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1 Introduction

The purpose of this project is to create a prediction model for state opioid overdose deaths in
Virginia using at most 2 predictors: unemployed persons and noninstitutionalized population. As
such, we outline the opioid epidemic in the United States of America (U.S.), previous work relating
socioeconomic (esp. economic) variables and opioid overdose deaths, and our modeling approach.

1.1 The U.S. opioid epidemic

Fradulent claims minimizing the addictive potential of opioid drugs from U.S. pharmaceutical
companies in the 1990s have exhibited far-reaching consequences through the ensuing decades (U.S.
Department of Health and Human Services, 2021). In fact the early days and months of the
COVID-19 pandemic showcased a large spike in opioid overdose deaths (Haley & Saitz, 2020).

1.2 Using economic data for forecasting opioid overdose deaths

Many previous works have utilized socioeceonomic data (especially economic data) in producing
forecasts for opioid overdose deaths (Yang et al., 2021; Heyman et al., 2019; Aram et al., 2020;
Mensah et al., 2021; Brown and Wehby, 2019; Altekruse et al., 2020). We hope to both follow in
this path while also contributing to the scholarly conversation in this area by implementing our
desired approach following approaches learned from a time-series analysis & forecasting course.

1.3 Modeling approach: Dynamic [harmonic] regression

Our goal is to utilize time-series predictors (including covariates) to model a time-series out-
come (or commonly-referred to as a ”forecast variable” in time-series analysis) via a linear regression
with the specific structure of the error term following an AutoRegressive Integrated Moving Av-
erage (ARIMA) model. This general technique is referred to as dynamic regression (Hyndman &
Athanasopoulos, 2021i).

The general description of an ARIMA model typically includes a nonseasonal component with
p lag-order, d order of differencing, and q order of moving-average; for time-series data with season-
ality, model description can also include a distinct seasonal component (of seasonal period m) with
P lag-order, D order of differencing, and Q order of moving-average. This is typically notated as
follows:

ARIMA(p, d, q)(P,D,Q)m

Thus, a dynamic regression model with 2 predictors X1 and X2 with the structure of the error
term as an ARIMA model capturing compound seasonal and non-seasonal time-series information
would be notated as follows:

Y = β1X1 + β2X2 + ε, where ε ∼ ARIMA(p, d, q)(P,D,Q)m

The above structure (including at most 2 predictors) will serve as the basis for the majority of
models we examine in this work.

However, an alternative approach to handling various orders of seasonality is to utilize additional
Fourier series terms as regression predictors and then re-specify the structure of the error term as an
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ARIMA model handling exclusively non-seasonal time-series information; this approach is referred
to as dynamic harmonic regression (Hyndman & Athanasopoulos, 2021a). We include several
dynamic harmonic regression models in this work for comparison purposes with the aforementioned
(P,D,Q)m seasonal-ARIMA.

1.4 Big picture: Prediction model(s) with live “crisis event” tracking

By many criteria the COVID-19 pandemic can be considered a “crisis event,” disrupting many
factors (including socioeconomic factors) and thus resulting in (via some unspecified causal mech-
anism) a spike in opioid overdose deaths. Our hope is that by demonstrating the utility of using
targeted factors (especially socioeconomic factors) in the early phases of “crisis events” to adjust
forecasts of opioid overdose deaths, that larger subsets of factors could be used to build a model
capable of detecting more general “crisis events” and developing adjusted overdose forecasts ac-
cordingly (and thus intervene accordingly). We hope that if these techniques are useful that public
health departments could gain from implementing these techniques in their drug overdose surveil-
lance frameworks.

2 Data

Following our survey of previous literature, we identify sources for long-term opioid overdose
death data and long-term unemployment data (both collected on a monthly basis). We then outline
our data wrangling procedure, provide exploratory data visualizations, and execute necessary feature
engineering procedures.

2.1 Data sources

2.1.1 Centers for Disease Control and Prevention (CDC)

In searching for opioid overdose death data, we identified the Centers for Disease Control and
Prevention Wide-ranging ONline Data for Epidemiologic Research (CDC WONDER) source as
suitable for our purposes (Centers for Disease Control and Prevention, n.d.). In terms of specific
underlying cause-of-death and multiple cause-of-death coding via the International Classification
of Diseases 10th Revision (ICD-10), we followed a generally-accepted combination of criteria that
characterize opioid overdose deaths (Kaiser Family Foundation, n.d.).

2.1.2 U.S. Bureau of Labor Statistics (BLS)

In searching for unemployment data, we identified the U.S. Bureau of Labor Statistics (BLS)
source as suitable for our purposes (U.S. BUREAU OF LABOR STATISTICS, n.d.). We were
able to find a specific web page containing monthly state-level unemployment data via the search
engine tool and downloaded the text file labeled “States and selected areas: Employment status of
the civilian noninstitutional population, January 1976 to date, not seasonally adjusted (TXT).”

2.2 Data wrangling

Specific code segments are referenced in the Appendix to retain focus on the outcomes of this
work rather than on the code. All data wrangling procedures were carried out via the R language
for statistical computing version 4.1.3 (R Core Team, 2022) in the RStudio integrated develop-
ment environment version 2022.02.1+461 (RStudio Team, 2022). Required package imports can be
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found in Appendix A.1 (p. 39). Code reading-in and preprocessing CDC WONDER data can be
found in Appendix A.2.1 (p. 39) and Appendix A.3.1 (p. 40), respectively. Code reading-in and
preprocessing BLS data can be found in Appendix A.2.2 (p. 39) and Appendix A.3.2 (p. 41).

2.3 Exploratory data visualization

We begin our process by visualizing our relevant variables in their initial, unprocessed forms.

2.3.1 Forecast variable: Opioid overdose deaths

Our main outcome variable obtained from the CDC WONDER data is monthly state opioid
overdose deaths for Virginia ranging from a bit before January 2000 and through December 2020.
In Figure 2.1 (p. 6) below we visualize this data in a standard timeplot with a vertical blue dashed-
line at January 2000 representing a potential left-cutoff of data for training and a vertical red
dashed-line at January 2020 representing a potential right-cutoff for train-test splitting (more on
this later).

Figure 2.1: Timeplot of opioid overdose deaths

We can see an apparent spike in state opioid overdose deaths in the early months of the pandemic.
We hope that we can use an additional predictor(s) along with the ARIMA error term to predict
this particular spike. These are monthly data, so a suspected seasonality (period m=12 months) is
visible in our seasonal and polar seasonal plots in Figure 2.2 (p. 8) and Figure 2.3 (p. 8), respectively.
We additionally see an expected high degree of autocorrelation in the plot of the autocorrelation
function (ACF) in Figure 2.4 (p. 9). We round out our exploratory data visualization for each
variable with a subseries plot as shown in Figure 2.5 (p. 9) below; this subseries plot provides yet
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another view of the yearly seasonal pattern in our monthly data.
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Figure 2.2: Seasonal plot of opioid overdose deaths

Figure 2.3: Polar seasonal plot of opioid overdose deaths
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Figure 2.4: ACF plot of opioid overdose deaths

Figure 2.5: Subseries plot of opioid overdose deaths
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2.3.2 Predictor variable: Unemployed

Our predictor variable of interest obtained from BLS data is monthly state unemployed persons
counts for Virginia ranging from several decades before January 2000 and certainly through at least
December 2020. In Figure 2.6 (p. 10) below we visualize this data in a standard timeplot our
previously-described vertical dashed-lines.

Figure 2.6: Timeplot of unemployed persons

We can notice an apparent spike in unemployment similar to the aforementioned spike in opioid
overdose deaths in the early months of the pandemic. Seeing this spike reproduced in the unem-
ployed persons measure gives us hope that this variable may serve as a suitable predictor in our
model. We also see a stronger seasonal pattern of the monthly unemployment data than we saw in
overdose deaths; this is reflected in the seasonal patterns visible in Figure 2.7 (p. 11), Figure 2.8
(p. 11), and Figure2.10 (p. 12) as well as in the ACF plot in Figure 2.9 (p. 12) below.
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Figure 2.7: Seasonal plot of unemployed persons

Figure 2.8: Polar seasonal plot of unemployed persons
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Figure 2.9: ACF plot of unemployed persons

Figure 2.10: Subseries plot of unemployed persons
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2.3.3 Covariate variable: Noninstitutionalized population

An additional variable of interest obtained from BLS data is monthly noninstitutionalized popu-
lation counts for Virginia for the same time duration as our previously unemployed persons variable.
Standard regressions typically have the main independent predictors of interest alongside relevant
covariates (mathematically treated similarly to predictors but with less emphasis/interest in partic-
ular its contribution) icluded in a fully-specified model; as such, noninstutionalized population was
utilized as either the single predictor or a relevant covariate for unemployment in model specification.
In Figure 2.11 (p. 13) below we visualize this data in a standard timeplot our previously-described
vertical dashed-lines.

Figure 2.11: Timeplot of noninstitutionalized population

We do not notice an apparent spike in noninstitutionalized population in comparison with afore-
mentioned spikes in opioid overdose deaths and unemployed persons in the early months of the
pandemic. While we do not see a reproduction of this spike, we assume this variable helps the
model understand the counts of unemployed persons as being based on the overall workforce (which
is then downstream based on this noninstitutionalized population variable). As such, we are not
too worried about the structure of this variable at this moment. Additional visualizations of this
variable can be found in Figure 2.12 (p. 14), Figure 2.13 (p. 14), Figure 2.14 (p. 15), and Figure
2.15 (p. 15) below.
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Figure 2.12: Seasonal plot of noninstitutionalized population

Figure 2.13: Polar seasonal plot of noninstitutionalized population
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Figure 2.14: ACF plot of noninstitutionalized population

Figure 2.15: Subseries plot of noninstitutionalized population
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2.4 Train-Test splitting

As our task is to forecast opioid overdose deaths for the entire year of 2020 (January 2020
through December 2020) and as we have differing availability of each of our various data measures,
we choose to perform train-test splitting of our data. Train-test splitting is an important aspect
of the modeling workflow to prevent data leakage from the test set (allowing the model to falsely
generate predictions having secret information of the true value). We limit our training data to
range from January 2000 to December 2019 and we limit our test data to range from January 2020
to December 2020 (for all data sources and variables). Code performing this train-test splitting
using base R can be found in Appendix A.4 (p. 41) below.

2.5 Feature engineering

As can be observed from various exploratory data visualizations of our variables, we are dealing
with nonstationary data that will present challenges to our modeling approach. We have non-
seasonally-adjusted unemployment data and raw (and thus also unadjusted) opioid overdose death
count data that both exhibit seasonality and high autocorrelation at most lag values. We describe
our approaches of Box-Cox transformation and differencing to induce stationarity in our data to
engineer suitable predictors for modeling. Additionally, we utilize the augmented Dickey-Fuller
(ADF) test for stationarity (Colonescu, 2018) to aid our feature engineering process towards more
stationary variables.

2.5.1 Box-Cox transformation of forecast variable

The Box-Cox transformation is a commonly-used method in time-series analysis to attempt to
transform the shape of unwieldy data (Hyndman & Athanasopoulos, 2021d). We use the Box-Cox
transform on our forecast variable of opioid overdose deaths to make the later model-fitting process
numerically “behave” better. Code implementing the Box-Cox transform on our forecast variable
via fabletools::box cox() can be found in Appendix A.5.1 (p. 41) below. We also showcase
comparative timeplots of untransformed and Box-Cox-transformed opioid overdose deaths in Figure
2.16 (p. 17) below.

The Box-Cox transform is modified by a parameter λ that we select in a data-driven manner
via the automated feasts::guerrero() procedure. We once again highlight the importance of our
aforementioned train-test split prior to this feature engineering step, as we ensure to fit λ based
on our training data alone, as fitting λ on data that includes our test set would inadvertently
provide information to our model about the true value. For our data, this ended up as a value of
λ = 0.3351251.

As we are interested in improving the nonstationarity of our forecast variable via our transform,
we also perform an ADF test on the untransformed and Box-Cox-transformed opioid overdose deaths
variable and present p-values in Table T.1 (p. 16) below.

Variable name ADF test p-value
Deaths 0.9797752

Box-Cox(Deaths) 0.7635537

Table T.1: ADF test p-values: Untransformed vs Box-Cox-transformed opioid overdose deaths
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Figure 2.16: Opioid overdose deaths with Box-Cox transformation

Our p-value following transformation is still relatively high, signifying (for the ADF test) a
high degree of suspicion of nonstationarity in our variable. However, our ARIMA errors approach
described above will allow for differencing and other methods to handle nonstationarity in our
forecast variable. As such, we can satisfactorily abandon further modifications of our forecast
variable.

2.5.2 Differencing of predictor and covariate variables

As mentioned previously, we opted for non-seasonally-adjusted BLS data (including both our
main predictor of unemployed persons and our covariate of noninstitutionalized population). As
such, our previous exploratory data visualization for these variables also indicate a nonstationarity.
While the nonstationarity in our predictor variable can be handled via the ARIMA specification of
our dynamic regression error term, we must perform more rigorous feature engineering to develop
stationary (as verified by ADF test p-values) predictors for our model.

We follow general advice (Hyndman & Athanasopoulos, 2021g) in first performing a seasonal dif-
ference (periodm=12 months) and then performing a standard (period = 1) second-order difference.
Code implementing this differencing procedure for both unemployed persons and noninstitutional-
ized population variables can be found in Appendix A.5.2 (p. 41) below. For the sake of clarity, at
this point we transition to presenting the differencing of our unemployed person predictor variable
first in completeness, prior to presenting the differencing of our noninstitutionalized population
covariate variable afterwards.
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We showcase comparative timeplots of undifferenced, seasonally-differenced, and doubly-differenced
unemployed persons in Figure 2.17 (p. 18) below. We have also produced comparative ACF plots
and partial ACF plots in Figure 2.18 (p. 19) and Figure 2.19 (p. 19) below, respectively.

Figure 2.17: Unemployed persons with seasonal and double differencing

As we are interested in the level of stationarity we have induced in our data following our
differencing procedure, we perform an ADF test on the un-differenced, seasonally-differenced, and
doubly-differenced variable and present p-values in Table T.2 (p. 18) below.

Variable name ADF test p-value
Unemployed persons 0.3885087
Seasonally-differenced 0.4248142
Doubly-differenced <0.01

Table T.2: ADF test p-values: Undifferenced vs differenced unemployed persons

We may be surprised to see an increase in p-value following the seasonal differencing, but we
do achieve an extremely low p-value following our second difference, allowing us to reject the null
hypothesis of the test and drop our suspicion of nonstationarity. This is a satisfactory outcome,
and we move to our next variable.
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Figure 2.18: ACF plots of unemployed persons with seasonal and double differencing

Figure 2.19: pACF plots of unemployed persons with seasonal and double differencing
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We showcase comparative timeplots of undifferenced, seasonally-differenced, and doubly-differenced
noninstitutionalized population in Figure 2.20 (p. 20) below. We have also produced comparative
ACF plots and partial ACF plots in Figure 2.21 (p. 21) and Figure 2.22 (p. 21) below, respectively.

Figure 2.20: Noninstitutionalized population with seasonal and double differencing

As we are interested in the level of stationarity we have induced in our data following our
differencing procedure, we perform an ADF test on the un-differenced, seasonally-differenced, and
doubly-differenced variable and present p-values in Table T.3 (p. 20) below.

Variable name ADF test p-value
Noninstitutionalized population 0.99

Seasonally-differenced 0.0486832
Doubly-differenced <0.01

Table T.3: ADF test p-values: Undifferenced vs differenced noninstitutionalized population

We notice that our p-values decrease with each order of differencing and despite beginning with a
quite problematic p-value prior to differencing we obtain a statistically significant p-value following
our second differencing allowing us to reject the null hypothesis of the test and drop our suspicion
of nonstationarity. We have achieved another satisfactory feature engineering outcome, and now
turn our attention to the modeling process.
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Figure 2.21: ACF plots of noninstitutionalized population with seasonal and double differencing

Figure 2.22: pACF plots of noninstitutionalized population with seasonal and double differencing
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3 Modeling

As mentioned previously, we are utilizing a dynamic regression approach for our Box-Cox-
transformed forecast variable (opioid overdose deaths) with at most 2 predictor variables (un-
employed persons and noninstitutionalized population). We plan to use structure our regression
model’s error term as either both seasonal & nonseasonal ARIMA or nonseasonal ARIMA (with
the addition of Fourier terms as predictors).

3.1 Model specification and fitting

We generate a list of candidate models based on combinations of these features (including all
versions of engineered predictors: un-differenced, sesaonally-differenced, and doubly-differenced) as
well as a couple of reference models (naive and seasonal naive) for later comparison. Code for model
specification via fabletools::model() are included in Appendix A.6 (p. 41) below.

3.2 Model performance metrics

At this point we describe our model performance metrics we will use to perform selection of our
“top five” candidate models below.

3.2.1 In-Sample model-fit: Corrected Akaike information criterion (AICc)

To evaluate candidate model-fit on the training data (from January 2000 to December 2019), we
utilize a corrected form of the Akaike information criterion (AICc) to allow for model comparisons
with differing numbers of terms (Hyndman & Athanasopoulos, 2021h). Lower values of AICc
represent better in-sample model fit.

3.2.2 Out-of-Sample prediction error: Mean absolute error (MAE)

We additionally utilize a measure of mean absolute error (MAE) and a derived mean absolute
percentage error (MAPE) measure, to represent prediction error (Hyndman & Athanasopoulos,
2021f). We feel this is a valuable metric to consider as MAE and MAPE are in relation to individual
opioid overdose deaths may provide a tangible overview of global prediction error.

4 Evaluation

At this point, we turn our attention to evaluation of our candidate models and their predictions.

4.1 Model selection (“top five”)

Following our fitting procedure described above, we sort models based on their in-sample model
fit (AICc). Code for this sorting procedure is included in Appendix A.7 (p. 43) below. We then
selected the 5 best models in ascending AICc order as a “top five” list of candidate models to push
forward to our prediction phase of evaluation. The specific AICc values (in ascending order) are
reproduced in Table T.4 (p. 23) below.
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Model AICc
unemp double diff 483.3742
noninst double diff 484.9667
noninst single diff 485.3166

double diff 485.3980
unemp double diff fourier 486.2854

Table T.4: “Top five” candidate models as selected by AICc (sorted by ascending AICc)

We cannot perform much interpretation from AICc values alone, but we can tell that the models
have a clear ordering but with very relatively the same value for each model.

4.2 Prediction performance

We utilize our “top five” models described previously for prediction of our test data (January
2020 to December 2020) via fabletools::forecast(). Code for this procedure is included in
Appendix A.8 (p. 43) below. We evaluate our model predictions quantitatively by global error and
qualitatively based on whether the models were able to predict the spike in opioid overdose deaths
in the early months of the pandemic.

4.2.1 Global test error

We evaluate predictions from our models in terms of global test error as MAE and MAPE, and
reproduce these values in ascending order in Table T.5 (p. 23) below.

Model MAE MAPE
noninst single diff 40.50948 23.69582%
noninst double diff 41.41842 24.24299%

unemp double diff fourier 41.86609 24.37542%
unemp double diff 42.37529 24.66329%

double diff 42.47680 24.71573%

Table T.5: “Top five” candidate models (sorted by ascending MAE/MAPE)

While we see a clear ordering of MAE/MAPE values, we have relatively similar values (ranging
in a little over than 1-[percent]-unit difference in MAPE) so it does not seem that we have much to
separate these models from on global test error alone.

4.2.2 Ability to predict pandemic spike

At this point, we will attempt to qualitatively compare “top five” model predictions based on
ability to predict the early-2020 spike in opioid overdose deaths. We plan to present our “top five”
models in ascending MAE/MAPE order (as presented in Table T.5 above). However, we begin this
section instead by examining how well simple models such as the “naive” (naive) and “seasonal
naive” (seasonal naive) models perform on this task. This will provide us with a valid frame of
reference against which to evaluate our work. Without further ado, we present naive predictions
in Figure 4.1 (p. 24) and Figure 4.2 (p. 24), as well as seasonal naive predictions in Figure 4.3 (p.
25) and Figure 4.4 (p. 25) below.
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Figure 4.1: Predictions from naive alongside training data

Figure 4.2: Predictions from naive alongside test data
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Figure 4.3: Predictions from seasonal naive alongside training data

Figure 4.4: Predictions from seasonal naive alongside test data
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We may be surprised at how well some aspects of our simple models perform at our task. For
example, despite the lack of complexity in naive predictions, we notice that the straight line seemed
to underestimate but capture the general trend we see in the 2020 test data. Additionally, sea-
sonal naive predictions exhibit a surprisingly smaller prediction interval than the wide prediction
intervals exhibited by naive predictions. However, when viewing seasonal naive predictions next to
test data we notice how improperly this model seems to perform at this task. In fact, seasonal naive
predictions are opposite of the test data; we would perhaps assume an approach using this model
could be to simply “do the opposite” of its recommendation. While this is an entertaining propo-
sition, it also highlights the issues with this model in performing this task, as well as potentially
highlighting the benefit of our solution.

Now that we have a reference point from our simple models, we turn our attention to our “top
five” models. We will present our models in ascending MAE/MAPE order, and thus our first 2
models (noninst single diff and noninst double diff ) exhibit the lowest global prediction error.

We present noninst single diff predictions in Figure 4.5 (p. 27) and Figure 4.6 (p. 27) below.
This model is composed of a single predictor variable: seasonally-differenced noninstitutionalized
population, and the error term is structured as an ARIMA model with both nonseasonal and
seasonal components.

We present noninst double diff predictions in Figure 4.7 (p. 28) and Figure 4.8 (p. 28) below.
This model is composed of a single predictor variable: doubly-differenced noninstitutionalized pop-
ulation, and the error term is structured as an ARIMA model with both nonseasonal and seasonal
components.
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Figure 4.5: Predictions from noninst single diff alongside training data

Figure 4.6: Predictions from noninst single diff alongside test data
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Figure 4.7: Predictions from noninst double diff alongside training data

Figure 4.8: Predictions from noninst double diff alongside test data
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Despite the relatively smaller prediction intervals we see of these model predictions, our first
2 models in our “top 5” do not seem to produce appreciably better predictions than naive. It is
indeed surprising that these models have good MAE/MAPE scores, considering their only predictor
is some difference of our initially-intended covariate variable: noninstitutionalized population. As
such, it is not as surprising to see their poor performance in this task.

We now turn our attention to our 3 remaining models from our “top five”: unemp double diff fourier,
unemp double diff, and double diff.

We present unemp double diff fourier predictions in Figure 4.9 (p. 30) and Figure 4.10 (p.
30) below. This model is composed of a single predictor variable: doubly-differenced noninstitu-
tionalized population, accompanied by Fourier terms to capture seasonality and the error term is
structured as an ARIMA model with both only a nonseasonal component.

We present unemp double diff predictions in Figure 4.11 (p. 31) and Figure 4.12 (p. 31) below.
This model is composed of a single predictor variable: doubly-differenced unemployed persons, and
the error term is structured as an ARIMA model with both nonseasonal and seasonal components.

We present double diff predictions in Figure 4.13 (p. 32) and Figure 4.14 (p. 32) below. This
model is composed of two predictor variables: doubly-differenced unemployed persons and doubly-
differenced noninstitutionalized population, and the error term is structured as an ARIMA model
with both nonseasonal and seasonal components.
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Figure 4.9: Predictions from unemp double diff fourier alongside training data

Figure 4.10: Predictions from unemp double diff fourier alongside test data
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Figure 4.11: Predictions from unemp double diff alongside training data

Figure 4.12: Predictions from unemp double diff alongside test data
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Figure 4.13: Predictions from double diff alongside training data

Figure 4.14: Predictions from double diff alongside test data

Page 32 of 43



Faysal Shaikh Final: Dynamic regression overdose VA CSI 678 - Spring 2022

Qualitatively, performance of these 3 models is exceedingly impressive compared to the others.
These “best three” models all successfully predict the spike in opioid overdose deaths in the early
months of the pandemic. All predictions look relatively similar, with the slight exception that
predictions from unemp double diff fourier showcase the “up-and-down” harmonic nature we would
expect from our Fourier series predictors.

4.3 Residual diagnostics

Since we have successful performance of our model we have to verify that our model is behaving
appropriately from a numerical-statistical standpoint. We now utilize the typical approach of exam-
ining residual diagnostic measures for our “best three” models we have identified as successfully pre-
dicting the pandemic spike in opioid overdose deaths: unemp double diff fourier, unemp double diff,
and double diff. We have produced residual diagnostic plots (timeplots, ACF plots, and histograms)
for unemp double diff fourier in Figure 4.15 (p. 34), unemp double diff in Figure 4.16 (p. 34), and
double diff in Figure 4.17 (p. 35) below.

We perform the commonly-accepted Ljung-Box test of model residuals to ensure our “best three”
models are properly-behaved (Hyndman & Athanasopoulos, 2021e); we present present p-values in
Table T.6 (p. 33) below.

Model name Ljung-Box test p-value
unemp double diff fourier 0.7683319

unemp double diff 0.7438403
double diff 0.7485437

Table T.6: Ljung-Box test p-values: “Best three” prediction models

These p-values are all indicative of model residuals not being statistically-significantly-different
from white noise. As such, we can be comfortable with the predictions and numerical behavior of
our models.
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Figure 4.15: Timeplot, ACF plot, and histogram of unemp double diff fourier residuals

Figure 4.16: Timeplot, ACF plot, and histogram of unemp double diff residuals
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Figure 4.17: Timeplot, ACF plot, and histogram of double diff residuals

5 Findings

5.1 Successful prediction of pandemic spike

At the conclusion of our procedure, we were able to successfully predict the early-pandemic spike
in opioid overdose deaths in 3 out of 5 of our selected models. Although we followed generally-
accepted procedures for model selection via AICc and prediction error, e.g., MAE/MAPE, (Hynd-
man and Athanasopoulos, 2021f; Hyndman and Athanasopoulos, 2021h), these procedures did not
necessarily produce models that achieved our goal (as evidenced by 2 out of 5 of our models being
unsuccessful at this task). We suspect that our combination of AICc and MAE/MAPE criteria for
model selection may not be ideal for our niche goal, despite its establishment as standard practice
in model selection.

5.2 Engineered predictors induced successful models

Our initial exploratory analyses suggested we utilize methods to handle nonstationarity such as
Box-Cox transformation and second-order differencing. Upon performing these transformations, we
noticed that 5 out of 5 of our selected models included predictors produced by these transformations.
Our specially-engineered predictors proved useful as they perhaps handled stationarity better than
the automatically-selected ARIMA formulations which could have attempted to find the appropriate
orders of differencing for our predictors. We believe spending time on engineering predictors based
on their nonstationarity and other characteristics will lead to better candidate models than throwing
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this task to the automated model selection algorithm on un-engineered predictors.

5.3 Harmonic predictors did model seasonality effectively

Fourier series terms (i.e., harmonic predictors) found their way into 1 out of 5 of our selected
models. The Fourier terms demonstrated their efficacy in handling various types of seasonality. We
assume in more complex time series tasks (e.g., with finer-grain time-series data) with more sophis-
ticated patterns of seasonality that Fourier terms will outperform our ARIMA errors approach for
seasonality. However, for our purposes, Fourier terms and ARIMA seasonality performed relatively
similar to one another (despite previously-noted visual differences in model predictions).

6 Conclusions and future directions

We successfully forecasted the spike in opioid overdose deaths at the start of the pandemic (early
2020) in 3 out of 5 of our “top five” dynamic [harmonic] regression models. Our feature-engineered
predictors were present in 5 out of our “top five” models. Even 1 of our “top five” models included
Fourier series seasonality terms (i.e., dynamic harmonic regression).

Given the relative success of our approach, we would like to compare our work with well-
regarded models in the time-series prediction space, such as Facebook’s prophet model (Hyndman
& Athanasopoulos, 2021b) or an artificial neural network (Hyndman & Athanasopoulos, 2021c).
As these well-regarded models are known to perform well on these types of tasks, we would like
to modify the challenge to implement cross-validation on a year-by-year basis. An ideal trial of
this type of model would be to generate predictions a year out at a time and perhaps identify best
models from performance on that specific task.
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A Appendix of relevant code

This section serves to provide references to code used in this project. Earlier text may reference
this section to retain focus on the outcomes of the work rather than on the code. All code was built
for the R language for statistical computing version 4.1.3 (R Core Team, 2022) and executed in the
RStudio integrated development environment version 2022.02.1+461 (RStudio Team, 2022).

A.1 Package imports

1 library(tidyverse) # data manipulation

2 library(fpp3) # FPP3 book package (time series analysis)

3 library(forecast) # time series forecasting

4 library(gridExtra) # side -by -side plots

A.2 Reading-in data

A.2.1 Reading-in CDC WONDER data via readr::read tsv()

1 # specify relevant paths

2 data_path = ’your_data_path_here’

3 opioid_file_path = paste0(data_path ,

4 ’state -opioid -overdose -deaths_DMV_1999 -2020. tsv’)

5

6 # reading -in data

7 raw_opioid_df <- read_tsv(opioid_file_path) # CDC WONDER data

A.2.2 Reading-in BLS data via base::readLines()

1 # specify relevant paths

2 data_path = ’your_data_path_here’

3 unadjusted_unemployment_file_path = paste0(data_path ,

4 ’state_unemployment_unadjusted.txt’)

5

6 # read -in text file via readLines method and create data frame on-the -fly

7 unemployment_lines <- readLines(unadjusted_unemployment_file_path)

8

9 # define empty df to add -to later

10 unemployment_df <- data.frame(

11 ’State’=character (0),

12 ’Date’=character (0),

13 ’Noninstitutionalized population ’=numeric (0),

14 ’Unemployed ’=numeric (0)

15 )

16

17 # process lines from file and append to df

18 for (num_line in seq(length(unemployment_lines))){

19 if (num_line %% 58 == 17) { # trigger at each new month of data

20 # first get month and year for data point

21 line_date = unemployment_lines[num_line] %>% trimws ()

22

23 # next get data for each state

24 DC_line = unemployment_lines[num_line + 12] # DC data

25 DC_noninst = strsplit(DC_line , "\\s{2,}")[[1]][2]
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26 DC_unemplo = strsplit(DC_line , "\\s{2,}")[[1]][7]

27 DC_df_row = c(’District of Columbia ’, line_date , DC_noninst , DC_unemplo)

28

29 MD_line = unemployment_lines[num_line + 24] # Maryland data

30 MD_noninst = strsplit(MD_line , "\\s{2,}")[[1]][2]

31 MD_unemplo = strsplit(MD_line , "\\s{2,}")[[1]][7]

32 MD_df_row = c(’Maryland ’, line_date , MD_noninst , MD_unemplo)

33

34 VA_line = unemployment_lines[num_line + 51] # Virginia data

35 VA_noninst = strsplit(VA_line , "\\s{2,}")[[1]][2]

36 VA_unemplo = strsplit(VA_line , "\\s{2,}")[[1]][7]

37 VA_df_row = c(’Virginia ’, line_date , VA_noninst , VA_unemplo)

38

39 # append data to data frame

40 unemployment_df[nrow(unemployment_df)+1,] <- as.vector(DC_df_row)

41 unemployment_df[nrow(unemployment_df)+1,] <- as.vector(MD_df_row)

42 unemployment_df[nrow(unemployment_df)+1,] <- as.vector(VA_df_row)

43 }

44 }

A.3 Data preprocessing

A.3.1 Preprocessing for CDC WONDER data via dplyr

1 # preprocessing via dplyr: filter , select

2 preproc_df <- raw_opioid_df %>%

3

4 # select: select df cols based on names

5 dplyr:: select(’State’, ’State Code’,

6 ’Month ’, ’Month Code’,

7 ’Deaths ’) %>%

8

9 # mutate: create calc cols

10 mutate(

11 Date = lubridate ::mdy(

12 paste(

13 substr(raw_opioid_df$’Month’, 1, 3), # month abbrev/name (3-letter)

14 ’01’, # 1st day of every month (arbitrary)

15 substr( # year (4-digit)

16 raw_opioid_df$’Month’,
17 str_length(raw_opioid_df$’Month’)-3,
18 str_length(raw_opioid_df$’Month’)
19 ), sep=’-’))) %>%

20

21 mutate(Date = yearmonth(Date)) %>% # convert to fable time types

22

23 # filter: selecting df rows based on logical statements of values

24 na.omit() %>%

25

26 # convert to tsibble object and fill gaps

27 as_tsibble(key=dplyr:: starts_with(’State’), index=’Date’) %>%

28 fill_gaps()
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A.3.2 Preprocessing for BLS data via dplyr

1 # convert to tsibble object and fix dtypes

2 unemployment_df <- unemployment_df %>%

3 mutate(‘Date ‘ = yearmonth(‘Date ‘)) %>%

4 mutate(‘Noninstitutionalized.population ‘=‘ Noninstitutionalized.population ‘ %>%

5 str_replace_all(’,’, ’’) %>% as.numeric ()) %>%

6 mutate(‘Unemployed ‘ = ‘Unemployed ‘ %>%

7 str_replace_all(’,’, ’’) %>%

8 as.numeric ()) %>%

9 as_tsibble(key=’State’, index=’Date’) # convert to tsibble

A.4 Data train-test splitting

1 VA_train <- VA_df %>% # training data: 2000 to 2020

2 filter(Date > yearmonth(’2000 -01’) & Date < yearmonth(’2020 -01’))

3

4 VA_test <- VA_df %>% # test data: year 2020

5 filter(Date > yearmonth(’2019 -12’) & Date < yearmonth(’2021 -01’))

A.5 Feature engineering

A.5.1 Box-Cox transformation of forecast variable via fabletools::box cox()

1 guerrero_lambda <- VA_df %>%

2 # filter to training data range to prevent data leakage

3 filter(Date > yearmonth(’2000 -01’) & Date < yearmonth(’2020 -01’)) %>%

4 # feasts :: guerrero () for automated lambda selection

5 features(Deaths , features=guerrero) %>%

6 pull(lambda_guerrero)

7

8 VA_df <- VA_df %>%

9 mutate(Deaths.tf = box_cox(Deaths , lambda=guerrero_lambda))

A.5.2 Differencing predictor variables via tsibble::difference()

1 VA_df <- VA_df %>%

2 mutate(unemp_single_diff = unemp %>% difference (12)) %>%

3 mutate(unemp_double_diff = unemp %>% difference (12) %>% difference (1)) %>%

4 mutate(noninst_single_diff = noninst %>% difference (12)) %>%

5 mutate(noninst_double_diff = noninst %>% difference (12) %>% difference (1))

A.6 Model specification and estimation via fabletools::model()

1 fit <- VA_train %>%

2 # estimate models via fabletools ::model ()

3 model(

4 # naive models

5 naive =NAIVE(box_cox(Deaths ,lambda=guerrero_lambda)),

6 seasonal_naive =SNAIVE(box_cox(Deaths ,lambda=guerrero_lambda)),

7

8 # simple ARIMA models

9 arima =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda)),
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10 arima_fourier =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

11 PDQ(0,0,0) + fourier(K=6)),

12

13 # regression w/ 1 predictor & ARIMA errors (pdq) & seasonal errors (PDQ)m

14 ## predictor: unemp

15 unemp_simple =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

16 unemp),

17 unemp_single_diff =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

18 unemp_single_diff),

19 unemp_double_diff =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

20 unemp_double_diff),

21 ## predictor: noninst

22 noninst_simple =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~ noninst),

23 noninst_single_diff =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

24 noninst_single_diff),

25 noninst_double_diff =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

26 noninst_double_diff),

27

28 # regression w/ 1 predictor & ARIMA errors (pdq) & fourier seasonal errors

29 ## predictor: unemp

30 unemp_simple_fourier =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

31 unemp + PDQ(0,0,0) + fourier(K=6)),

32 unemp_single_diff_fourier =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

33 unemp_single_diff + PDQ(0,0,0) +

34 fourier(K=6)),

35 unemp_double_diff_fourier =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

36 unemp_double_diff + PDQ(0,0,0) +

37 fourier(K=6)),

38 ## predictor: noninst

39 noninst_simple_fourier =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

40 noninst + PDQ(0,0,0) + fourier(K=6)),

41 noninst_single_diff_fourier =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

42 noninst_single_diff + PDQ(0,0,0) +

43 fourier(K=6)),

44 noninst_double_diff_fourier =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

45 noninst_double_diff + PDQ(0,0,0) +

46 fourier(K=6)),

47

48 # regression w/ 2 predictors & ARIMA & (pdq) & seasonal errors (PDQ)m

49 simple =ARIMA(box_cox(Deaths , lambda=guerrero_lambda) ~ unemp + noninst),

50 single_diff =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

51 unemp_single_diff + noninst_single_diff),

52 double_diff =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

53 unemp_double_diff + noninst_double_diff),

54

55 # regression w/ 2 predictors & ARIMA errors (pdq) & fourier seasonal errors

56 simple_fourier =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~ unemp +

57 noninst + PDQ(0,0,0) + fourier(K=6)),

58 single_diff_fourier =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

59 unemp_single_diff + noninst_single_diff +

60 PDQ(0,0,0) + fourier(K=6)),

61 double_diff_fourier =ARIMA(box_cox(Deaths ,lambda=guerrero_lambda) ~

62 unemp_double_diff + noninst_double_diff +

63 PDQ(0,0,0) + fourier(K=6))
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64 )

A.7 Selection of “top five” models by AICc

1 # save names of 5 lowest AICc value models

2 fit %>% glance () %>% slice_min(AICc , n=5) %>% select(‘.model ‘) %>% pull() -> top

_five

A.8 Generating model forecasts via fabletools::forecast()

1 # print top 5 forecast accuracy: MAE & MAPE

2 fit %>%

3 forecast(VA_test) %>%

4 accuracy(VA_test) %>%

5 filter(‘.model ‘ %in% top_five) %>%

6 arrange(‘MAE ‘) %>%

7 select(c(‘.model ‘,‘MAPE ‘, ‘MAE ‘)

8

9 # plot forcasts of top 5 models

10 for (top_model in top_five){

11 test <- fit %>% # close -up plot w/ test overlay

12 forecast(VA_test) %>%

13 dplyr:: filter(‘.model ‘ == top_model) %>%

14 autoplot(VA_test) +

15 geom_vline(xintercept = as.numeric(as.Date(’2020 -01 -01’)),

16 color=’red’, linetype = ’dashed ’) +

17 ggtitle(’’) +

18 theme_classic () +

19 theme(legend.position=’none’)

20

21 train <- fit %>% # far -away plot

22 forecast(VA_test) %>%

23 dplyr:: filter(‘.model ‘ == top_model) %>%

24 autoplot(VA_train) +

25 geom_vline(xintercept = as.numeric(as.Date(’2020 -01 -01’)),

26 color=’red’, linetype = ’dashed ’) +

27 ggtitle(top_model) +

28 theme_classic () +

29 theme(legend.position=’top’)

30

31 grid.arrange(train , test , nrow =2)

32 }
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