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1. Background & data sources



Timeline and impact of the U.S. opioid epidemic

TIMELINE OF THE U.S. OPIOID EPIDEMIC1

late 
1990s

Pharmaceutical companies assure that patients 
will not become addicted to opioids and rates 
of opioid prescriptions begin to increase

2016
U.S. opioid overdoses account for over 42,000 
deaths, more than any previous year on record

2017
HHS declares the U.S. opioid epidemic a 
“public health emergency” and announces 
“5-Point Strategy To Combat the Opioid Crisis”

2019
“Opioid-involved overdoses” account for nearly 
50,000 deaths, a new all-time high since 2016

IMPACT OF THE U.S. OPIOID EPIDEMIC2

1. Opioid overdose crisis. (2021, March 11). National Institute on Drug Abuse. Retrieved November 16, 2021.
2. U.S. Department of Health and Human Services. (2021, October 27). About the epidemic. HHS.Gov/Opioids. Retrieved November 16, 2021.



Data source: CDC WONDER (overdose deaths)

Drug overdose deaths were classified using the International Classification of Disease, Tenth Revision (ICD-10), based on the ICD-10 
underlying cause-of-death codes X40–44 (unintentional), X60–64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent), and 
based on the following ICD-10 multiple cause-of-death codes: T40.0, T40.1, T40.2, T40.3, T40.4, or T40.6.3

3. Kaiser Family Foundation. (2022, May 9). Opioid overdose death rates and all drug overdose death rates per 100,000 population (age-adjusted). KFF.org. Retrieved May 13, 2022,
    from https://www.kff.org/other/state-indicator/opioid-overdose-death-rates/ 



Data source: Bureau of Labor Statistics (BLS)

https://www.bls.gov/web/laus.supp.toc.htm

https://www.bls.gov/web/laus.supp.toc.htm


2. Exploratory data analysis



Forecast variable: State (VA) opioid overdose deaths

Timeplot (2000s through 2020)

We notice a spike in overdose deaths 
when the pandemic began, as 
indicative of a crisis event.

We hope to generate data-driven 
forecasts of this spike.



Forecast variable: State (VA) opioid overdose deaths



Forecast variable: State (VA) opioid overdose deaths



Predictor variable: State (VA) unemployment

Timeplot (1980s through 2020)

Similar to opioid overdose deaths, 
we also saw an unemployment spike 
at the beginning of the pandemic.

We hope these data may be useful in 
forecasting opioid overdose deaths.



Predictor variable: State (VA) unemployment



Predictor variable: State (VA) unemployment



Covariate: State (VA) noninstitutionalized population

Timeplot (1980s through 2020)

Unlike previously-examined data, 
state noninstitutionalized population 
does not seem to spike.

However, these data help us control 
for population changes throughout 
time in our other datasets.



Covariate: State (VA) noninstitutionalized population



Covariate: State (VA) noninstitutionalized population



Issues to consider in our approach

After data exploration, we notice issues 
that may impact our modeling process:

● Seasonality (monthly data)

● Nonstationarity of forecast variable 
(opioid overdose deaths)

● Nonstationarity of predictor variables 
(unemployment, population)

We plan to utilize the following tools 
in our modeling process:

● Dynamic regression w/ ARIMA errors 
(for forecast variable nonstationarity)

● Box Cox transformation 
(applied to forecast variable)

● Seasonal differencing
(applied to predictor variables)



3. Feature engineering



Augmented Dickey-Fuller test (stationarity)

H₀: data are non-stationary (unit root)
Hₐ: data are stationary

Implemented in R via function 
tseries::adf.test()



Box-Cox transformation of forecast variable

> tseries::adf.test(

+ VA_df$Deaths)$p.value

[1] 0.9797752

> tseries::adf.test(

+ VA_df$Deaths.tf)$p.value

[1] 0.6287199



Seasonal- and double- differencing of predictors

ADF test p = 0.3885087

ADF test p = 0.4248142

ADF test p < 0.01

ADF test p = 0.99

ADF test p = 0.0486832

ADF test p < 0.01



Seasonal- and double- differencing of predictors

ADF test p = 0.3885087

ADF test p = 0.4248142

ADF test p < 0.01

ADF test p = 0.99

ADF test p = 0.0486832

ADF test p < 0.01



3. Model specification & selection



We regress our forecast variable 
(opioid overdose deaths) on at most 
2 predictors (unemployed and 
noninstitutionalized population).

We specify our error term to follow an 
AutoRegressive Integrated Moving 
Average (ARIMA) model with 
separate non-seasonal,  (p,d,q), and 
seasonal, (P,D,Q)m, components.

Model specification: regression w/ ARIMA errors



In our approach thus far, our ARIMA model 
will interpret seasonality in its PDQ[m] term.

We can alternatively force this term to 0 and 
instead opt for Fourier series terms to 
capture seasonality information.

Our candidate dynamic regression models will 
include either PDQ[m] seasonality or the 
above (a.k.a. dynamic harmonic regression).

Alternative seasonality approach: Fourier terms



Modeling methodology

Our goal is to develop a dynamic regression model with ARIMA errors and at 
most 2 predictors that forecasts opioid overdose deaths from Jan. 2020 to 
Dec. 2020 (1 year) after being fit on all training data from Jan. 2000 to Dec. 2019.

To constructively evaluate candidate models for this purpose, we evaluate our 
model’s forecast performance for our desired forecast horizon (1 year).



Model evaluation metrics

corrected Akaike information criterion (AICc)

For our training set, the AICc
evaluates in-sample model fit.

AICc is a corrected form of AIC that allows 
for comparison of models with different 
numbers of terms.

Better-performing models have 
lower AICc values.

mean absolute percentage error (MAPE)

For our test set, MAPE evaluates 
out-of-sample prediction errors.

By selected MAPE, our error is in a ratio of 
the same unit as our outcome measure 
(Box-Cox-transformed opioid overdose deaths).

Better-performing models have 
lower MAPE values.



Ljung-Box test (residual diagnostics)

H₀: data are independently distributed
Hₐ: data exhibit serial correlation

Implemented in R for innovation residuals 
via the following commands:

fit %>% augment() %>% 
  features(.innov, ljung_box)



Candidate model specification

fit <- VA_train %>%
  # estimate models
  model(
     # naive models
     naive = NAIVE(Deaths.tf),
     seasonal_naive = SNAIVE(Deaths.tf),
     
     # simple ARIMA models
     arima = ARIMA(Deaths.tf),
     arima_fourier = ARIMA(Deaths.tf ~  PDQ(0,0,0) + fourier(K=6)),
     
     # regression w/ 1 predictor and ARIMA errors (pdq) and seasonal errors (PDQ)m
     ## predictor: unemp
     unemp_simple = ARIMA(Deaths.tf ~ unemp),
     unemp_single_diff = ARIMA(Deaths.tf ~ unemp_single_diff),
     unemp_double_diff = ARIMA(Deaths.tf ~ unemp_double_diff),
     ## predictor: noninst
     noninst_simple = ARIMA(Deaths.tf ~ noninst),
     noninst_single_diff = ARIMA(Deaths.tf ~ noninst_single_diff),
     noninst_double_diff = ARIMA(Deaths.tf ~ noninst_double_diff),



Candidate model specification (cont.)

fit <- VA_train %>%
  # estimate models
  model(

     ...   
  
     # regression w/ 1 predictor and ARIMA errors (pdq) and fourier terms for seasonal errors
     ## predictor: unemp
     unemp_simple_fourier = ARIMA(Deaths.tf ~ unemp + PDQ(0,0,0) + fourier(K=6)),
     unemp_single_diff_fourier = ARIMA(Deaths.tf ~ unemp_single_diff + PDQ(0,0,0) + 
fourier(K=6)),
     unemp_double_diff_fourier = ARIMA(Deaths.tf ~ unemp_double_diff + PDQ(0,0,0) + 
fourier(K=6)),
     ## predictor: noninst
     noninst_simple_fourier = ARIMA(Deaths.tf ~ noninst + PDQ(0,0,0) + fourier(K=6)),
     noninst_single_diff_fourier = ARIMA(Deaths.tf ~ noninst_single_diff + PDQ(0,0,0) + 
fourier(K=6)),
     noninst_double_diff_fourier = ARIMA(Deaths.tf ~ noninst_double_diff + PDQ(0,0,0) + 
fourier(K=6)),



Candidate model specification (cont.)

fit <- VA_train %>%
  # estimate models
  model(

     ...   
  
     # regression w/ 2 predictors and ARIMA errors (pdq) and seasonal errors (PDQ)m
     simple = ARIMA(Deaths.tf ~ unemp + noninst),
     single_diff = ARIMA(Deaths.tf ~ unemp_single_diff + noninst_single_diff),
     double_diff = ARIMA(Deaths.tf ~ unemp_double_diff + noninst_double_diff),
     
     # regression w/ 2 predictors and ARIMA errors (pdq) and fourier terms for seasonal errors
     simple_fourier = ARIMA(Deaths.tf ~ unemp + noninst + PDQ(0,0,0) + fourier(K=6)),
     single_diff_fourier = ARIMA(Deaths.tf ~ unemp_single_diff + noninst_single_diff + 
PDQ(0,0,0) + fourier(K=6)),
     double_diff_fourier = ARIMA(Deaths.tf ~ unemp_double_diff + noninst_double_diff + 
PDQ(0,0,0) + fourier(K=6))
)



4. Model performance



Model AICc MAPE

double_diff 259.9721 9.404980

noninst_single_diff 258.7978 8.585489

noninst_double_diff 259.4786 8.855187

unemp_single_diff 260.6812 9.414493

unemp_double_diff 257.9232 9.381837

Model evaluation: AICc and MAPE

We have shown our top 5 performing models 
based on AICc values alongside their 
corresponding MAPE values from test-set 
forecasting (Jan. 2020 to Dec. 2020).

Notably, our best-performing model based on 
AICc is not the same model as our 
best-performing model based on MAPE.

Let us examine forecasts in asc. MAPE order.



For comparison: naive forecast



For comparison: seasonal naive forecast



Model #1: noninst_single_diff (AICc=258.8, MAPE=8.585)



Model #2: noninst_double_diff (AICc=259.5, MAPE=8.855)



Model #3: unemp_double_diff (AICc=257.9, MAPE=9.382)



Model #4: double_diff (AICc=260.0, MAPE=9.405)



Model #5: unemp_single_diff (AICc=260.7, MAPE=9.414)



Residual diagnostics for models #3 and #4

Model #3: unemp_double_diff

Ljung-Box test p = 0.7804002

Model #4: double_diff

Ljung-Box test p = 0.7845399



5. Findings & future directions



Model AICc MAPE

double_diff 259.9721 9.404980

noninst_single_diff 258.7978 8.585489

noninst_double_diff 259.4786 8.855187

unemp_single_diff 260.6812 9.414493

unemp_double_diff 257.9232 9.381837

Model overview

In 2 of our top 5 models, we are 
able to forecast the spike in 
Box-Cox-transformed opioid 
overdose deaths in early 2020.

Determining which model(s) will 
perform best seems to be more 
difficult than simple model 
selection based on AICc and MAPE.



Additional findings

We successfully forecasted the spike in 
opioid overdose deaths at the start of 
the pandemic (early 2020) via dynamic 
regression using doubly-differenced 
predictors of unemployment and 
noninstitutionalized population.

Our dynamic regression models with 
specially-engineered predictors 
outperformed all other models we fit.

This even included dynamic harmonic 
regression models with Fourier terms 
to handle complex seasonality. We 
were surprised that Fourier terms 
did not outperform (PDQ)m 
seasonality handled by ARIMA.



Future directions

We would like to compare our work with well-regarded models such as 
Facebook’s prophet model or an artificial neural network.

Additionally, we can redesign our experiment to perform cross-validation 
to generate yearly forecasts based on year-before data (only). This would 
prove a challenging task, but potentially doable by well-regarded models. 
We hope to see how well our dynamic regression model would compare.


