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The United States “opioid epidemic” is a widespread public health issue. With opioid
overdose related deaths generally increasing since the introduction and heavy adoption
of opioid drugs in the late 1900s and early 2000s in the United States, we are inter-
ested in understanding potential driving factors for overdose deaths in our geographic
location of Virginia. We perform linear mixed-effects analyses to understand the prob-
lem from the perspective of social, health, and other factors as described in an “opioid
risk-environment framework.” We explore our results and provide recommendation for
further analyses.
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1 Introduction

The purpose of this project is to perform statistical analyses on longitudinal data relevant to
the United States “opioid epidemic.” We are interested in understanding the potential driving
factors for this widespread public health issue within the counties of Virginia. This project is in
part a collaboration with the Justice Community Opioid Innovation Network (JCOIN) and is thus
also inspired by work of the National Institutes of Health (NIH) Helping End Addiction Long-term
(HEAL) Initiative (NIH HEAL Initiative, 2021). We begin our exposition by describing the United
States “opioid epidemic” in the text below.

1.1 Origins: The undertreatment of pain and rise of opioid drugs

Prior to the 1980s, opioid drugs were not considered commonplace treatments for chronic pain
in the United States. There is actually considerable evidence of a characteristic “opiopohobia,”
especially following the 1914 Harrison Narcotic Tax Act (Jones et al., 2018). The addictive potential
of opioid drugs was understood following the American Civil War, during which these drugs were
used in field hospitals to relieve surgery pains (Provine, 2011).

As such, this time period saw opioid addiction generally viewed through a medical lens. Unbe-
knownst to many, buildup to the passage of the Harrison Act potentially served as early warning
signs of the impending nefarious “War on Drugs.“ In fact, President Theodore Roosevelt’s appointed
Opium Commissioner in 1908 had used explicitly racial claims, blaming opium for illicit sexual rela-
tions between white women and Chinese men and blaming cocaine for violence in African American
men, to push for drug control at the federal level (Provine, 2011). We now know that similar tech-
niques were used by Henry Anslinger, who from 1930 until 1962 served as the first commissioner
of the Federal Bureau of Narcotics, to incite racial fearmongering and reshape the general view of
addiction towards one of criminality via what we call today the “War on Drugs” (Provine, 2011).

Views of opioid medications began to change during the 1980s, as literature emerged highlighting
the undertreatment of pain in the United States. These findings coincided with the surfacing of
two pieces of literature, neither of which are considered to meet today’s standard for scientific
rigor, regarding an apparent low addiction potential for opioid drugs (Jones et al., 2018). Prior to
this time, opioid prescriptions were typically reserved for short-term pain relief following surgery or
cancer patients suffering from terminal illness. However, a burgeoning interest in the utility of opioid
drugs for non-cancer pain, at times driven by misconceptions of non-cancer pain by underinformed
cancer pain specialists, began to take hold of the medical community (Jones et al., 2018) and would
lead to a gradual increase of opioid prescriptions during this time period (DeWeerdt, 2019).

The following years saw many notable patient advocacy and regulatory organizations, such
as the American Pain Society (launching their “pain as a fifth vital sign” campaign in 1995),
the Veteran’s Health Administration (moving to adopt “pain as a fifth vital sign” in 1999), the
Joint Commission (publishing standards for pain management in 2000), the Institute of Medicine,
the Federation of State Medical Boards, and even the United States Drug Enforcement Agency,
synergistically pushed for a more structured approach to pain assessment and management that
heavily relied upon the prescription of opioid drugs (Jones et al., 2018). It was also this time period
that saw pharmaceutical companies devote significant resources towards lobbying, sponsorships,
and marketing to promote their opioid products to the greatest extent possible (DeWeerdt, 2019).
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Some pharmaceutical companies took advantage of these opportunistic circumstances by peddling
fraudulent claims to sell their opioid products. Purdue Pharma falsely marketed OxyContin, a new
sustained-release formulation of the highly-addictive opioid drug oxycodone, as less addictive than
other opioid painkillers; Purdue Pharma later admitted their knowledge of OxyContin as addictive
in a 2007 lawsuit (DeWeerdt, 2019). Purdue even focused their initial marketing of OxyContin
towards white communities, knowing that the image of the typical drug addict painted by Anslinger
and the ensuing War on Drugs would serve their message of OxyContin as a non-addictive drug
(DeWeerdt, 2019). As a result of these efforts, OxyContin prescriptions rose sharply from 670,000
in 1970 to 6.2 million in 2002 (Jones et al., 2018).

Despite best efforts from the pharmaceutical industry to hide the truth about the addictive
potential of opioid drugs, it was only a matter of time before the reality of the situation would
reveal itself.

1.2 Today: The opioid overdose crisis

The modern opioid epidemic in the United States is often described as taking place in 3 overlap-
ping phases (DeWeerdt, 2019). The first phase began with the overprescription and abuse of opioid
pharmaceuticals described earlier. The second phase, heavily involving heroin, saw heroin overdose
deaths increase nearly fivefold in the United States from 2010 to 2016 (DeWeerdt, 2019). The early
days of the third (present) phase saw the involvement of cheaper yet more potent opioids, namely
fentanyl, such that opioid deaths from fentanyl and similar molecules increased by 88% per year
between 2013 and 2016 (DeWeerdt, 2019).

American opioid overdose deaths in 2016 surpassed 42,000, at that point in time more than any
previous year on record (U.S. Department of Health and Human Services, 2021). This record was
subsequently broken by over 47,000 opioid overdose deaths in 2017 (National Institute on Drug
Abuse, 2021). Despite the declaration of the opioid epidemic as a public health emergency in 2017
(U.S. Department of Health and Human Services, 2021), which saw a decline in opioid overdose
deaths from 2017 to 2018, the previous record was surpassed once again by nearly 50,000 opioid
overdose deaths in 2019 (National Institute on Drug Abuse, 2021).

Although pandemic coronavirus disease 2019 (COVID-19) has resulted in challenges obtaining
recent unbiased estimates of opioid use (Haley & Saitz, 2020), we can safely continue to assume the
omnipresence of the opioid epidemic in the United States today.

2 Theory

We begin by describing so-called “social determinants of health” and move towards a more
comprehensive discussion of the notable “risk environment framework” (Rhodes, 2002) that has
started to see successful adoption in recent works (M.A. Kolak et al., 2020).

2.1 Social determinants of health (SDoH)

As its name suggests, the social determinants of health (SDoH) framework provides a valuable
conceptualization for how various social and economic factors may play a deterministic role in health
outcomes. Much early work inspiring the SDoH has shown associations between socioeconomic
factors and health outcomes, but the specific causal nature behind the health contributions of
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specific social factors may vary (Wilkinson et al., 2003).

For example, the social factor of race may play a role in adverse health outcomes through
both direct and indirect mechanisms of systemic racism and discrimination. Medical students with
inaccurate perceptions of black patients as having “thicker skin” and higher pain tolerance than
white patients are shown to minimize their black patients’ pain presentation and offer accordingly
poorer treatment recommendations (Hoffman et al., 2016). Black mothers typically face higher
levels of low birth weight and preterm-birth than the general population, but a dedicated midwifery
program was shown to numerically rectify the disparity entirely (Josephs & Brown, 2017). The
infamous Tuskegee syphilis study (Brandt, 1978), which violated several ethical considerations but
namely refused to provide adequate medical treatment (sometimes even involving deceiving the
participants, e.g., convincing them that they were receiving medical treatment when they were not)
to the black study participants despite the presence of widely-available and successful medications
for syphilis, has tainted the image of the biomedical research enterprise to the point that the black
community in the United States have a warranted level of distrust in the medical system; this
may potentially lead to patients from the black community prolonging their illness prior to seeking
help, which could potentially exacerbate issues that otherwise would have been minimized with
appropriate early-intervention or preventative care.

This above is only a small amount of consideration given to one category of one socioeconomic
factor, yet the potential importance of considering socioeconomic factors in health research is rela-
tively apparent.

2.2 Risk environment frameworks

While the SDoH framework provides one additional dimension to the view of health as more
than simply health outcomes, the risk environment framework originally proposed by Rhodes (2002)
takes this a step further by shifting perspective from the health and socioeconomic factors of an
individual towards also understanding the health-influencing factors may be present in their relative
environment.

In particular, the original work of Rhodes (2002) attempted to conceptualize the environmental
factors that may influence the propensity for drug-related harm, such as HIV infection associated
with drug injection, and to better prepare public health practitioners to practice effective harm-
reduction in the communities they serve.

The risk-environment framework has been utilized effectively relatively recently in the work of
M.A. Kolak et al. (2020) to understand opioid-related overdose in rural Southern Illinois. The
authors of this work utilize the risk environment framework to describe how rural environments can
exhibit uniquely vulnerable characteristics that may culminate in risk “hotspots” of high overdose
rates and other adverse health outcomes (M.A. Kolak et al., 2020). The authors utilize variables
that reflect several spheres of influence: social, economic, policy, and physical (M.A. Kolak et al.,
2020). With an understanding of the historical context of the opioid epidemic in the United States,
the inclusion of these additional spheres of influence has been shown to better inform researchers’
view of the problem.
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3 Research hypothesis

Our approach utilizing a risk-environment framework to study opioid overdose deaths for coun-
ties in Virginia will provide us with inferences of the driving factors of the “opioid epidemic.” In
particular, our statistical hypotheses take the form of inferences on the parameters of our regression
model.

A general hypothesis we may have about each given factor in consideration is whether that
factor is a statistically significant predictor in our regression model. In other words, we would like
to perform a hypothesis test against the null hypothesis that the coefficient of a given predictor
in our regression is 0. We would consider a rejection of this null hypothesis as a statement that a
given predictor is a driver of the response variable, within the boundaries of our dataset.

It should be noted that inference techniques utilized in the standard ordinary least squares (OLS)
regression approach, in which model parameters converge towards “nice” asymptotic distributions,
do not necessarily transfer for the more sophisticated “mixed-effects model” (described later) often
used in this work (University of Wisconsin-Madison Social Science Computing Cooperative, 2016).

We may also be interested in a hypothesis test against a null hypothesis that the variance of
random effects (random intercepts per county to account for data heterogeneity between counties) is
0. We would consider a rejection of this null hypothesis as a statement that a special consideration
of the data (as given by the prespecified random effects structure) is required to appropriately model
the data.

As described above, special consideration must be taken in performing these tests to ensure that
they are handled properly in the context of mixed models (University of Wisconsin-Madison Social
Science Computing Cooperative, 2016).

4 Experiment design

We begin our exposition by describing notable previous work in our area of interest, and follow
this by describing our proposed approach and tools.

4.1 Previous work

We begin with the work of Heyman et al. (2019), providing evidence for the importance of
socioeconomic factors in contributing to drug overdose deaths at the state level. This study identifies
several correlates for drug overdose deaths, including availability of opioid prescriptions, percent
in the labor force, elementary school English and math national test scores, teen birth rate, and
many more. Notably, the researchers found the availability of opioid prescriptions in a given state
to be more valuable as a predictor when in a regression model for a response stratified by the “non-
hispanic white” race category than for the same response stratified by the “hispanic/non-white”
(i.e., “minority”) race category (Heyman et al., 2019). The study additionally utilizes “random and
fixed effects panel regressions” as their statistical method of choice.

We now turn to the work of Kim and Yang (2020), highlighting county-level analyses of opioid-
related overdose deaths. This work highlights demographic group variables, socioeconomic group
variables, and insurance status as predictors for the response variables of all-opioid overdose deaths,
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heroin overdose deaths, and fentanyl overdose deaths. This work also utilizes the multilevel mixed-
effects models approach. Their findings seem to also illustrate the utility of using a model containing
socioeconomic variables in explaining opioid overdose deaths. Notably, this work does not account
for opioid prescription practices in the analyses, but mentions a desire for further in-depth analyses
as on of the conclusions.

The work of Bauer et al. (2021) analyzes the longitudinal opioid-suspected overdose in the
Houston metropolitan area. This work represents a departure from the previously-described works
in methodology, as the authors of this work utilize a “Bayesian spatiotemporal modeling” framework
rather than that of the typical frequentist mixed-effects model approach for longitudinal data. An
advantage of this approach is that it potentially handles spatial relationships in a more appropriate
manner than assigning random intercepts to different geographic areas. The authors of this work
find that their various considered socioeconomic variables (but no variables directly related to opioid
prescriptions) seem to be associated with differences in opioid overdose deaths at the zipcode-level
in the Houston metropolitan area via 3 different spatial modeling approaches.

4.2 Our approach

We decide to structure the design of our experiments based on the successes of previous work,
as well as data considerations and researcher expertise.

Our statistical analyses were conducted via linear mixed-effects models allowing for random
intercepts by county to account for heterogeneity of data observed in different counties. We re-
strict our analyses in a single state, in this case Virginia, to deal with both missing data issues
(minimizing our sample) and to minimize the effects of different political regulation (i.e., different
state government entities) between entities. Although counties certainly have different governing
entities, we hope that our implementation of random intercept may also numerically account for
this (assumed to be) relatively minor differences when compared with the potentially more apparent
effects of different state governments.

Regression predictors were selected based on the findings of previously-mentioned studies. Pre-
vious studies showcased a heavy focus on socioeconomic status (SES) factors. As such, we plan to
include socioeconomic factors in our work, but depart from a sole focus on socioeconomic factors to
adopt a more complete “risk environment framework” view that includes health factors and other
non-SES variables. As teen birth rate was explicitly mentioned in many of our studies, we attempt
to utilize longitudinal teen birth rate as a time-varying covariate on a per-county basis. Although
one of the three aforementioned studies included the availability of opioid prescriptions as a rele-
vant factor in prediction (Heyman et al., 2019), the finding that this predictor was differentially
important in understanding the overdose deaths in different race cateories, we opt to not include a
variable of this nature in our models for aggregated county opioid deaths.

5 Data

While numbers of opioid overdose deaths and other opioid-use-specific measures may provide
useful information in understanding the scope of the opioid epidemic, they certainly do not provide
the entire picture. Considering various social determinants of health (SDoH), the importance of
which was especially validated in monitoring disease spread during the COVID-19 pandemic, may
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be required to better understand the factors that may contribute to opioid overdose outcomes.

Additionally, statistical relationships are necessarily derived at a group level. Thus we must
ensure our perspective is not of individuals but of larger units of aggregation, e.g., geospatial
neighborhoods. An additional benefit of considering these larger units is the ability to compare
areas based on their differing profiles of SDoH and other environmental factors, for example by
quantifying a multi-dimensional “risk environment” as described by Rhodes (2002).

As such, this work serves to highlight two distinct data sources which may prove relevant in
understanding SDoH and additional environmental factor profiles of specific levels of geospatial
aggregation: the University of Chicago Opioid Environmental Policy Scan (OEPS) dataset (Kolak
et al., 2021), and the University of Wisconin County Health Rankings & Roadmaps (CHR) dataset
(University of Wisconsin Population Health Institute & Robert Wood Johnson Foundation, n.d.).

5.1 The Opioid Environmental Policy Scan (OEPS) dataset

The OEPS dataset, developed by Kolak et al. (2021) as a collaboration between the University
of Chicago Healthy Regions & Policies Lab and the University of Chicago Center for Spatial Data
Science, utilizes a “risk environment framework” approach, as first described by Rhodes (2002), to
consolidate data from various sources into six “spheres of influence”: policy, health, demographic,
economic, built environment, and COVID-19 (Kolak et al., 2021). This conceptual model for this
data is shown in Figure 5.1 below (on page 8).

Figure 5.1: Diagram of OEPS dataset.
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The OEPS dataset is a nationwide extension of previous work by M.A. Kolak et al. (2020)
highlighting the utility of the risk environment approach in understanding various health outcomes,
including opioid-related overdose, in rural Southern Illinois between 2015 and 2017. In appreciation
of “rural risk environment” analyses (M.A. Kolak et al., 2020) and of the expertise of the Univer-
sity of Chicago as the JCOIN Methodology and Advanced Analytics Resource Center (MAARC)
(Kolak et al., 2021), this project hopes to utilize OEPS data to start with a multi-dimensional risk
environment framework of the opioid epidemic at varying geospatial scales across the entire United
States.

OEPS data were obtained via the “Filter Data and Download” section of the OEPS Explorer
web application (https://oeps.netlify.app/download). “County” was selected under the “Filter by
Scale” heading and downloaded to the project working directory. The data download interface is
shown below in Figure 5.2 (on page 9).

Figure 5.2: OEPS Explorer data download interface.

5.2 The County Health Rankings & Roadmaps (CHR) dataset

The CHR dataset (University of Wisconsin Population Health Institute & Robert Wood Johnson
Foundation, n.d.), released annually since 2010, is a collaborative effort between the University of
Wisconsin Population Health Institute and the Robert Wood Johnson Foundation to consolidate
data from various sources and publish health rankings that consider both health outcomes and

Page 9 of 34

https://oeps.netlify.app/download


Faysal Shaikh Final: longitudinal opioid risk-environment CSI 672 - Fall 2021

modifiable health factors for each of over 3,000 counties and county equivalents in the United
States (Remington et al., 2015). The conceptual model for CHR data is shown in Figure 5.3 (on
page 10) below.

Figure 5.3: Diagram of CHR dataset.
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Although CHR data provide a more general picture of health and health factors when compared
to the more opioid-use-related focus of OEPS data, the utility of these data in drawing conclusions
of health within a county are well-demonstrated. For example, Remington et al. (2015) analyzed
2014 CHR data and found premature death rates to be more than twice as high in bottom five
healthy counties when compared with top five healthy counties in each state.

While the dimensional richness of the multifaceted opioid risk environment is a strength of the
OEPS dataset, data for each geospatial entity (without considering dis-/re- aggregation across mul-
tiple spatial scales) are only collected at a single timepoint, or “cross-sectionally” in time. As a
result, face-value similiarites (or differences) seen “between subjects” (in this case, between geospa-
tial entities, such as counties) may otherwise be characterized differently when taking into account
a bigger picture that also includes “within-subject” variation over time (for example, repeated mea-
surements of within the same geospatial entity), also known as “longitudinal” data. By nature of
its yearly releases, CHR data are in fact longitudinal. This project thus attempts to consolidate
cross-sectional and longitudinal data regarding SDoH and other environmental factors by merg-
ing the OEPS and CHR datasets in order to paint a more detailed multidimensional spatial and
longitudinal picture of the opioid risk environment in the United States.

CHR data were obtained via either the “Rankings Data & Documentation” section (https:
//www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation) for 2020-
2021 data, or via the “National Data & Documentation: 2010-2019” (https://www.countyhealthrankings.
org/explore-health-rankings/rankings-data-documentation/national-data-documentation-2010-2019)
section for historic data, previewed below in Figure 5.4 (on page 12). Relevant “County Health
Rankings National Data” files were downloaded to the project working directory.
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Figure 5.4: CHR historic data files download page.

5.3 Longitudinal opioid overdose outcomes

We conclude our discussion of data sources with the discussion of longitudinal opioid overdose
outcomes data to serve as the response variable for our regression analyses.

As we are interested in obtaining reliable data regarding opioid overdose deaths at the County
level, we turn to the United States CDC (Centers for Disease Control and Prevention) WONDER
(Wide-ranging Online Data for Epidemiologic Research) database (Centers for Disease Control and
Prevention, National Center for Health Statistics, 2020). Notably, we utilize a similar approach
as that adopted by a previous work (Heyman et al., 2019) in terms of the specific cause-of-death
codes specified in our query. However, we also ensure to query the data to produce a longitudinal
outcome variable based on the available years of data in our longitudinal CHR dataset described
above. Our complete query criteria were reproduced in Figure 5.5 (on page 13) below. (NOTE:
Data are from the Multiple Cause of Death Files, 1999-2019, as compiled from data provided by
the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program.)
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Query Criteria

States: Virginia (51)
UCD - Drug/Alcohol Induced Causes: Drug poisonings (overdose) Unintentional (X40-X44);

Drug poisonings (overdose) Suicide (X60-X64);
Drug poisonings (overdose) Homicide (X85);
Drug poisonings (overdose) Undetermined (Y10-Y14)

Year/Month: 2010; 2011; 2012; 2013; 2014; 2015;
2016; 2017; 2018; 2019

Group By: County; Year
Show Totals: Disabled
Show Zero Values: True
Show Suppressed: True
Calculate Rates Per: 100,000
Rate Options: Default intercensal populations for years 2001-2009

(except Infant Age Groups)

Figure 5.5: CDC WONDER database query criteria: longitudinal opioid overdose deaths.

6 Data analysis

We begin our analyses with the descriptive statistics of our final merged dataset, followed by
an overview of exploratory data visualization, and finally the results of our linear mixed-effects
regression analyses.

6.1 Sample descriptive statistics

We begin our work by performing preprocessing on the relevant OEPS, CHR, and combined
OEPS and CHR (also merged with CDCWONDER outcomes) datasets. The relevant preprocessing
scripts for each of these steps are included in Appendix A.1.1 (on page 26), Appendix A.1.2 (on
page 27), and Appendix A.1.3 (on page 29) for OEPS, CHR, and combined datasets, respectively.

Following the variable selection and merging of data highlighted in the relevant preprocessing
scripts, we generated descriptive statistics tables for our sample via the initial lines of code found in
the regression-analyses.R script in Appendix A.2.2 (on page 32). Our data sample is composed
of both longitudinal and cross-sectional data, but we are interested in the unique cross-sectional
predictors of our model and present the entire sample’s cross-sectional descriptive statistics in Table
T.1 (on page 14). Our value of N in the table represents the number of Virginia counties we have
data for.

However, the descriptives table showcases a level of missingness in one of our variables: Alcohol
density (per sq. mi.). We removed datapoints with missing values for this variable and recreated
the descriptives table in Table T.2 (on page 14). Following removal of outliers, our new N Virginia
counties of complete data is also reflected in the table.
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Overall cross-sectional sample
(N=99)

Housing unit density (per sq. mi.)
Mean (SD) 160 (500)

Alcohol store density (per sq. mi.)
Mean (SD) 0.038 (0.13)
Missing 32 (32.3%)

Percentage rental units
Mean (SD) 26 (8.2)

Percentage vacant units
Mean (SD) 17 (9.4)

Percentage over 25 without HS diploma
Mean (SD) 14 (5.2)

Percentage population disabled
Mean (SD) 15 (4.5)

Percentage population white
Mean (SD) 78 (16)

Table T.1: Cross-sectional descriptive statistics for the sample.

Overall cross-sectional sample
(N=67, after removing missing data)

Housing unit density (per sq. mi.)
Mean (SD) 210 (600)

Alcohol store density (per sq. mi.)
Mean (SD) 0.038 (0.13)

Percentage rental units
Mean (SD) 26 (8.7)

Percentage vacant units
Mean (SD) 16 (10)

Percentage over 25 without HS diploma
Mean (SD) 13 (5.0)

Percentage population disabled
Mean (SD) 15 (4.6)

Percentage population white
Mean (SD) 79 (13)

Table T.2: Cross-sectional descriptive statistics for the sample without missing data.
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As mentioned earlier, we focus on generating descriptives for our cross-sectional data, and shall
dedicate effort to understanding the patterns in our longitudinal data via exploratory data visual-
ization in the section below.

6.2 Exploratory data visualization

To try to understand our longitudinal data, we attempt to create trajectory plots (an intuitive
extension of the concept of cross-sectional scatter plots with time prespecified on the horizontal axis)
of our data. We begin by plotting our outcome variable for each Virginia county, opioid overdose
related deaths, in Figure 6.1 (on page 15).
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Figure 6.1: Opioid overdose death longitudinal trajectories for VA counties.

In the above plot we see different colors that represent each of the different Virginia counties
that we have data for. Our outcome is taken from the CDC WONDER database, which takes
into consideration data censoring procedures to preserve anonymity. Thus, we have some level of
missingness in our data that is possible hidden by a floor effect seen with this specific measure (as
no counties can have less than 0 deaths).

Additionally, it would not be instructive for us to regress simply on deaths without taking into
account the population of each county. As such, in Figure 6.2 (on page 16) we visualize longitudinal
trajectories of a crude death rate, calculated by dividing deaths in a county by the county population
and multiplying by 1,000 to return a rate per 1,000 people. Although there is still a floor effect
in this data, the data are more vertically spread, and thus the missingness becomes more visibly
apparent.
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Figure 6.2: Opioid overdose crude death rate longitudinal trajectories for VA counties.

Our final longitudinal variable of consideration is a county’s teen birth rate. This variable was
utilized in multiple studies from previous work in this area, and we hope to see if our work replicates
previous findings. This data is from the CHR dataset, which is an extremely well-funded and robust
project that has extremely rich data. As expected, our visualization in 6.3 (on page 17) shows no
missingness in this data.

As a final exploratory visualization, we are interested in exploring collinearity between our
planned regression predictors. Predictor collinearity is an issue that can affect our results, so we
attempt to understand this via a heatmap of correlation coefficients in Figure 6.4 (on page 17). From
previous descriptions of the variables of our interest, some of these predictors take on percentage
values, some take on rates (often per 1,000), and even others take on count-type values. As such,
we utilize the Spearman rank correlation coefficient as a nonparametric alternative to the standard
Pearson product-moment correlation coefficient. The heatmap shows that most variables have low
correlation, however, we may want to be careful with building models containing both alcohol store
density (alcDens) and housing unit density (unitDens) as these variables exhibit Spearman’s ρ =
0.77. We may say the same about percentage population disabled (disbP) and percentage vacant
units (vacantP) with Spearman’s ρ = 0.73, as well percentage population disabled (disbP) and
percentage over 25 without a high school diploma (noHSP) with Spearman’s ρ = 0.75.

Relevant code utilized to generate our exploratory data visualizations can be found in Appendix
A.2.1 (on page 30).
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Figure 6.3: Teen birth rate longitudinal trajectories for VA counties.
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Figure 6.4: Pairwise Spearman rank correlations for all cross-sectional predictors.
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6.3 Regression analyses via linear mixed-effects models

We now turn our attention to our regression analyses. We utilized the nlme package to run linear
mixed-effects models with fixed effects structure defined in the typical specification of regression
models and random effects defined to allow a random intercept per county. Specific code utilized
in our regression analyses, including syntax for specification of fixed effects and random effects, can
be found in Appendix A.2.2 (on page 32).

While our interest is to study the effects of our various predictors (both cross-sectional and
longitudinal) on our longitudinal response variable, we have limited data to perform our analyses.
As such, we should be concerned with statistical power of our models prior to performing any in-
terpretation. We will consider both extensive (have many terms) and minimal (having few terms)
models in our following analyses, beginning from the more extensive models and performing “back-
wards elimination” to reduce model complexity as we go. While multiple comparisons correction is
certainly an important concept to be aware of, there is no consensus as to the appropriate technique
to account for them in the context of longitudinal analyses.

We begin with the results from our “fully-specified” model (utilizing all predictors in our dataset)
in Table T.3 (on page 19). In this model we detect statistically significant effects of year (or more
generally, the passage of time), population (or adjustment factor for the outcome of deaths), and the
model intercept at the p < 0.001 level. We additionally detect a marginally statistically significant
effect of percentage population white at the p < 0.05 level. However, this fully-specified model
contains both alcDens and unitDens (which were highly correlated). Additionally, our inclusion of
alcDens in this model has also shrunk our sample size (as we saw from our descriptives tables) to
a total of 213 observations (less than 20 per term including the intercept). As such, we halt our
interpretation of this model at this point.

We next examine an almost “fully-specified” model in Table T.4 (on page 20) created by modify-
ing the previous model to simply remove the alcDens term. Our results showcase similar estimates
as before, with statistically significant effects detected for year (or time), population (adjustment
covariate for our deaths count response), and model intercept at the p < 0.001 level. We once
again detect a statistically significant effect of percentage population at the p < 0.05 level. How-
ever, interestingly enough, we now see the emergent detection of a statistically significant effect of
percentage population disabled at the p < 0.05 level. Our number of total observations has slightly
increased to 222, and our number of model terms (including intercept) has decreased from 11 to 10,
leaving us with just over 20 observations per model term. While this is a more acceptable situation
than previously, we still remain cautious with interpretation of this model’s results in search of a
model with more appropriate statistical power.

We turn now to our third and final model, our relatively “minimally-specified” model based on
terms detected to exhibit statistical significance. We choose to keep our percentage of population
white and percentage of population disabled predictors due to their previous detection as exhibiting
statistical significance. For this reason as well as more rigid study design reasons, we choose to
keep year (or time, to preserve the longitudinal nature of this work), population (as an important
covariate for our death counts response variable), and teen birth rate (as an important variable in
previous studies and our other non-population time-varying covariate). Results from our regression
on this model can be found in Table T.5 (on page 21). We once again detect statistically significant
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Dependent variable:

Deaths

Year 2.591∗∗∗

(0.374)

Population 0.0001∗∗∗

(0.00001)

Teen.Birth.Rate 0.055
(0.137)

whiteP −0.306∗

(0.134)

noHSP −0.192
(0.533)

disbP 1.084
(0.662)

vacantP −0.568
(0.346)

rentalP 0.130
(0.218)

unitDens −0.023
(0.013)

alcDens 155.014
(89.969)

Constant −5,197.549∗∗∗

(754.631)

Observations 213
Log Likelihood −830.619
Akaike Inf. Crit. 1,687.239
Bayesian Inf. Crit. 1,730.246

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table T.3: Regression output for the fully-specified model.
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Dependent variable:

Deaths

Year 2.298∗∗∗

(0.351)

Population 0.0001∗∗∗

(0.00001)

Teen.Birth.Rate −0.056
(0.129)

whiteP −0.300∗

(0.137)

noHSP −0.055
(0.534)

disbP 1.319∗

(0.644)

vacantP −0.494
(0.342)

rentalP 0.197
(0.225)

unitDens −0.001
(0.003)

Constant −4,611.652∗∗∗

(709.356)

Observations 222
Log Likelihood −870.391
Akaike Inf. Crit. 1,764.783
Bayesian Inf. Crit. 1,805.062

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table T.4: Regression output for the fully-specified model (all observations).
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effects of year (or time), population (covariate of death counts response variable), and the model
intercept, all at the p < 0.001 level. We additionally reproduce the previously-seen statistically
significant effect of percentage disabled population at the p < 0.05 level from our previous model.
Interestingly, we detect a statistically significant effect of percentage white population at a more
conservative p < 0.01 level in this model, compared with previously-seen models. This model
features 6 terms (including model intercept), resulting in over 35 observations per term (a noticeable
improvement from our previous models).

Dependent variable:

Deaths

Year 2.324∗∗∗

(0.342)

Population 0.0001∗∗∗

(0.00001)

Teen.Birth.Rate −0.029
(0.120)

whiteP −0.366∗∗

(0.120)

disbP 0.886∗

(0.365)

Constant −4,656.019∗∗∗

(693.055)

Observations 222
Log Likelihood −866.106
Akaike Inf. Crit. 1,748.211
Bayesian Inf. Crit. 1,775.214

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table T.5: Regression output for the minimally-specified model.

At this point, we attempt to perform interpretation of model coefficients in terms of predictor
contributions to the response variable. Many of the predictors as currently implemented have
widely-varying input ranges, some percentages ranging from 0 to 100, an other predictor as a large,
whole number population count, and other variable as a large whole number year value. As such,
the relative magnitudes of model coefficient estimates are not very amenable to interpretation. For
the sake of interpretation, we can examine the sign (positive or negative) of the estimates, but their
magnitudes are not very informative without transformation prior to inclusion in our models.

Page 21 of 34



Faysal Shaikh Final: longitudinal opioid risk-environment CSI 672 - Fall 2021

For our statistically-significant effect of year (or time) in the positive direction at the p < 0.001
level, we can conclude that the passage of time has typically resulted in the increase of deaths
(adjusted for by population) within each county. In other words, the opioid epidemic has gotten
worse throughout our longitudinal data. This is a relatively intuitive assumption given the historical
context of the opioid epidemic, but we also must remember that the structure of our data requires
the use of a time term to enable our longitudinal analyses.

For our statistically-significant effect of population in the positive direction at the p < 0.001
level, we can also conclude that counties with larger populations experience more opioid overdose
related deaths. This is also a relatively intuitive assumption, however just as for our time term
above, this term is a necessary inclusion in our model as it enables us to examine the deaths count
response variable in different counties by adjusting for the county population in the same year. (As
an additional note, the extremely small magnitude of this term is likely related to the extremely
large magnitude of population within a county. As such, if the variable was transformed, this
coefficient estimate would likely be more informative.)

For our statistically-significant effect of model intercept in the negative direciton at the p < 0.001
level, we typically do not perform interpretation of model intercept value unless our other predictors
followed some sort of centering (e.g., mean-centering) procedure. In that case, the intercept would
represent the sample expectation for our deaths count response variable. However, in this case, the
widely-varying values of our predictor variables makes interpretation of this term uninformative.
Just as with the importance of including time and population predictors in our model, we must
include an intercept in our model for it to function as we intend, and to enable our further analyses.

For our statistically-significant effect of percentage population white in the negative direction at
the p < 0.01 level, we can conclude that higher percentages of a county population being white are
associated with lower counts of opioid overdose related deaths. Moreover, higher percentages of the
population considered nonwhite (100% - percentage population white) is positively associated with
an increase in opioid overdose related deaths. This is amenable with our previous exposition of SDoH
and minority health generally being in a worse state due to systemic racism and discrimination,
among other direct and indirect socioeconomic forces.

For our statistically-significant effect of percentage population disabled in the positive direction
at the p < 0.05 level, we can conclude that higher percentages of a county population being disabled
are associated with higher counts of opioid overdose related deaths. While definitions of disability
can be viewed as to some extent being socially constructed, and thus this variable falling under
SDoH, we may argue that the picture is more complex. Individuals with disabilities do face social
inequity, but arguably they also face quite apparent issues in receiving access to adequate services in
the form of health parity (e.g., via medicaid) or potentially struggling with financial independence
(e.g., with high expenses and/or incompatibilities with many adequately-paying job functions as
currently specified). These issues may certainly have socioeconomic components, but we would
like to argue they additionally provide unique issues that may otherwise not fit within the SDoH
framework.

For our model term of teen birth rate, a time-varying covariate we implemented in our model
with extremely rich CHR data and a model term often discussed in other works in this space, we
did not detect a statistically significant association with count of opioid overdose related deaths at
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the α = 0.05 threshold. This was an interesting finding, but issues with our number of observations
may mean that our current analyses are simply inconclusive to detect the effect with our given
statistical power. This variable was likely the most contextual (or environmental) variable included
in our models, but given the opportunity to continue this work with more observations, we would
like to include more pertinent variables associated with the risk-environment framework described
previously.

7 Conclusions

We developed a combined dataset utilizing cross-sectional OEPS data characterizing the opioid-
risk environment, longitudinal CHR data characterizing time-varying trends of health variables, and
CDC WONDER opioid overdose related death counts. Our initial exploratory analyses suggested
missingness in our data that resulted in a loss of statistical power for regression analyses. While we
attempted to perform mixed-effects regression utilizing relevant covariates and predictors, we were
unable to interpret many of our model results in-depth due to the wide ranges of input values and
lack of centering. For our minimally-specified model, we can conclude that the predictors associated
with our opioid overdose related death counts response variable in Virginia counties were percentage
population nonwhite (100% - percentage population white), percentage population disabled, time-
varying population size, time, and model intercept. For future work, we would recommend finding
ways to maximize the sample size (e.g., study all counties in the United States rather than counties
only in Virginia) to improve statistical power and trustworthiness in analysis conclusions.
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A Appendix of relevant code

This section serves to provide complete code used in this project. Earlier text may reference this
section to retain focus on the outcomes of the work rather than on the code. All scripts were created
using GNU R version 4.1.2 (R Core Team, 2021) and in RStudio version 2021.9.1.372. (RStudio
Team, 2021)

A.1 Data preprocessing scripts

A.1.1 preprocessing oeps.R

1 # preprocessing_oeps.R

2 # Faysal Shaikh

3 # fshaikh4@gmu.edu

4 # Nov. 16, 2021

5 #

6 # This script serves to preprocess OEPS data files.

7 # For access to OEPS data see https://geodacenter.github.io/opioid -policy -scan/.

8 #

9 library(git2r)

10 library(readr)

11 library(dplyr)

12 library(stringr)

13

14 # # establish top of git repository for file path purposes

15 # repo <- repository (’.’) # if placed in same repo as listed above

16 # cwd <- workdir(repo)

17

18 # # specify file paths relative to top of git repository

19 # OEPS_data_path <- file.path(cwd , ’data_final ’)

20 # all_files <- list.files(OEPS_data_path)

21

22 # TEMPORARY: set cwd as file path of specifically -downloaded OEPS data for

project

23 cwd <- file.path(’./OEPS -downloaded -data/OEPS_DOWNLOAD_2021 -11 -16/data/’) # 23

files , less than 92 from above

24 data_fnames <- list.files(cwd)

25

26 # initialize empty lists for file names and variable names to add to later

27 OEPS_fnames_list <- list()

28 OEPS_df_list <- list()

29

30 # first pass: loop through all data files and create R objects

31 for (fname in data_fnames) {

32 # use fname to name data frame

33 name_stem <- str_split(fname , ’_’)[[1]][1] # pull text before underscore

34

35 OEPS_fnames_list[as.character(name_stem)] = file.path(cwd , fname) # add fnames

to empty OEPS_fnames_list created above

36 OEPS_df_list

37

38 assign(paste0(’OEPS_data_’, name_stem), # add data frames to appropriately -

named R objects
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39 read_csv(file.path(cwd , fname),

40 col_types = cols(COUNTYFP = col_integer (), STATEFP = col_

integer ())

41 ) %>% rename_with(toupper , ends_with(’ear’)) # handle issue with Year vs

year vs YEAR

42 )

43

44 OEPS_df_list[name_stem] = paste0(’OEPS_data_’, name_stem) # tie R object names

to name_stems in empty OEPS_df_list created above

45 }

46

47 # second pass: loop through all R objects and execute sequential (in order)

cumulative pairwise merges

48 OEPS_data_combined <- get(OEPS_df_list [[1]]) # start with first

49 # for (df_name in OEPS_df_list [2: length(OEPS_df_list)]) {

50 for (df_name in OEPS_df_list [2: length(OEPS_df_list)]) {

51 OEPS_data_combined <- OEPS_data_combined %>% merge(get(df_name))

52 }

53

54 # drop columns we don ’t want

55 OEPS_data_combined <- OEPS_data_combined %>%

56 subset(select = -c(YEAR , STATEFP , state , name , note , county))

57

58 # save preprocessed data as CSV file

59 OEPS_data_combined %>% write.csv(file.path(cwd , ’OEPS_data_combined.csv’), row.

names = FALSE)

A.1.2 preprocessing chr.R

1 # preprocessing_chr.R

2 # Faysal Shaikh

3 # fshaikh4@gmu.edu

4 # Nov. 15, 2021

5 #

6 # This script serves to preprocess CHR data files.

7 # For more information see https://github.com/fshaikh4/CHR -data -repo

8 #

9 library(git2r)

10 library(readxl)

11 library(dplyr)

12

13 # establish top of git repository for file path purposes

14 repo <- repository(’.’)

15 cwd <- workdir(repo)

16

17 # specify file paths relative to top of git repository

18 CHR_national_data_path <- file.path(cwd , ’data_raw’, ’national -data -excel -files’

)

19 all_national_files <- list.files(CHR_national_data_path)

20

21 # initialize empty lists for file names and variable names to add to later

22 CHR_fnames_list <- list()

23 CHR_varnames_list <- list()

24
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25 # first pass: loop through all national data files and create R objects

26 for (national_file in all_national_files) {

27 # pull year and save filenames for each year into empty CHR_fnames_list

created above

28 year <- substr(national_file , 1, 4) # slice year from filename

29 CHR_fnames_list[year] = file.path(CHR_national_data_path , national_file) # add

fnames to fname list

30

31 # create separate data frames for each excel file

32 assign(paste0(’CHR_data_’, year), # assign each data frame to ’CHR_data_year ’

variable

33 read_excel(

34 file.path(CHR_national_data_path , national_file),

35 sheet = ’Ranked Measure Data’,

36 skip = 1

37 ) %>% select(-matches(c(’...[0 -9]’, ’Unreliable ’))) # ignore numbered

(duplicate) or "unreliable" variables

38 )

39

40 # add each variable name to empty CHR_df_list created above

41 CHR_varnames_list[year] = paste0(’CHR_data_’, year)

42 }

43

44 # second pass: loop through created R objects and discover columns common

between all years

45 keep_cols <- CHR_varnames_list [[1]] %>% get() %>% names() # start with first set

of variables

46 for (varname in CHR_varnames_list){

47 # each pass , successively remove columns until only those found in all years

are left

48 keep_cols <- keep_cols %>% intersect(varname %>% get() %>% names())

49 }

50

51 # third pass: loop through objects and only keep the common columns

52 for (varname in CHR_varnames_list){

53 assign(varname , varname %>% get() %>% select(keep_cols) %>%

54 # also add year suffix to changing variables (not FIPS , state , county)

55 rename_with(~paste(., varname %>% substr (10 ,14)), -c(FIPS , State , County)) #

add year to end

56 )

57 }

58

59 # final pass: merge all data by FIPS , State , County

60 CHR_data_combined <- CHR_varnames_list [[1]] %>% get() # start with first set as

combined

61 for (varname in CHR_varnames_list [2: length(CHR_varnames_list)]) { # since above

uses 1st variable , loop range starts from 2nd variable and beyond

62 CHR_data_combined <- CHR_data_combined %>% merge(varname %>% get())

63 }

64

65 CHR_varnames_list[’combined ’] = ’CHR_data_combined ’ # add to list after loop

66

67 # save preprocessed data as CSV file
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68 CHR_data_combined %>% write.csv(file.path(cwd , ’data_processed ’, ’CHR_data_

combined.csv’), row.names=FALSE)

A.1.3 preprocessing merge.R

1 # preprocessing_merge.R

2 # Faysal Shaikh

3 # fshaikh4@gmu.edu

4 # Dec. 15, 2021

5 #

6 # This script serves to load , merge , and perform any additional

7 # preprocessing steps for preprocessed CHR and OEPS data files (previously

8 # handled by preprocessing_chr.R and preprocessing_oeps.R).

9 #

10 library(readr)

11 library(dplyr)

12 library(reshape2)

13

14 # specify working directory structure

15 cwd <- file.path(’.’)

16 data_path <- file.path(cwd , ’data’)

17 code_path <- file.path(cwd , ’code’)

18 out_path <- file.path(cwd , ’output ’)

19

20 # load data files into data frame objects

21 oeps_fname <- file.path(data_path , ’OEPS_data_combined.csv’)

22 chr_fname <- file.path(data_path , ’CHR_data_combined.csv’)

23 outcomes_fname <- file.path(data_path , ’outcomes.tsv’)

24

25 oeps_df <- read_csv(oeps_fname)

26 chr_df <- read_csv(chr_fname)

27 outcomes_df <- read_tsv(outcomes_fname)

28

29 # perform preprocessing on individual data frames and merge

30 ## oeps data: create FIPS variable (to merge on)

31 ## select the following variables:

32 ## unitDens: Number of housing units per square mile of land area

33 ## alcDens: Number of alcohol outlets per square mile

34 ## rentalP: Percentage of occupied housing units that are rented

35 ## vacantP: Percentage of housing units vacant

36 ## essnWrkE: Percentage of population employed in Essential Jobs as

37 ## defined during the COVID -19 pandemic

38 ## disbP: Percentage of civilian non -institutionalized population

39 ## with a disability

40 ## noHSP: Percentage of population age 25 years and over with less than

41 ## high school degree

42 ## whiteP: Percentage of pop. with race identified as white alone

43

44 oeps_df_preproc <- oeps_df %>% rename(FIPS = COUNTYFP) %>%

45 select(FIPS , unitDens , alcDens , rentalP , vacantP ,

46 essnWrkE , disbP , noHSP , whiteP) %>%

47 filter(FIPS >51000 & FIPS <52000)

48

49 ## chr data: create FIPS variable (to merge on)
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50 ## select the following variables:

51 ## Teen Birth Rate X: Number of births per 1,000 female population

52 ## ages 15-19 during year X.

53 ##

54 ## [want to select X from 2010 to 2019]

55

56 chr_df_preproc <- chr_df %>% mutate(FIPS = as.integer(FIPS)) %>%

57 select(c(’FIPS’, contains(’Teen Birth Rate’))) %>%

58 select(-contains(c(’2020’, ’2021’))) %>%

59 filter(FIPS >51000 & FIPS <52000)

60

61 chr_df_preproc_long <- melt(chr_df_preproc ,

62 id.vars=’FIPS’,

63 measure.vars=colnames(chr_df_preproc %>%

64 select(contains(’Teen Birth Rate’))),

65 variable.name=’Year’, value.name=’Teen Birth Rate’

66 )

67

68 levels(chr_df_preproc_long$Year) <- c(2010, 2011, 2012, 2013, 2014,

69 2015, 2016, 2017, 2018, 2019)

70

71 chr_df_preproc_long$Year <- chr_df_preproc_long$Year %>%

72 as.character () %>% as.numeric ()

73

74 ## outcomes data: create FIPS variable (to merge on)

75 ## remove unnecessary variables

76

77 outcomes_df_preproc <- outcomes_df %>% select(-’Notes ’) %>%

78 rename(FIPS = ‘County Code ‘) %>%

79 mutate(Deaths = as.numeric(Deaths)) %>%

80 mutate(Population = as.numeric(Population)) %>%

81 select(County , FIPS , Year , Deaths , Population)

82

83 ## merge data frames!

84 combined_df_preproc <- outcomes_df_preproc %>%

85 merge(chr_df_preproc_long) %>%

86 merge(oeps_df_preproc)

A.2 Data analysis scripts

A.2.1 exploratory-data-viz.R

1 # exploratory -data -viz.R

2 # Faysal Shaikh

3 # fshaikh4@gmu.edu

4 # Dec. 16, 2021

5 #

6 # This script serves to perform exploratory data visualization on preprocessed

7 # and combined data following the use of

8 # preprocessing_merge.R, preprocessing_chr.R, and preprocessing_oeps.R

9

10 library(dplyr)

11 library(ggplot2)

12 library(tikzDevice)
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13

14 # requires existing combined_df_preproc following preprocessing_merge.R

15

16 # deaths (unadjusted) by year spaghetti plot

17 tikz(’output/death -longi -trajectories.tex’, width=4, height =4)

18 combined_df_preproc %>% ggplot(aes(x=Year , y=Deaths ,

19 group=FIPS , color=factor(FIPS))) +

20 geom_line() + geom_point() +

21 scale_x_continuous(breaks=seq(2010 , 2019, 2)) +

22 xlab(’Year Measured ’) +

23 ylab(’Deaths (Unadjusted)’) +

24 theme_classic () + theme(text = element_text(size =12),

25 legend.position=’none’,

26 aspect.ratio=1,

27 axis.title.x = element_text(margin=margin(t=10)),

28 axis.title.y = element_text(margin=margin(r=10)))

29 dev.off()

30

31 # crude death rate (per 1,000 population) by year population spaghetti plot

32 tikz(’output/crude -death -rate -longi -trajectories.tex’, width=4, height =4)

33 combined_df_preproc %>% ggplot(aes(x=Year , y=Deaths/Population*1000,

34 group=FIPS , color=factor(FIPS))) +

35 geom_line() + geom_point() +

36 scale_x_continuous(breaks=seq(2010 , 2019, 2)) +

37 xlab(’Year Measured ’) +

38 ylab(’Crude Death Rate \n (Per 1,000 Population)’) +

39 theme_classic () + theme(text = element_text(size =12),

40 legend.position=’none’,

41 aspect.ratio=1,

42 axis.title.x = element_text(margin=margin(t=10)),

43 axis.title.y = element_text(margin=margin(r=10)))

44 dev.off()

45

46 # teen birth rate (per 1,000 population) by year population spaghetti plot

47 tikz(’output/teen -birth -rate -longi -trajectories.tex’, width=4, height =4)

48 combined_df_preproc %>% ggplot(aes(x=Year , y=‘Teen Birth Rate ‘,

49 group=FIPS , color=factor(FIPS))) +

50 geom_line() + geom_point() +

51 scale_x_continuous(breaks=seq(2010 , 2019, 2)) +

52 xlab(’Year Measured ’) +

53 ylab(’Teen Birth Rate \n (Per 1,000 Population)’) +

54 theme_classic () + theme(text = element_text(size =12),

55 legend.position=’none’,

56 aspect.ratio=1,

57 axis.title.x = element_text(margin=margin(t=10)),

58 axis.title.y = element_text(margin=margin(r=10)))

59 dev.off()

60

61 # rank -based spearman correlation coefficients of all cross -sectional variables

62 ## create cross -sectional variables subset dataframe

63 cs_df <- combined_df_preproc[,c(1,7:dim(combined_df_preproc)[2])] %>% unique ()

64

65 ## calculate spearman correlations

66 cormat <- cor(cs_df %>% select(-c(FIPS , essnWrkE)),
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67 use=’complete.obs’, method=’spearman ’)

68

69 ## correlation matrix formatting helper functions

70 ## Get lower triangle of the correlation matrix

71 get_lower_tri <-function(cormat){

72 cormat[upper.tri(cormat)] <- NA

73 return(cormat)

74 }

75 ## Get upper triangle of the correlation matrix

76 get_upper_tri <- function(cormat){

77 cormat[lower.tri(cormat)]<- NA

78 return(cormat)

79 }

80 ## reorder correlation matrix

81 reorder_cormat <- function(cormat){

82 # Use correlation between variables as distance

83 dd <- as.dist((1- cormat)/2)

84 hc <- hclust(dd)

85 cormat <-cormat[hc$order , hc$order]
86 }

87

88 ## perform reformatting of correlation matrix

89 tri_cormat <- cormat %>% reorder_cormat () %>% get_lower_tri()

90 melted_cormat <- tri_cormat %>% melt()

91

92 ## plot spearman correlations on heatmap

93 tikz(’output/cs -spear -corr.tex’, width=4, height =4)

94 melted_cormat %>% tidyr::drop_na() %>%

95 ggplot(aes(x=Var1 , y=Var2 , fill=value)) +

96 geom_tile() + xlab(’’) + ylab(’’) +

97 geom_text(aes(Var1 , Var2 , label = round(value , 2)),

98 color = "black", size = 3) +

99 scale_fill_gradient2(low = "blue", high = "red", mid = "white",

100 midpoint = 0, limit = c(-1,1)) +

101 theme_classic () +

102 theme(axis.text.x = element_text(angle =45, vjust=1, size=12, hjust =1),

103 axis.text.y = element_text(size =12), legend.position=’none’) +

104 coord_fixed()

105 dev.off()

A.2.2 regression-analyses.R

1 # regression -analyses.R

2 # Faysal Shaikh

3 # fshaikh4@gmu.edu

4 # Dec. 16, 2021

5 #

6 # This script serves to perform regression analyses via linear mixed -effects

7 # models on preprocessed and combined data following the use of

8 # preprocessing_merge.R, preprocessing_chr.R, and preprocessing_oeps.R

9 #

10

11 library(dplyr)

12 library(table1)
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13 library(kableExtra)

14 library(printr , quietly=T)

15 library(nlme)

16 library(stargazer)

17

18 # requires existing combined_df_preproc following preprocessing_merge.R

19

20 # generate descriptive statistics table via table1 package

21 ## apply labels & units

22 label(cs_df$Deaths) <- ’Opioid overdose related deaths ’

23 label(cs_df$Population) <- ’County population ’

24 label(cs_df$‘Teen Birth Rate ‘) <- ’Teen birth rate (adjusted by 1,000)’

25

26 label(cs_df$unitDens) <- ’Housing units density (per sq. mi.)’

27 label(cs_df$alcDens) <- ’Alcohol density (per sq. mi.)’

28 label(cs_df$rentalP) <- ’Percentage rental units’

29 label(cs_df$vacantP) <- ’Percentage vacant units’

30 label(cs_df$noHSP) <- ’Percentage over 25 without HS diploma ’

31 label(cs_df$disbP) <- ’Percentage poulation disabled ’

32 label(cs_df$whiteP) <- ’Percentage population white’

33

34 ## continuous render helper function

35 my.render.cont <- function(x) {

36 with(stats.apply.rounding(stats.default(x), digits =2),

37 c(’’,’Mean (SD)’=sprintf(’%s (%s)’, MEAN , SD)))

38 }

39

40 ## generate tables

41 ### without NA removal

42 table1(~ unitDens + alcDens + rentalP + vacantP + noHSP + disbP + whiteP ,

43 render.continuous=my.render.cont ,

44 data=cs_df) %>%

45 t1kable(format=’latex’) %>% writeLines(’output/cs -descriptives.tex’)

46

47 ### with NA removal

48 table1(~ unitDens + alcDens + rentalP + vacantP + noHSP + disbP + whiteP ,

49 render.continuous=my.render.cont ,

50 data=cs_df %>% tidyr::drop_na()) %>%

51 t1kable(format=’latex’) %>% writeLines(’output/cs -descriptives -NA -removed.tex’

)

52

53 # specify nlme linear mixed effects model

54 ## change variable name due to issues with nlme

55 combined_df_preproc <- combined_df_preproc %>%

56 rename(Teen.Birth.Rate = ‘Teen Birth Rate ‘)

57

58 ## fully -specified model (< 20 observations per term)

59 lme(fixed = Deaths ~ Year + Population + Teen.Birth.Rate + whiteP +

60 noHSP + disbP + vacantP + rentalP + unitDens + alcDens ,

61 random = ~ 1|FIPS ,

62 na.action = na.exclude ,

63 data=combined_df_preproc

64 ) %>% stargazer(type=’latex ’,

65 star.cutoffs = c(0.05, 0.01, 0.001) ,
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66 out=’output/full -model -alcDens.tex’

67 )

68

69 ## almost fully -specified model (around 20 observations per term)

70 lme(fixed = Deaths ~ Year + Population + Teen.Birth.Rate + whiteP +

71 noHSP + disbP + vacantP + rentalP + unitDens ,

72 random = ~ 1|FIPS ,

73 na.action = na.exclude ,

74 data=combined_df_preproc

75 ) %>% stargazer(type=’latex ’,

76 star.cutoffs = c(0.05, 0.01, 0.001) ,

77 out=’output/full -model.tex’

78 )

79

80 ## minimal model: only teen birth rate , disabled percentage , and white

percentage predictors

81 lme(fixed = Deaths ~ Year + Population + Teen.Birth.Rate + whiteP + disbP ,

82 random = ~ 1|FIPS ,

83 na.action = na.exclude ,

84 data=combined_df_preproc

85 ) %>% stargazer(type=’latex ’,

86 star.cutoffs = c(0.05, 0.01, 0.001) ,

87 out=’output/minimal -model.tex’

88 )
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