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1. Background & data sources




Timeline and impact of the U.S. opioid epidemic

TIMELINE OF THE U.S. OPIOID EPIDEMIC'

late Pharmaceutical companies assure that patients

1990s will not become addicted to opioids and rates
of opioid prescriptions begin to increase

5016 U.S. opioid overdoses account for over 42,000 @
deaths, more than any previous year on record e
HHS declares the U.S. opioid epidemic a

2017  “public health emergency” and announces
“5-Point Strategy To Combat the Opioid Crisis”

2019 “Opioid-involved overdoses” account for nearly @
50,000 deaths, a new all-time high since 2016

1. Opioid overdose crisis. (2021, March 11). National Institute on Drug Abuse. Retrieved November 16, 2021.

70,630

people died from drug
overdose in 2019°

1.6 million

people had an opioid use
disorder in the past year®

745,000

people used heroin
in the past year

1.6 million

people misused prescription
pain relievers for the first time'

48,006

deaths attributed to overdosing
on synthetic opioids other

than methadone (in 12-month
period ending June 2020)
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IMPACT OF THE U.S. OPIOID EPIDEMIC?

10.1 million

people misused prescription
opioids in the past year'

2 million

people used methamphetamine
in the past year

50,000

people used heroin
for the first time*

14,480

deaths attributed to overdosing
on heroin (in 12-month period ending
June 2020)°

1. 2019 National Survey on Drug Use and Health, 2020,
2. NCHS Data Brief No. 394, December 2020.

3. NCHS, Nati

1 Vital Statistics System.

drug overdose death counts.

2. U.S. Department of Health and Human Services. (2021, October 27). About the epidemic. HHS.Gov/Opioids. Retrieved November 16, 2021.

@ HHS.GOV/OPIOIDS



Data source: CDC WONDER (overdose deaths)

CDC WOND ER FAQs Help Contact Us WONDER Search

Multiple Cause of Death, 1999-2020 Request
Deaths occurring through 2020

Group Results By State Notes:

v
And By Month v e Group Results By "15 Leading Causes" to see the top 15 rankable
And By None .| causes selected from the corresponding 113 or 130 Cause List.
More information.
And By None v
And By None v
Measures (Default measures always checked and included. Check box to include any others.)
Deaths Population Crude Rate
For crude rates: (J 95% Confidence Interval (J standard Error
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Drug overdose deaths were classified using the International Classification of Disease, Tenth Revision (ICD-10), based on the ICD-10
underlying cause-of-death codes X40-44 (unintentional), X60-64 (suicide), X85 (homicide), or Y10-Y14 (undetermined intent), and
based on the following ICD-10 multiple cause-of-death codes: T40.0, T40.1, T40.2, T40.3, T40.4, or T40.6.°

3. Kaiser Family Foundation. (2022, May 9). Opioid overdose death rates and all drug overdose death rates per 100,000 population (age-adjusted). KFF.org. Retrieved May 13, 2022,
from https://www.kff.org/other/state-indicator/opioid-overdose-death-rates/



Data source: Bureau of Labor Statistics (BLS)
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2. Exploratory data analysis




Forecast variable: State (VA) opioid overdose deaths

Timeplot (2000s through 2020)

200

We notice a spike in overdose deaths - (\,
when the pandemic began, as ' |
indicative of a crisis event.

We hope to generate data-driven
forecasts of this spike.
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Forecast variable: State (VA) opioid overdose deaths

Deaths

150 4

504

T
Jan

T
Feb

T
Mar

T
Apr

T
May

T
Jun

J:n
Date

Oct

Aug

Mar

Apr

May

Jun



Forecast variable: State (VA) opioid overdose deaths
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Predictor variable: State (VA) unemployment
Timeplot (1980s through 2020)
Similar to opioid overdose deaths,

we also saw an unemployment spike
at the beginning of the pandemic.

Unemployed

We hope these data may be useful in !
forecasting opioid overdose deaths.
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Predictor variable: State (VA) unemployment
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Predictor variable: State (VA) unemployment
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Covariate: State (VA) noninstitutionalized population

Timeplot (1980s through 2020)

Unlike previously-examined data,
state noninstitutionalized population
does not seem to spike.

However, these data help us control
for population changes throughout
time in our other datasets.
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Covariate: State (VA) noninstitutionalized population
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Covariate: State (VA) noninstitutionalized population
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Issues to consider in our approach

After data exploration, we notice issues
that may impact our modeling process:

e Seasonality (monthly data)

e Nonstationarity of forecast variable
(opioid overdose deaths)

e Nonstationarity of predictor variables
(unemployment, population)

We plan to utilize the following tools
in our modeling process:

e Dynamic regression w/ ARIMA errors
(for forecast variable nonstationarity)

e Box Cox transformation
(applied to forecast variable)

e Seasonal differencing
(applied to predictor variables)



3. Feature engineering




Augmented Dickey-Fuller test (stationarity)

H,: data are non-stationary (unit root)
Ha: data are stationary

Implemented in R via function
tseries:.adf.test()



Box-Cox transformation of forecast variable

2001
> tseries::adf.test( 1501 _
100 %
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Seasonal- and double- differencing of predictors
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Seasonal- and double- differencing of predictors
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3. Model specification & selection




Model specification: regression w/ ARIMA errors

We regress our forecast variable
(opioid overdose deaths) on at most
2 predictors (unemployed and
noninstitutionalized population).

We specify our error term to follow an
AutoRegressive Integrated Moving
Average (ARIMA) model with
separate non-seasonal, (p,d,q), and
seasonal, (P,D,Q)m, components.

Yy = ﬂle 4 BQXQ =85 where
E: Y ARIMA(]), d7 Q)(P’ D7 Q)m



Alternative seasonality approach: Fourier terms

In our approach thus far, our ARIMA model
will interpret seasonality in its PDQ[m] term.

. . Fourier series, sine-cosine form
We can alternatively force this term to 0 and

]\r
instead opt for Fourier series terms to sy(z) = ) + Z (an coS (ﬂnr) +b, Sin(ﬁnm))
- . 4 2 — P ! P
capture seasonality information. =1

Our candidate dynamic regression models will
include either PDQ[m] seasonality or the
above (a.k.a. dynamic harmonic regression).



Modeling methodology

Our goal is to develop a dynamic regression model with ARIMA errors and at
most 2 predictors that forecasts opioid overdose deaths from Jan. 2020 to
Dec. 2020 (1 year) after being fit on all training data from Jan. 2000 to Dec. 2019.

To constructively evaluate candidate models for this purpose, we evaluate our
model’s forecast performance for our desired forecast horizon (1 year).



Model evaluation metrics

corrected Akaike information criterion (AlCc)

For our training set, the AlCc
evaluates in-sample model fit.

AlCc is a corrected form of AIC that allows
for comparison of models with different
numbers of terms.

Better-performing models have
lower AICc values.

mean absolute percentage error (MAPE)

For our test set, MAPE evaluates
out-of-sample prediction errors.

By selected MAPE, our error is in a ratio of
the same unit as our outcome measure
(Box-Cox-transformed opioid overdose deaths).

Better-performing models have
lower MAPE values.



Ljung-Box test (residual diagnostics)

H,: data are independently distributed
Ha: data exhibit serial correlation

Implemented in R for innovation residuals
via the following commands:

fit $>% augment() %>%
features(.innov, ljung box)



Candidate model specification

fit <- VA train %>%
# estimate models
model (
# naive models
naive = NAIVE (Deaths. tf),
seasonal naive = SNAIVE (Deaths.tf),

# simple ARIMA models
arima = ARIMA (Deaths. tf),
arima fourier = ARIMA (Deaths.tf ~ PDQ(0,0,0) + fourier(K=6)),

# regression w/ 1 predictor and ARIMA errors (pdg) and seasonal errors (PDQ)m
## predictor: unemp

unemp_simple = ARIMA (Deaths.tf ~ unemp),

unemp_single diff = ARIMA (Deaths.tf ~ unemp single diff),

unemp _double diff = ARIMA (Deaths.tf ~ unemp double diff),

## predictor: noninst

noninst_simple = ARIMA (Deaths.tf ~ noninst),

noninst_single diff = ARIMA (Deaths.tf ~ noninst_single diff),

noninst _double diff = ARIMA (Deaths.tf ~ noninst double diff),



Candidate model specification (cont.)

fit <- VA train %>%
# estimate models
model (

# regression w/ 1 predictor and ARIMA errors (pdq) and fourier terms for seasonal errors

## predictor: unemp
unemp simple fourier = ARIMA (Deaths.tf ~ unemp + PDQ(0,0,0) + fourier (K=6)),

unemp single diff fourier = ARIMA (Deaths.tf ~ unemp single diff + PDQ(0,0,0) +

unemp _double diff fourier =

fourier (K=6)),
## predictor: noninst

noninst_simple fourier =
noninst_single diff fourier =

fourier (K=6)),
ARIMA (Deaths.tf ~ unemp double diff + PDQ(0,0,0) +

ARIMA (Deaths.tf ~ noninst + PDQ(0,0,0) + fourier (K=6)),
ARIMA (Deaths.tf ~ noninst single diff + PDQ(0,0,0) +

noninst_double diff fourier =

fourier (K=6)),

fourier (K=6)),
ARIMA (Deaths.tf ~ noninst double diff + PDQ(0,0,0) +



Candidate model specification (cont.)

fit <- VA train %>%
# estimate models
model (

# regression w/ 2 predictors and ARIMA errors (pdq) and seasonal errors (PDQ)m

simple = ARIMA (Deaths.tf ~ unemp + noninst),
single diff = ARIMA (Deaths.tf ~ unemp single diff +
double diff ARIMA (Deaths.tf ~ unemp double diff +

noninst single diff),
noninst_double diff),

# regression w/ 2 predictors and ARIMA errors (pdq) and fourier terms for seasonal errors

ARIMA (Deaths.tf ~ unemp + noninst + PDQ(0,0,0) + fourier(K=6)),
ARIMA (Deaths.tf ~ unemp single_diff + noninst single diff +

simple fourier =
single diff fourier =
PDQ(0,0,0) + fourier (K=6)),
double diff fourier =
PDQ(0,0,0) + fourier (K=6))

)

ARIMA (Deaths.tf ~ unemp double diff + noninst double diff +



4. Model performance




Model evaluation: AICc and MAPE

We have shown our top 5 performing models
based on AlICc values alongside their
corresponding MAPE values from test-set
forecasting (Jan. 2020 to Dec. 2020).

Notably, our best-performing model based on
AlICc is not the same model as our
best-performing model based on MAPE.

Let us examine forecasts in asc. MAPE order.

Model AlCc MAPE

double_diff 259.9721 9.404980
noninst_single _diff 258.7978 8.585489
noninst_double diff  259.4786 8.855187
unemp_single_diff 260.6812 9.414493
unemp_double_diff ~ 257.9232 9.381837
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Deaths tf

For comparison: seasonal naive forecast
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Deaths tf
A

Model #1: noninst_single_diff

noninst_single_diff
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Model #2: noninst _double diff (AICc=259.5, MAPE=8.855)
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Deaths tf

Model #3: unemp_double_diff
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Deaths tf

Model #4: double diff
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Model #5: unemp_single_diff
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Residual diagnostics for models #3 and #4

Model #3: unemp_double_diff
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5. Findings & future directions




Model overview

Model AlCc MAPE
In 2 of our top 5 models, we are double_diff 259.9721  9.404980
able to forecast the spike in
Box-Cox-transformed opioid noninst_single_diff ~ 258.7978  8.585489
overdose deaths in early 2020.

noninst_double diff 259.4786 8.855187
Determining which model(s) will
perform best seems to be more unemp_single diff  260.6812  9.414493
difficult than simple model
selection based on AICc and MAPE. unemp_double diff 257.9232  9.381837




Additional findings

Our dynamic regression models with
specially-engineered predictors

outperformed all other models we fit.

This even included dynamic harmonic
regression models with Fourier terms
to handle complex seasonality. We
were surprised that Fourier terms
did not outperform (PDQ)m
seasonality handled by ARIMA.

We successfully forecasted the spike in
opioid overdose deaths at the start of
the pandemic (early 2020) via dynamic
regression using doubly-differenced
predictors of unemployment and
noninstitutionalized population.



Future directions

We would like to compare our work with well-regarded models such as
Facebook’s prophet model or an artificial neural network.

Additionally, we can redesign our experiment to perform cross-validation
to generate yearly forecasts based on year-before data (only). This would
prove a challenging task, but potentially doable by well-regarded models.
We hope to see how well our dynamic regression model would compare.



