Ermal Dedej CS 450

Q.1 Items (Item#, Desc) that are available from at least two suppliers at the same cost.

Solution:

 π (item#,desc) σ ((Inn= Inn1) \land (Cost=Cost1)) \land Scode \neq Scode1)) (Aval x Aval[Inn1, Cost1, Scode])

Raeval Solution:

project ((((aval rename (Scode as Scode1, Inn as Inn1, Cost as Cost1) times aval) select where (Inn=Inn1 and Cost1=Cost) and Scode1 <>Scode) join items) select where Inn1=Inn) over Inn, Desc

Q.2 Items (Item#, Desc) that were purchased at least once in a quantity that is larger than at least on of its procured quantities)

Solution:

 π (item#,desc) σ (Inn= Inn1)[(σ (Inn= Inn1) \land (Quantity > Pquantity) (Procure[Inn1] x Purchase))join (Items)]

Raeval Solution:

project ((((procure rename (Inn as Inn1) times purch) select where Inn=Inn1 and Quantity>Pquantity) join items) select where Inn1=Inn) over Inn, Desc

Q.3 Items (Item#, Desc) with quantity-on-hand greater than 20, that have not been purchased in 2016.

Solution: π (item#,desc)[((π (Inn) σ (QOH>20)(Items) – π (Inn) σ (Date>160000)(Purchase)) join (Items)]

Raeval Solution:

project((project (select items where QOH>20) over Inn) difference (project (select purch where Date>160000) over Inn) times(items rename(Inn as Inn1))select where Inn=Inn1) over Inn, Desc

Q.4 Items (Item#, Desc) with quantity-on-hand less than 20, that have not been procured since 2015.

Solution:

 π (item#,desc)[((π (Inn) σ (QOH>20)(Items) $\cap \pi$ (Inn) σ (Date>160000)(Purchase)) join (Items)]

Raeval Solution:

project((project (select items where QOH<20) over Inn) intersection (project (select procure where Date<160000) over Inn) times(items rename(Inn as Inn1))select where Inn=Inn1) over Inn, Desc

Q.5 Customers (Cust#, Cname) whose credit cards have all expired.

Solution: π (Cnn,Cname) σ (Cnn1=Cnn) [σ Cexp=Ccnumber [((π (Cnnumber) σ (Exp<1607)(Card)[Cexp])x (Usage)] x (Cost) [Cnn1]]

Raeval Solution:

project (((((project (card rename(Ccnumber as Cexp) select where Exp<1607) over Cexp) times usage) select where Cexp=Ccnumber)times (cost rename(Cnn as Cnn1))) select where Cnn1=Cnn) over Cnn, Cname

Q.6 Customers (Cust#, Cname) who purchased all the items that are available from supplier S01.

Solution:

π (Cnn,Cname) σ (Cnn1=Cnn) [σ Ainn=Inn [((π (Cnnumber) σ (Scode<"S01")(Avalible)[Ainn])x (Purchase)] join (Customer)[Cnn1]]

Raeval Solution:

project (((((project(aval rename (Inn as Ainn) select where Scode="S01") over Ainn) join purch) select where Ainn=Inn) join (cust rename (Cnn as Cnn1)))select where Cnn=Cnn1)over Cnn, Cname

<u>Q.7</u> Customers (Cust#, Cname) that have made at least one purchase in 2015 of an item whose price was over \$100.

Solution:

π (Cnn,Cname) **σ** (Cnn1=Cnn) [**σ** Inn=Inn1 [((Items)[Inn1]) **σ** (Inn=Inn1) \land (Date>150000 and Date <160000)join(Purchase)] join (Customer)[Cnn1]]

Raeval Solution:

project(((items rename(Inn as Inn1) join (purch rename (Cnn as Cnn1))) select where Inn=Inn1 and Price>100 and (Date>150000 and Date <160000)) join relC select where Cnn1=Cnn)over Cnn,Cname

Q.8 Employees who work for one department but manage another (Emp#, Ename, Dept#- of-work-department, Dept#-of-managed-department).

Solution:

π (Enn,Ename,DeptCode,DeptManCode) (Employee) σ (Manager=Ename) ∧ (DeptCode ≠DeptManCode)join(Admin)[DeptMan]

Raeval Solution:

project ((emp join (admin rename (Dcode as D#Mang))) select where Manager= Ename and Dcode<> D#Mang)over Enn, Ename, Dcode, D#Mang

<u>Q.9</u> Pairs of employees (Emp#, Ename, Emp#, Ename) in the same department who share at least one skill

Solution:

 π (Enn,Ename,Enn1,Ename1)(Employee)[Enn1,Ename1,Dcode1,Skills1] σ (Skills1 = Skills) \wedge (Enn1 \neq Enn) \wedge (Dcode1=Dcode) join(Employee)

Raeval Solution:

project (((emp rename(Enn as Enn1, Ename as Ename1, Dcode as Dcode1, Skills as Skills1)) join emp) select where Skills1 =Skills and Enn1 <>Enn and Dcode1=Dcode) over Enn, Ename, Enn1,Ename1

Q.10 Pairs of employees (Emp#, Ename, Emp#, Ename) in the same department who have identical skills.

Solution:

 π (Enn,Ename,Enn1,Ename1)(Employee)[Enn1,Ename1,Dcode1,Skills1] σ (Skills1 = Skills) \wedge (Enn1 \neq Enn) \wedge (Dcode1=Dcode) join(Employee)

Raeval Solution:

project (((emp rename(Enn as Enn1, Ename as Ename1, Dcode as Dcode1, Skills as Skills1)) join emp) select where Skills1 =Skills and Enn1 <>Enn and Dcode1=Dcode) over Enn, Ename, Enn1,Ename1