Running head: SCIENTIFIC THINKING
Scientific Thinking: Using the Nature of
Science to Prompt Metacognitive Processes
EDCI: 892 Science Education Research
Erin E. Peters
One of the most prominent reforms in science education in the past ten years is inquiry science (AAAS, 1993). Educators who teach inquiry science are striving to improve student understandings and explanations about the real world. In other words, inquiry science is the enactment of the nature of science. Too often, inquiry science is taught as either the scientific method or as “hands-on,” disconnected activities (Bybee, 2004). National documents such as the National Science Education Standards or The Benchmarks for Science Literacy, written for the audience of science teachers tend to give ambiguous guidelines for teaching science inquiry. In the current environment of standards-based education, it is easy for science teachers to slip into the mode of disseminating information rather than teaching the ways of knowing that categorize the discipline of science (Duschl, 1990). McComas, Almazroa and Clough (1998) call for a more prominent role of the nature of science in curriculum to be explicitly taught for maximum effectiveness. Researchers have delved into how teachers perceive the nature of science and the implications this has on instruction. Current research in the nature of science can be divided into three different categories: teacher concepts of the nature of science, student concepts of the nature of science, and instruments used to measure understanding of the nature of science.
Defining the Nature of Science
In the past, there was not a consensus on what elements of the nature of science were important to teach, but in the past ten years researchers have converged on aspects of the nature of science, and more recently there has been an agreement on the elements of the nature of science (McComas, Almazroa & Clough, 1998). The literature converges on seven aspects of the nature of science that defines science as a discipline: 1) scientific knowledge is durable, yet tentative, 2) empirical evidence is used to support ideas in science, 3) social and historical factors play a role in the construction of scientific knowledge, 4) laws and theories play a central role in developing scientific knowledge, yet they have different functions, 5) accurate record keeping, peer review and replication of experiments help to validate scientific ideas, 6) science is a creative endeavor, and 7) science and technology are not the same, but they impact each other (McComas, 2004; Lederman, 2004). Evidence of these principles as the foundation for how science operates as a discipline can be found in science education research journals, books about the philosophy and epistemology of science, and practitioner handbooks.
Preservice Teachers’ Concepts of the Nature of Science
The majority of the recent research in the nature of science lies in examining teacher conceptions regarding the nature of science and how this translates to students through inquiry activities. This research attempts to provide guidance to further the development of successful teacher training programs designed to move the scientific education community to more of an understanding of science as both factual knowledge and how the factual knowledge is built and away from an understanding of science as solely a body of factual knowledge.
Much of the focus of research projects is on pre-service teachers, and many of these studies have shown to be only moderately, if at all, effective. In a study focusing on preservice science teachers who had naïve views of the nature of science, researchers provided an intervention that consisted of explicit reflective instruction on the nature of science that showed to be somewhat effective. The main influences on success were motivation, cognition and worldview of the preservice teacher (Abd-El-Khalick & Akerson, 2004). In a similar study, elementary preservice teachers who held naïve views on the nature of science gained substantially in targeted nature of science concepts except subjective and social aspects of the nature of science (Akerson & Abd-El-Khalick, 2000). Some success in learning aspects of the nature of science was found in a study where preservice teachers learned first about the nature of science and then separately learned how to teach the elements of the nature of science in their instruction (Bell, Lederman, Abd-El-Khalick, 2000). In a study involving two beginning secondary science teachers, it was found that more extensive content knowledge in science influenced the participants’ understanding of the nature of science (Schwartz & Lederman, 2002). In another attempt at teaching preservice teachers about the nature of science, researchers examined the effects that taking a history of science class had on preservice teachers’ conceptions of the nature of science (Abd-El-Khalick & Lederman, 2000). They found that taking a history of science course does not support nature of science concepts. Although there has been a great deal of study attempting to understand knowledge of the nature of science in preservice teachers, there is not a definitive positive intervention developed that greatly increases a preservice teacher’s awareness of the nature of science.
Explicit Instruction of the Nature of Science
Many of the studies regarding the nature of science reported gains in teacher understanding through interventions involving explicit instruction. In an action research study, an experienced teacher worked with an experienced researcher to identify aspects of the nature of science taught in an inquiry activity. The study found that it was difficult to present cogent and coherent instruction on the nature of science through inquiry and illustrated the teacher’s pivotal role in designing class discussions in what science is and how scientists work (Bianchini & Colburn, 2000). Some success in teaching preservice elementary teachers was found in an intervention that involved explicit instruction in the nature of science. Participants of the study views changed from science as primarily a body of knowledge to a more appropriate blended view of science as a body of knowledge generated through active application of science inquiry (Gess-Newsome, 2002). In a comparative study, researchers taught the same science content to two groups of inservice teachers. The control group received only implicit instruction of the nature of science via the content, and the experimental group received explicit instruction of the nature of science. The control group showed no gains in knowledge of the nature of science, but the experimental group showed significant gains (Khishfe & Abd-El-Khalick, 2002). Although it is intuitive to think that just by conducting inquiry that students will understand how scientists operate, there is a body of research that demonstrates explicit instruction in the nature of science has been found to be more effective.
Translating Knowledge of the Nature of Science into Classroom Practice
Even with modest gains in understanding of the nature of science, teachers still fail in translating this knowledge into classroom practice. A study of a group of preservice teachers with adequate knowledge of the nature of science showed that there was not much instruction involving the nature of science due to a preoccupation with classroom management and the mandated curriculum (Abd-El-Khalick, Bell & Lederman, 1998). In a study involving preservice teachers in Spain, researchers found that there was no correspondence between teacher conceptions of the nature of science and classroom practice (Mellado, 1997). In Australia, a study showed that even when both teachers and students believed science to be an evolving discipline, the status quo in the classroom was in direct contrast to this belief (Tobin & McRobbie, 1997). The class was taught with a traditional lecture format, and teachers and students alike were comfortable with the format although it was opposed to their belief about how science is done. Even college science faculty members who had very sophisticated understandings of the nature of science, when collaborating on the development and implementation of a integrative non-major science course, did not offer any explicit instruction in the nature of science during the course (Southerland, Gess-Newson & Johnston, 2003). In a case study of an experienced teacher who sought help from researchers in how to apply her sophisticated understanding of the nature of science to her fourth grade classroom had difficulty explicitly teaching any elements of the nature of science (Akerson & Abd-El-Khalick, 2003). Apparently, the mechanisms that help operationalize the understanding of the nature of science into classroom instruction are poorly understood.
Teacher Competence in the Nature of Science
There is consensus about the more important features of the nature of science, and there is insight to some of the factors that contribute to developing an understanding of the nature of science in teachers. These include experience in science teaching, an active role in translating nature of science knowledge into classroom practice, and explicit instruction of the concepts of the nature of science. The next step is to examine the research that looks for ways to develop teacher competence in the nature of science. One study examined inservice teacher for factors involved in competence in teaching the nature of science (Bartholomew & Osborne, 2004). They found five critical domains necessary for competence 1) ) teachers knowledge and understanding of the nature of science , 2) teachers conceptions of their own role in the classroom, 3) teachers’ use of discourse, 4) teachers’ conceptions of learning goals, and 5) the nature of classroom activities. Bartholomew and Osborne developed a continuum that helps to identify the amount of competence teachers have in each of the domains. Teachers continue to develop their views of the nature of science through their professional experiences (Nott & Wellington, 1998), so continuous, quality professional development may be key in emergent competence in teacher knowledge of the nature of science. A professional development activity involving the communication of recent developments in the field of biotechnology by scientists to teachers showed that scientists demonstrated a strong commitment to empiricism and experimental design, but not necessarily the nature of science (Glason & Bentley, 2000). Developing a competence in teaching the nature of science is indeed a complicated endeavor when the scientific community itself has difficulty in expressing the nature of science comprehensively.
Student Understanding of the Nature of Science
Investigations into student understanding of the nature of science originate in different realms, but tend to converge on the same finding, that students need to experience cognitive dissonance in order to eliminate archaic conceptions of the nature of science. When students were presented with discrepant events in a long-term setting, their notions of the nature of science began to conform to professional scientists’ understanding of the nature of science (Clough, 1997). Students in another classroom instructed in canonical understanding of science did not show maturity in their understanding of the nature of science, but after incorporating student ideas, including exploration of misconceptions, into instruction the students showed gains in their understanding of the nature of science (Akerson, Flick & Lederman, 2000). Hogan (2000) suggests that science education researchers can gain a better understanding of how students operationalize the nature of science by dividing up their knowledge into two categories: distal knowledge, how students understand formal scientific knowledge, and proximal knowledge, how students understand their own personal beliefs and commitments in terms of science. Hogan believes that by seeing how the two categories of knowledge intersect, researchers can gain access into how to better develop student understanding of the nature of science. In another study of student understanding of the nature of science, it was found that students views depended greatly on moral and ethical issues, rather than in newly presented material (Zeidler, Walker, Ackett & Simmons, 2002). Instead of changing their archaic notions of the nature of science, students tended to hang on to their prior understandings even when presented with conflicting information. Undergraduate science majors were found to change their conceptions of the nature of science during a long-term project that offered many opportunities to discover conflicting information (Ryer, Leach & Driver, 1999). It appears from the research that students will change their conceptions of the nature of science to more sophisticated through long-term exposure to discrepant information.
Instruments Used to Measure Understanding of the Nature of Science
Many of the instruments used in the studies regarding the nature of science tend to be objective, pencil and paper assessments which subsequently changed into more descriptive instruments. Toward the end of the 1990’s several researchers make arguments that traditional paper and pencil assessments would not be adequate in fully explaining what needs to be known about teacher and student conceptions of the nature of science (Lederman, Wade & Bell, 1998). Researchers responded to this argument by conducting interviews along with surveys or by including several open-ended questions on surveys in order to get more descriptive data. Several versions of an instrument originally developed by Lederman, the Views of Nature of Science (VNOS), have been used mostly by the researchers who focus on preservice teachers. Other instruments have been developed to be more descriptive in explaining student achievement in the nature of science such as Scientific Inquiry Capabilities and Scientific Discovery (Zachos, Hick, Doane & Sargent, 2000). Although the objective, pencil and paper assessments have been altered to include more description of mechanisms, there is still a need for improved assessments regarding the nature of science.
Recommendations for Further Study of the
Nature of Science
The field of the nature of science still requires a great deal of exploration. In order to fully understand how people learn such as esoteric subject as the nature of science there needs to be more dialogue between the scientific community and science teachers (Glason & Bentley, 2000), more understanding of student views of the nature of science (Zeidler, Walker, Ackett & Simmons, 2002), and more understanding of how teachers who have a sophisticated view of the nature of science can incorporate these ideas into classroom practice. Several researchers have begun to take a non-traditional view of the nature of science in order to expose some of the mechanisms to understanding. Wong (2002) suggests that science educators and science education researchers abandon the search for commonalities in the nature of science and begin to embrace the diversity of the nature of science in order to translate ideas to the classroom. Bell and Lederman (2000) looked at scientists who had sophisticated but different views on the nature of science to see how they made decisions based on their views. Their research showed no differences in decision making because the scientists made their professional decisions based on personal values, morals/ethics and social concerns. Bybee (2004), a researcher who has been involved in policy for decades, notices an overemphasis in teaching strategies regarding the nature of science and an under emphasis on contemporary learning theory. The field of the nature of science has been successful in defining operational elements of the nature of science and now it is time for the field to progress into cognitive science domains.
Using the Nature of Science in Metacognition
The aspects of the nature of science can be useful in helping students to think about their epistemology. Examining the nature of science can supply characteristics that distinguish science from other ways of knowing and explicitly help students scrutinize their rationale in forming ideas. Teachers can utilize these characteristics in their lessons to help students to examine the information they know and think about how student knowledge is scientific. Educational researchers studying metacognition are in agreement that traditional methods of teaching do not allow students to demonstrate all of their knowledge about science.
Socially Constructed Knowledge
Methods of teaching that allow students to construct knowledge socially are helpful in developing deeper meaning because thought processes of students are exposed and are easier to understand (Gijlers & de Jong, 2005; Hogan 1999). Social construction of knowledge also aids students in recognizing the processes involved in developing scientific arguments such as cultural experience in scientific communities (Hogan, & Maglienti, 2001). Several studies revolve around an exemplary teacher who uses status words to help students evaluate the scientific merit of their knowledge (Beeth, 1998; Beeth & Hewson, 1999). Some of the techniques of the exemplary teacher are not transferable, but the method she uses to develop student ideas with status words is transferable to other teachers. Intelligibility is the primary criteria students use to determine if an idea makes sense to them. If students find the idea to be intelligible, then they are asked to see if the idea is plausible. To be plausible means that the idea correlates to students’ own experiences or experiences they have heard about. The last criteria, the most difficult to determine, is fruitfulness. If the idea can be transferred to different applications, then the idea is fruitful. Some of the research suggests that these strategies are useful for elementary students, but attempts to use them with middle school students were not as successful. More sophisticated structures may be needed to elicit social construction of knowledge for middle school students.
Argumentation in the Construction of Scientific Understanding
Another camp of researchers sees the chief metacognitive tool as argumentation, as it is central to the presentation of scientific information. Research from this area has shown that written reports of scientific knowledge do not necessarily indicate the totality of student knowledge (Chin, 2000). Students who use written, visual and oral presentations of information are the methods that are most successful in showing the depth of student knowledge, but teachers do not have the pedagogical knowledge to conduct whole class evaluation of arguments that allow students to have a voice in the class (Driver, Newton, & Osborne, 2000), so professional development is necessary for progress in this area. When students are allowed to experience the process of developing and defending arguments, students are better equipped to understanding science as a process of generating knowledge rather than a body of factual information in its final form.
Feedback Loops in Construction of Scientific Knowledge
Teachers who are asked to develop authentic science activities for students often interpret science instruction as a series of often disconnected hands-on lesson which in and of themselves do not guarantee student understanding. Using a process called Metacognitive Learning Cycle emphasizes formal opportunities for teachers and students to talk about their science ideas, forming a feedback loop that informs the development of scientific ideas. One study tested the effectiveness of the Metacognitive Learning Cycle by setting up a control group and an experimental group. There was no significance difference in ecological understanding across two treatment groups, but delayed post test mean scores were higher with Metacognitive Learning Cycle group than with control group (Blank, 2000).
Self-regulation, another form of a feedback loop, can help students monitor their learning progress accurately. Self-regulated learners adopt learning orientation, whereas naïve learners adopt performance orientation (Zimmerman, 1998). By giving students metacognitive tools to check if they are thinking like scientists in an inquiry activity, students may be able to progress from performance orientation to learning orientation. Naïve self-regulators seldom verbalize and are unaware of imagery as a guide and tend to rely on the results from trial-and-error experiences to implement new methods of learning (Costa, Calderia, Gallastegui & Otero, 2000). Skillful self-regulators attribute negatively evaluated outcomes mainly to strategy use, learning method, or insufficient practice, where naïve learners tend to attribute them to ability limitations. Students can be taught positive self-regulations feedback loops by teachers who have access to metacognitive prompts that promote the nature of science
Relevance of the Nature of Science as Metacognition to Scientific
Education
Literature in metacognition emphasizes the lack of consensus on how epistemological factors influence student learning. More research in developing a thinking strategy or ethic to evaluate the scientific merit of information can change how students develop their scientific way of knowing. Many instructors attempt to teach scientific thinking veiled as the scientific method, which is limiting the way students construct epistemologies regarding the nature of science. A large quantity of research cited earlier illustrates student and teacher tendency to cling to prior ideas regardless of contradiction by new data. Cognitive change can be invoked through deep processes such as metacognition. More research in this field will help to produce more fully informed ideas on how epistemological factors influence student learning.
Implications for Future Research
There is a gap in research where the fields of the nature of science and metacognition intersect. The research that has been done in the field of the nature of science attempts to take new teachers and explicitly teach them elements of the nature of science. There is very little success using different variations of this method. There is less success in getting teachers to translate this knowledge into classroom practice. Perhaps it is because teachers need to evaluate their own learning in order to facilitate student learning in such an esoteric concept as the nature of science. Dawson (2000) claims that in the classroom there is usually not enough repetition for metacognitive awareness and student competence level is not usually taken into consideration. Allowing prior research to inform my own research, I would like to develop metacognitive prompts for teacher use in developing student understanding of the nature of science. I would work with experienced teachers, since preservice and new teachers have more immediate concerns such as classroom management strategies. The overriding question that would drive my investigation is “How would metacognitive strategies help teachers facilitate student understanding of the nature of science?” Some subquestions that would provide support are: 1) How would professional development involving the use of metacognitive prompts in the nature of science help teachers to understand the nature of science? 2) What factors would be helpful or barriers to teacher use of metacognitive tools? 3) How would metacognitive prompts aid in student social construction of knowledge in the nature of science? 4) What classroom management structures would teachers need to support in order to use metacognitive tools? Prior research has helped to define the nature of science, to illuminate difficulties in teacher and student understanding of the nature of science, and to show supportive metacognitive processes that can be uses as a basis for the construction of new metacognitive tools that will help to scaffold teachers and students understanding of the nature of science to more meaningful comprehension.
References
Abd-El-Khalick, F. & Akerson, V. L. (2004). Learning as conceptual change: Factors mediating the development of preservice elementary teachers’ views of the nature of science. Science education, 10, 101-143.
Abd-El-Khalick, F., Bell, R. L. & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science education, 36, 404-420.
Abd-El-Khalick, F. & Lederman, N. G. (2000). The influence of history of science courses on students’ views of nature of science. Journal of research in science teaching, 37, 1057-1095.
Akerson, V. L., Abd-El-Khalick, F. & Lederman, N. G. (2000). Influence of a reflective explicit activity-based approach on elementary teachers’ conceptions of nature of science. Journal of research in science teaching. 37, 295-317.
Akerson, V. L. & Abd-El-Khalick, F. (2003). Teaching elements of nature of science: A yearlong case study of a fourth-grade teacher. Journal of research in science teaching, 40, 1025-1049.
Akerson, V. L., Flick, L. B. & Lederman, N. G. (2000). The influence of primary children’s ideas in science on teaching practice. Journal of research in science teaching. 37, 363-385.
American Association for the Advancement of Science. (1993). Benchmarks for scientific literacy. New York, NY: Oxford University Press.
Bartholomew, H. & Osborne, J. (2004). Teaching students “ideas-about-science”: Five dimensions of effective practice. Science education, 36, 655-682.
Beeth, M. E. (1998). Teaching for conceptual change: Using status as a metacognitive tool. Science Education, 23, 738 – 759.
Beeth, M. E. & Hewson, P. W. (1999). Learning goals in an exemplary science teacher’s practice: Cognitive and social factors in teaching for conceptual change. Science Education. 60, 738-823.
Bell, R. L., Lederman, N. G & Abd-El-Khalick, F. (2000). Developing and acting upon one’s conception of the nature of science: A follow-up study. Journal of research in science teaching. 37, 563-581.
Bell, R. L. & Lederman, N. G. (2000, April). Understandings of the nature of science and decision making on science and technology based issues. Paper presented at the meeting of the National Association for Research in Science Teaching, New Orleans, LA.
Bianchini, J. A. & Colburn, A. (2000). Teaching the nature of science through inquiry to prospective elementary teachers: A tale of two researchers. Journal of research in science teaching, 37, 177-209.
Blank, L. M. (2000). A metacognitive learning cycle: A better warranty for student understanding? Science Education 84, 486-506.
Bybee, R. W. (2004). Scientific inquiry and science teaching. In L.B. Flick and N. G. Lederman (Eds.), Scientific inquiry and nature of science (pp. 1-14). Boston, MA: Kluwer Academic Publishers.
Clough, M. P. (1997). Strategies and activities for initiating and maintaining pressure of students’ naïve views concerning the nature of science. International journal of science education, 28, 191-204.
Chin, C. & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of research in science teaching, 37, 109-138.
Cobern, W. W., Gibson, A. T. & Underwood, S. A. (1999). Conceptualizations of nature: An interpretive study of 16 ninth graders’ everyday thinking. Journal of research in science teaching. 36, 541-564.
Costa, J., Calderia, H., Gallastegui, J. R. & Otero, J. (2000). An analysis of question asking on scientific texts explaining natural phenomona. Journal of research in science teaching. 37, 602-614.
Crawford, T. (2005). What counts as knowing: Constructing a communicative repertoire for student demonstration of knowledge in science. Journal of research in science teaching, 42, 139-165.
Crawford, T., Kelly, G. J. & Brown, C. (2000). Ways of knowing beyond facts and laws of science: An ethnographic investigation of student engagement in scientific practices. Journal of research in science teaching, 37, 237-258.
Dawson, R. E. (2000). Critical thinking, scientific thinking, and everyday thinking: Metacognition about cognition. Academic exchange quarterly.
Deboer, G. E. (2004). Historical perspectives on inquiry teaching in schools. In L.B. Flick and N. G. Lederman (Eds.), Scientific inquiry and nature of science (pp. 17-35). Boston, MA: Kluwer Academic Publishers.
Driver, R., Newton, P. & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science education, 84, 287-312.
Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. New York, NY: Teachers College Press.
Gess-Newsome, J. (2002). The use and impact of explicit instruction about the nature of science and science inquiry in an elementary science methods course. Science & Education, 11, 55-67.
Gijlers, H. & de Jong, T. (2005). The relations between prior knowledge and students’ collaborative discovery learning processes. Journal of research in science teaching. 42, 264-282.
Glasson, G. E. & Bentley, M. L. (2000). Epistemological undercurrents in scientists’ reporting of research to teachers. Science education, 84, 469-485.
Herbert, B. E. (2003, November). The role of scaffolding student metacognition in developing mental models of complex, Earth and environmental systems. Paper presented at DFG-NSF International Workshops on Research and Development in Mathematics and Science Education, Washington, DC.
Hogan, K. (2000). Exploring a process view of students’ knowledge about the nature of science. Science education, 84, 51-70.
Hogan, K. (1999). Relating students’ personal frameworks for science learning to their cognition in collaborative contexts. Science Education. 83, 1-32.
Hogan, K. (1999). Thinking aloud together: A test of an intervention to foster students’ collaborative scientific reasoning. Journal of research in science teaching. 36, 1085-1109.
Hogan, K. & Maglienti, M. (2001). Comparing the epistemological underpinnings of students’ and scientists’ reasoning about conclusions. Journal of research in science teaching. 38, 663-687.
Kang, N. & Wallace, C. S. (2004). Secondary science teachers’ use of laboratory activities: Linking epistemological beliefs, goals and practices. Science education, 89, 140-165.
Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariate causality. Journal of research in science teaching. 40, 898-921.
Khishfe, R. & Adb-El-Khalick, F. (2002). Influence of explict and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of research in science teaching, 39, 551-578.
Koch, A. (2001). Training in metacognition and comprehension of physics texts. Science Education, 85, 758-768.
Lawson, A. E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry? Journal of research in science teaching. 42, 716-740.
Lederman, N. G., Wade, P. D. & Bell, R. L. (1998). Assessing the nature of science: What is the nature of our assessments? Science and Education, 7, 595-615.
Lederman, N. G., Abd-El-Khalick, F., Bell, R. L. & Schwartz, R. S. (2002) Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of research in science teaching, 39, 497-521.
McComas, W. F., Almazroa, H. & Clough, M. P. (1998). The nature of science in science education: An introduction. Science & Education, 7, 511-532.
Mellado, V. (1997). Preservice teachers’ classroom practice and their conceptions of the nature of science. Science and Education, 6, 331-354.
Nott, M. & Wellington, J. (1998). Eliciting, interpreting and developing teachers’ understandings of the nature of science. Science and education, 7, 579-594.
National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
Ryer, J., Leach, J. & Driver, R. (1999). Undergraduate science students’ images of science. Journal of research in science teaching, 36, 201-219.
Schwartz, R. S., Lederman, N. G. & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science education, 88, 610-645.
Schwartz, R. S. & Lederman, N. G. (2002). “It’s the nature of the beast”: The influence of knowledge and intentions on learning and teaching nature of science. Journal of research in science teaching, 39, 205-236.
Southerland, S. A., Gess-Newsome, J. & Johnston, A. (2003). Portraying science in the classroom: The manifestation of scientists’ beliefs in classroom practice. Journal of research in science teaching, 40, 669-691.
Tobin, K. & McRobbie, C. J. (1997). Beliefs about the nature of science and the enacted science curriculum. Science & education, 6, 355-371.
Wallace, C. S, & Kang, N. (2004). An investigation of experienced secondary science teachers’ beliefs about inquiry: An examination of competing belief sets. Journal of research in science teaching, 41, 936-960.
Wong, E. D. (2002). To appreciate variation between scientists: A perspective for seeing science’s vitality. Science education, 86, 386-400.
Zachos, P., Hick, T. L., Doane, W. E. & Sargent, C. (2000). Setting theoretical and empirical foundations for assessing scientific inquiry and discovery in educational programs. Journal for research in science teaching, 37, 938-962.
Zeidler, D. L., Walker, K. A., Ackett, W. A. & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science education, 86, 343-367.
Zimmerman, B. J. (1998). Developing self-fulfilling cycles of academic regulation: An analysis of exemplary instructional models. In D. H. Schunk & B. J. Zimmerman (Eds.), Self-regulated learning: From teaching to self-reflective practice (pp. 1-19). New York, NY: The Guildford Press.