 for meas_ID in measures_dict.keys(): # every column (except FIPS) should be

inserted before moving to the next row

46 FIPS_ID = int(oeps_df.loc[row_index][’COUNTYFP ’])

47 measure_ID = int(meas_ID)

48 measure_name = measures_dict[meas_ID]

49 value = oeps_df.loc[row_index][measure_name]

50 measure_DML_string = measure_prefix+str(FIPS_ID)+’, ’+year_collected+’,

’+ \

51 str(measure_ID)+’, \’’+measure_name+’\’, ’+str(value)+’)

;’

52 measure_DML_list.append(measure_DML_string)

53

54

55 ## INSERT INTO metadata VALUES (measure_ID , measure_descrip , study_ID)

56 metadata_DML_list = [] # empty list for this set of DML queries

57

58 # define static variables

59 metadata_prefix = ’INSERT INTO metadata VALUES (’

60 metadata_suffix = ’, 0);’ # study_ID hardcoded for OEPS as 0

61 for meas_ID in measures_dict.keys():

62 measure_ID = meas_ID

63 measure_descrip = ’\’This is measure: ’+measures_dict[measure_ID]+’.

Description is pending.\’’

64 metadata_DML_string = metadata_prefix+str(measure_ID)+’, ’+measure_descrip+

\

65 metadata_suffix

66 metadata_DML_list.append(metadata_DML_string)

67

68

69 ## INSERT INTO study VALUES (study_ID , study_name)

70 study_DML_string = ’INSERT INTO study VALUES (0, \’Opioid Environmental Policy

Scan (OEPS)\’);’ # study_ID hardcoded for OEPS as 0

71

72

73 ### write queries to SQL script file

74 # order statements to avoid issues with foreign -key

75 sql_list.extend ([study_DML_string]) # add study_DML_string to sql_list

76 sql_list.extend(metadata_DML_list) # add study_DML_string to sql_list

77 sql_list.extend(measure_DML_list) # add measure_DML_list to sql_list

78

79 # write to file

80 with open(source_path / ’oeps_loader.sql’, ’w’) as f:

81 for DML_query in sql_list:

82 f.write(DML_query+’\n’)

A.2.2 chr sql loader.py

1 # chr_sql_loader.py

2 # Faysal Shaikh

3 # fshaikh4@gmu.edu

4 # Nov. 17, 2021

Page 43 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

5 #

6 # This program creates an SQL loading script for CHR_data_combined.csv

7 #

8

9 from pathlib import Path

10 import pandas as pd

11

12 # current file location: D:/ Codebase/CSI -695- project

13 # target data file (CHR_combined_data.csv) is located in:

14 # D:\ Codebase\CSI -695- project\CHR -data\data_processed

15 source_path = Path(’.’).resolve ()

16 data_path = source_path / ’CHR -data’ / ’data_processed ’

17 fp = data_path / ’CHR_data_combined.csv’

18

19

20

21 ### read data into pandas data frame

22 chr_df = pd.read_csv(fp)

23

24

25

26 ### create empty list to hold all SQL queries

27 sql_list = []

28

29

30

31 ### populate relevant tables: measure , metadata , study , county , state

32 ## INSERT INTO measure VALUES (FIPS_ID , year_collected , measure_ID , measure_name

, value)

33 # keep list of measures

34 measures = chr_df.columns [3:] # do not include "FIPS_ID", "state_name", "

county_name" as relevant measures

35 measures = pd.Index ([measure_name.replace(’%’, ’Percentage ’) for measure_name in

measures]) # replace ’%’ symbol with ’Percentage ’ word

36

37 chr_df.columns = list(chr_df.columns [:3]) + list(measures) # replace columns

according to above name changes

38

39 unique_measures = pd.Index(pd.unique ([x[:-5] for x in measures])) # take unique

measures after removing year (last 5 string characters)

40

41 previous_next_measure_ID = 69 # hardcoded (from OEPS data loading)

42 measures_dict = {measure_name : measure_ID+previous_next_measure_ID for

measure_ID ,measure_name in enumerate(unique_measures)} # generate incremental

IDs for non -FIPS measures [NOTE: THIS IS BACKWARDS FROM OEPS VERSION]

43 next_measure_ID = max(measures_dict.values ()) + 1 # needed to pickup measure_IDs

later

44

45 measure_DML_list = [] # empty list for this set of DML queries

46

47 # define static variables

48 measure_prefix = ’INSERT INTO measure VALUES (’

49

50 for row_index in range(chr_df.shape [0]): # every row gets inserted

Page 44 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

51 for measure in measures: # every column (except first 3 non -measure cols)

should be inserted before moving to the next row

52 FIPS_ID = int(chr_df.loc[row_index][’FIPS’])

53 year_collected = int(measure [-4:]) # extracted from measure name for

longitudinal data

54 measure_name = measure [:-5]

55 measure_ID = int(measures_dict[measure_name])

56 value = chr_df.loc[row_index][measure]

57 measure_DML_string = measure_prefix+str(FIPS_ID)+’, ’+str(year_collected

)+’, ’+ \

58 str(measure_ID)+’, \’’+measure_name+’\’, ’+str(

value)+’);’

59 measure_DML_list.append(measure_DML_string)

60

61

62 ## INSERT INTO metadata VALUES (measure_ID , measure_descrip , study_ID)

63 metadata_DML_list = [] # empty list for this set of DML queries

64

65 # define static variables

66 metadata_prefix = ’INSERT INTO metadata VALUES (’

67 metadata_suffix = ’, 1);’ # study_ID hardcoded for CHR as 0

68 for measure_name in unique_measures:

69 measure_ID = measures_dict[measure_name]

70 measure_descrip = ’\’This is measure: ’+measure_name+’. Description is

pending.\’’

71 metadata_DML_string = metadata_prefix+str(measure_ID)+’, ’+measure_descrip+

\

72 metadata_suffix

73 metadata_DML_list.append(metadata_DML_string)

74

75

76 ## INSERT INTO study VALUES (study_ID , study_name)

77 study_DML_string = ’INSERT INTO study VALUES (1, \’County Health Rankings &

Roadmaps (CHR)\’);’ # study_ID hardcoded for OEPS as 0

78

79

80 ## prepare for county and state DML queries

81 geo_df = chr_df [[’FIPS’,’County ’,’State’]]

82 # pull state and county IDs from full FIPS code

83 geo_df[’state_ID ’] = pd.Index([int(str(x)[:-3]) for x in geo_df[’FIPS’]])

84 geo_df[’county_ID ’] = pd.Index([int(str(x)[-3:]) for x in geo_df[’FIPS’]])

85

86

87 ## INSERT INTO county VALUES (FIPS_ID , county_ID , county_name , state_ID)

88 county_df = geo_df [[’FIPS’, ’county_ID ’, ’County ’, ’state_ID ’]]

89

90 county_DML_list = []

91 county_prefix = ’INSERT INTO county VALUES (’

92

93 for row_index in range(county_df.shape [0]): # for all rows

94 FIPS_ID = county_df.loc[row_index][’FIPS’]

95 county_ID = county_df.loc[row_index][’county_ID ’]

96 county_name = county_df.loc[row_index][’County ’]

97 state_ID = county_df.loc[row_index][’state_ID ’]

Page 45 of 46

Faysal Shaikh Final: Interactive spatial & longitudinal dashboard CSI 695 - Fall 2021

98 county_DML_string = county_prefix+str(FIPS_ID)+’, ’+str(county_ID)+’, ’+ \

99 ’\’’+county_name+’\’, ’+str(state_ID)+’);’

100 county_DML_list.append(county_DML_string)

101

102 ## INSERT INTO state VALUES (state_ID , state_name)

103 state_df = geo_df [[’state_ID ’, ’State ’]]. drop_duplicates () # remove extra rows

104

105 state_DML_list = []

106 state_prefix = ’INSERT INTO state VALUES (’

107

108 for row_index in range(state_df.shape [0]): # for all rows

109 state_ID = state_df.iloc[row_index][’state_ID ’]

110 state_name = state_df.iloc[row_index][’State ’]

111 state_DML_string = state_prefix+str(state_ID)+’, \’’+state_name+’\’);’

112 state_DML_list.append(state_DML_string)

113

114

115 ### write queries to SQL script file

116 # order statements to avoid foreign -key issues

117 sql_list.extend(state_DML_list)

118 sql_list.extend(county_DML_list)

119 sql_list.extend ([study_DML_string])

120 sql_list.extend(metadata_DML_list)

121 sql_list.extend(measure_DML_list)

122

123 # write to file

124 with open(source_path / ’chr_loader.sql’, ’w’) as f:

125 for DML_query in sql_list:

126 f.write(DML_query+’\n’)

Page 46 of 46

	List of figures
	Background and data sources
	The United States ``opioid epidemic''
	Origins: The undertreatment of pain and rise of opioid drugs
	Today: The opioid overdose crisis

	Sources of data relevant to the opioid epidemic
	The Opioid Environmental Policy Scan (OEPS) dataset
	The County Health Rankings & Roadmaps (CHR) dataset

	Database design and creation
	Special considerations for spatial OEPS data
	Special considerations for longitudinal CHR data
	Choice of database management system (DBMS)
	Conceptual database design
	Development of entity-relationship (ER) models
	Reduction of ER models to relational schema

	Database creation via PostgreSQL
	Setup and preliminary steps
	Data definition language (DDL)

	Database manipulation
	Data preprocessing via R
	Data manipulation language (DML)
	Data loading via Python
	Importing geographical data via PostGIS

	Final combined database
	Simple queries
	More complex queries

	Linking database with interactive data dashboard
	Choice of interactive data dashboard software
	Free educational licenses for Tableau Desktop
	Data linkage interface

	Special considerations for Tableau Public

	Interactive data dashboard
	Longitudinal CHR trends data visualization
	Cross-Sectional OEPS spatial data visualization

	Acknowledgments
	References
	Appendix of relevant code
	Data preprocessing scripts in R
	preprocessing_oeps.R
	preprocessing_chr.R

	Data loading scripts in Python
	oeps_sql_loader.py
	chr_sql_loader.py

