
Parallel & Cloud Computing PCC Vol. 2, Iss. 2

PCC Vol. 2 Iss. 2, 2013 PP. 49-57 © 2013 American V-King Scientific Publishing
49

A Multi-Core Pipelined Architecture for Parallel
Computing

Duoduo Liao*1, Simon Y. Berkovich 2
Computing for Geospatial Research Institute

Department of Computer Science, George Washington University
801 22nd Street NW, Washington DC 20052 U.S.A.

*1 dliao@gwu.edu; 2 berkov@gwu.edu

Abstract- Parallel programming on multi-core processors has
become the industry’s biggest software challenge. This paper
proposes a novel parallel architecture for executing sequential
programs using multi-core pipelining based on program slicing
by a new memory/cache dynamic management technology. The
new architecture is very suitable for processing large
geospatial data in parallel without parallel programming. This
paper presents a new architecture for parallel computation
that addresses the problem of requiring to relocate data from
one memory hierarchy to another in a multi-core environment.
A new memory management technology inserts a layer of
abstraction between the processor and the memory hierarchy,
allowing the data to stay in one place while the processor
effectively migrates as tasks change. The new architecture can
make full use of the pipeline and automatically partition data
then schedule them onto multi-cores through the pipeline. The
most important advantage of this architecture is that most
existing sequential programs can be directly used with nearly
no change, unlike conventional parallel programming which
has to take into account scheduling, load balancing, and data
distribution. The new parallel architecture can also be
successfully applied to other multi-core/many-core
architectures or heterogeneous systems. In this paper, the
design of the new multi-core architecture is described in detail.
The time complexity and performance analysis are discussed in
depth. The experimental results and performance comparison
with existing multi-core architectures demonstrate the
effectiveness, flexibility, and diversity of the new architecture,
in particular, for Big Data parallel processing.

Keywords- Multi-Core Architecture; Pipelining; Sequential
Programs; Program Slicing; Crossbar Switching; Parallel
Computing; Big Data

I. INTRODUCTION

As multi-core architectures gain widespread use, it
becomes increasingly important to be able to harness their
additional processing to achieve higher performance.
However, exploiting parallel cores to improve single-
program performance is difficult from a programmer’s
perspective because most existing programming languages
dictate a sequential method of execution. Parallel
programming on multi-core processors has become the
industry’s biggest software challenge.

Because multi-core hardware architectures are changed
to parallel structures, single-processor based software has to
be optimized or even rewritten with much work to meet the
hardware constraints. However, if we can change the
hardware to eliminate the constraints, most of existing
single-processor software programs may be directly used

with minimum changes or even without any change.

For this purpose, this paper proposes a new parallel
architecture using multi-core pipelining based on program
slicing by crossbar switching and a new memory/cache
dynamic management technology. The new architecture can
automatically partition data and schedule them onto multi-
cores through the pipeline. This architecture provides a
simple and effective solution to the on-the-fly computations
by transferring the operating states from core to core. The
most important advantage is that it only requires practically
the same software as currently used based on single-
processor system, instead of conventional parallel
computing methods, such as threading, load balancing, and
scheduling.

The rest of this paper is organized as follows: Section 2
gives a broad overview of the backgrounds and related work
thus far. Section 3 describes the detailed design of the new
parallel architecture using multi-core pipelining based on
program slicing by switch applied. It contains crossbar
switch based multi-core memory and cache architecture,
multi-core pipeline organization, timing diagram, and
program requirements. Section 4 gives the time complexity,
performance, and experimental analysis. In particular, the
examples of large geospatial data processing, such as Digital
Elevation Model (DEM) generation from Light Detection
and Ranging (LIDAR) dataset, are discussed. Finally, the
summary and advantages are concluded in Section 5.

II. BACKGROUNDS AND RELATED WORK

A. Conventional Parallel Computing

In general, there are three major approaches used for
multiprocessor processing [9] [10]:

• Data-parallel: partitions data and schedule them
onto the multiple processors,

• Task-parallel: Partitions a program into
functions/tasks and schedule them onto the multiple
processors,

• Pipeline-parallel: decomposes a program and run
each state simultaneously on sequential elements of the data
flow.

The first approach is suitable for the data-independent
circumstance. However, the scheduling may be complicated
depending on the application programs.

mailto:1%20dliao@gwu.edu
mailto:2second.author@first-third.edu

Parallel & Cloud Computing PCC Vol. 2, Iss. 2

PCC Vol. 2 Iss. 2, 2013 PP. 49-57 © 2013 American V-King Scientific Publishing
50

For the second method, in practice, it is often difficult to
divide a program in such a way that separate CPUs can
execute different portions without interfering with each
other. Furthermore, this type of parallel processing requires
very sophisticated software.

For the third parallel computing method, a pipeline is
common paradigm for very high-speed computation. The
pipeline parallelism allows for parallelization of a single
task when there is a partial or total order in the dataset
implying the need for state and therefore preventing the use
of data parallelism. This approach is limited by the
sequential decomposability of the task and the length of the
longest stage.

In this paper, the new architecture uses a new parallel
mechanism in combination with data-parallelism and
pipeline-parallelism. It can automatically partition data and
schedule them onto multi-cores through a pipeline without
changing original single-processor program, instead of
decomposing the entire program as conventional pipeline-
parallel method does or scheduling as conventional data-
parallel method needs.

B. Multiprocessor Pipeline by Program Slicing

Another promising parallel computing method is based
on the multi-processor pipeline architecture by dividing the
program in equal duration by forced interrupts as described
in [2] [4] [5]. This technology has US PATENT No.
6145071 issued in 2000 and owned by The George
Washington University. It can automatically schedule the
program onto the multiple processors. The architecture
processes an information flow progressively in a helicoidal
pattern by relocating portions of incoming data. This pattern
ensures that the incoming data flow will not be interrupted.

The multi-processor pipeline allows an arbitrary
algorithm to be performed on-the-fly on a data chunk, given
a sufficient number of processors. If an algorithm can be
performed by a conventional microprocessor under static
conditions, it can be performed on the multiprocessor
pipeline. Another advantage of this architecture is to use
practically the same software as a sequential computer and
to be able to continuously process the intensive information
flows.

This multi-processor pipeline is a simple and effective
solution to the problem of continuous processing of
intensive flows of information. This technique has been
proposed to be used for effectively processing the
challenging problem of very intensive continuous flows of
data [3].

However, there are several limitations for some
applications. Frequent data relocation especially for large
data block applications like 3D graphics and image
processing can cause big overhead costs leading to the
overall performance decrease [16]. The system described in
[4] uses data overlapping to solve the problem of processed
data chunks across the segmentation imposed by the buffer
size. The amounts of memories of the processors have to be
occupied by these duplicate (i.e. overlapped) data. Moreover,
to reduce the bus traffic, the data relocations, i.e. the

loadings/unloadings, are arranged so that only one data
chunk relocates in one shared bus at a particular time.
Additionally, for the data required longer pipeline to process,
the pipeline need special handling, such as overflow facility
or accumulation and then sending back while the data
stream ceases.

In this paper, the core difference between the new
multiprocessor pipeline and original one [4] [5] is that the new
pipeline is driven by crossbar switching instead of forced
interrupts. Hence, the novel crossbar-switching based
multiprocessor architecture with a new memory/cache
management technology significantly overcomes all the
above limitations of the original multiprocessor pipeline.

C. Multi-core Architectures and Programming

Currently multi-core processor architectures are divided
into two basic categories: generic multi-core CPUs and
Graphics Processor Units (GPUs). The Intel [11] and AMD [1]

provide a large number of multi-core CPUs in the market.
Both of them released dual-core chips in 2005 and quad-
core chips in 2007. However, GPUs were originally
designed with special purpose for 3D graphics applications.
The hardware GPU architecture differs from multi-core
CPUs significantly. The latest Intel’s multi-core graphics
chip, also known as Larrabee [15], is one of the boldest
graphics projects in the world and offers full compatibility
with graphics APIs. as well as is capable to process the
entire x86 instruction set that comes implemented into
modern processor architectures.

Currently, there are several major multi-core
programming development platforms. RapidMind [14]’s
Multicore Development Platform supports multiple
processor architectures, including NVidia’s GPUs, ATI’s
GPUs, IBM’s Cell BE, and Intel’s and AMD’s x86. CUDA
(Compute Unified Device Architecture) [7, 8] is a software
platform for massively parallel high-performance computing
on the company’s powerful GPUs. It does require
programmers to exert some manual effort and write some
explicit code. OpenCL (Open Computing Language) [13] is
an open industry standard for general-purpose parallel
programming of heterogeneous systems.

However, all of the current multi-core architectures need
multi-threading based parallel programming. In this paper, a
completely different way is proposed to design multi-core
CPU architectures without conventional parallel
programming.

D. Crossbar-Based Technologies

The crossbar switch [6] has been used in many areas like
telephone exchange. As computer technologies have
improved, crossbar switches have found uses in systems
such as the multistage interconnection networks that connect
the various processing units in a Uniform Memory Access
(UMA) parallel processor to the array of memory elements.
Crossbar switches have been also designed to line entire
computer systems as well.

Crossbar-based memory architecture has been used on
mainframe computers to increase memory bandwidth in

Parallel & Cloud Computing PCC Vol. 2, Iss. 2

PCC Vol. 2 Iss. 2, 2013 PP. 49-57 © 2013 American V-King Scientific Publishing
51

multi-processor systems since decades. The companies such
as Unisys, SGI, and Sun, have brought the technology down
to the server and workstation platforms.

NVidia patented Light-speed Memory Architecture
(LMA) [12] has employed the use of a crossbar to maximize
the efficiency of data transfer between the graphics
processing unit and the graphics memory on the GPU. A
memory crossbar can eliminate bottlenecks associated with
existing memory architecture as it replaces the conventional
system bus architecture. Instead of sharing a bus,
communication between the processor and the memory uses
dedicated connections.

In this paper, a distinct dynamic memory/cache
management technology using crossbar techniques is
proposed for the new multi-core architectures.

III. A NEW PARALLEL ARCHITECTURE

A. New Multi-Core Memory and Cache Architecture Based
on Crossbar Switching

The memory and cache management is very important
for multi-core systems. A novel memory/cache management
technology described in this section is one of core parts of
this new architecture design. It significantly improves total
performance in both space and time. Therefore, this part is
introduced first.

*PSW: Program Status Words

Fig. 1 Crossbar switch based Multi-core memory and cache CPU
architecture

Since data blocks could be very large in the parallel
applications, if DMA (Direct Memory Access) is used to
move big data blocks from the memory in the previous
processor to the next processor frequently at each time, the
accumulated overhead costs cannot be ignored. To reduce
the data relocation costs and bus limitations, the new
architecture use a crossbar switch based dynamical
management technique for both memories and caches to
avoid relocating the data down the pipeline from one
processor to another processor. The new memory and cache
architecture for the technique is illustrated in Fig. 1.

Each processor/core does not have a fixed memory and
cache as does an ordinary processor. Instead, each of them
will be assigned to connect to a given memory and cache at
a given time. There is only one bus between such memory

and cache. Both of them can be regarded as a group. The
number of the groups is the same as the number of cores.
Each core has its own controller, which is employed to
switch the entire memory and cache, i.e. one group, for the
previous processor into the next processor. The previous
processor also passes the Program Status Words (PSW) to
the next processor to resume operations where the previous
processor stopped. Once the group of previous processors is
migrated to the next processor, the current group of the
previous processors needs to be cleared for use.

A crossbar switch is the key to carrying out this dynamic
memory/cache management technology. It moves two
memory and cache groups between two processors at a
given time. Correspondingly, the bus crossbar is used for
connecting all the cores to all the groups to guarantee data
transmission between them at full speed and with no
contention. Although the crossbar used for this architecture
is similar to NVidia’s LMA, they are different in principle.
The purpose of the crossbar in our architecture is mainly for
memory and cache switch apart from high-bandwidth data
transmission. Furthermore, from the view of cores, the “N→
N” connection relationship is for all cores and groups. This
architecture differs from NVidia’s LMA, in which one core
has multiple memory controllers connecting to their
corresponding memory banks. Actually, from the view of
cores, the “1→N” connection relationship relates a given
core to all its memory banks.

Additionally, the bus crossbar used in the new
architecture can also reduce large bus traffic because each
memory and cache group has a dedicated connection to one
processor. This not only reduces the bus traffic, but also
eliminates the constraint that the data movement has to be
arranged at a particular time as mentioned before.

B. New Multi-Core Pipeline Organization

The new multi-core pipeline architecture does not
relocate the data down the pipeline as would be the case for
the original multi-core pipeline when a switch is applied.
Instead, it only switches the memory and cache group of the
previous processor, where the data have been loaded and/or
processed, into the group of the next processor. These data
also contain the small amount of the data of the operating
state, such as Program Status Word (PSW) and all registers
with the program counter, so that the next processor could
resume operations where the previous processor stopped.

Fig. 2 New multi-core pipeline organization

Time

G = Group (memory and cache)
S = Switching (on/off for the connection between each processor and
each group)

P1

I
N
P
U
T

G1

. . . .

G1

G2

G2

G2 G3

O
U
T
P
U
T

2 4 8 1

P2

P3

Start S

G1

G1 G2 G3

S S S S S

G3

G1 G2

G3

G1

0 6 1

Cache1 Cachen

Cache2

Controller1 Controller2 Controllern

Core1/PSW1 Core2/PSW2 Coren/PSWn

Memory1 Memory2

Memoryn

Crossbar Switch

Parallel & Cloud Computing PCC Vol. 2, Iss. 2

PCC Vol. 2 Iss. 2, 2013 PP. 49-57 © 2013 American V-King Scientific Publishing
52

 The new multi-processor pipeline organization and data
flow are depicted in Fig. 2. The major improvement is to
replace Unloading (U) with Switching (S) in the
organization. However, Loading (L), Processing (P), and
Switching (S) do NOT rotate in the columns in the cycle: L
→P→S→L in a helicoidal pattern as does the above original
pipeline. Instead, the Switching (S) for all the processors
occurs at the same time in the new multi-processor pipeline.
Accordingly, Loading (L), Processing (P), and Switching (S)
may rotate in the columns in the cycle: L→P→S, P→P→S,
or P→L→S as shown in Fig. 3.

In Fig. 2, the vertical orange dashed lines show the
cycles. Each small rectangle represents one operation in one
cycle. All blocks and arrows with the same colors describe
the flows of the data chunks. P1, P2, and P3 describe the
processors or cores. In theory, there could be any number of
processors, depending on the applications and user
requirements.

Because the architecture does not specify a particular
processor to perform a particular operation, data-dependent
branching of the algorithm does not require special handling.
A processor working on a particular data chunk behaves just
as a standard processor, resulting in variable-length
processing times for the data chunks. If a chunk becomes
fully processed before the end of the pipeline, the result can
be withdrawn. Data which require longer processing can be
switched back to connect the first processor to continue
processing. This is totally different from the original
multiprocessor pipeline [4], which needs to send these data to
some sort of overflow processing facility, or accumulate
them and send them back through the pipeline when the
incoming data stream ceases. This new method would be
advantageous for highly variable data processing times. The
next section also gives more details to explain this using an
example in Fig. 3.

P1 L L L P P S L L L P P S L L L P P S
P2 P P P P P S P P P P P S
P3 P P P P P S

 1 6 12 18
T

P1 L L L P P S P P P P P S P P P P P S
P2 P P P P P S P P P P P S P P P P P S
P3 P P P P P S P P L L L S P P P P P S

 19 24 30 36
T
 L = Load (a new data chunk)

 P = Process
 S = Switch (on/off)

Fig. 3 Timing diagram of a 3-core pipeline

C. Timing Diagram

Fig. 3 shows the timing diagram of an example of a 3-
core pipeline. It is assumed that Switching (S) takes one
cycle. In fact, S may take more than one cycle or less than
one cycle, which depend on hardware and software.

Because of the dynamic memory/cache management with
the crossbar-based techniques, all the Switchings (S) occur
at the same time. That is, all the processed data from
previous processors to next processors are switched at the
same time.

In the Fig. 3, each color block represents a data chunk
being processed in different processors in different time.
The same color blocks indicate the data flow for one chunk.
A new data chunk can be loaded (L) by any one of the
processors as long as the previous data chunk is finished
processing. In other word, any one of the processors can
load the data as long as it is free. The various lengths or
processing time of the data chunks can thus be automatically
scheduled onto the processors without considering any load
balancing or scheduling issues.

In fact, one data chunk is always being processed within
this memory and cache group although the core connected
to this group is changed at every switching time. That is to
say, the data do not move while the core or processor moves.
This is the major difference from the original multiprocessor
pipeline, in which the data chunk has to be relocated when a
switch is applied.

The new architecture is much more efficient in both
space and time. The overall performance can be improved
significantly. This is totally different from the
multiprocessor pipeline system in [4, 5], which allows only
one data chunk relocation at a particular time on one shared
bus.

D. Program Requirements

An important feature of this architecture is that it uses
practically the same software as a sequential computer. A
program for this system can be developed on an ordinary
sequential computer. Each processor is distributed with the
same application program. To run on the system, the
program would just have to incorporate some interrupts. The
interrupt is triggered by the crossbar switching.

A processor working on a particular piece of data, upon
crossbar switching, will move its memory to the next
processor. The processor will also pass the PSW so that the
next processor could resume operations where the previous
processor stopped. The formation of the PSW in the system
is similar to the routine procedure of formatting the PSW for
interrupts in ordinary microprocessors.

IV. PERFORMANCE AND EXPERIMENTAL ANALYSIS

A. Performance

Clearly, the time complexity of the algorithm based on
the new multi-core pipelined architecture will only affect
the total length of the pipeline including the overhead of the
memory and cache group switches between processors after
switching.

Let me analyse how this new multi-core pipelined
architecture improves the overall performance for parallel
computing. The principle of the N-core pipeline is descried
in Fig. 4.

Parallel & Cloud Computing PCC Vol. 2, Iss. 2

PCC Vol. 2 Iss. 2, 2013 PP. 49-57 © 2013 American V-King Scientific Publishing
53

Fig. 4 The principle of the N-core pipeline

For the multi-core pipeline system as shown in Fig. 2, to
better explain the performance, the pattern of the system
operations is assumed to be discretized into cycles with each
cycle, C . In fact, it can be discretized into much smaller
time unit in modern architectures so that the architectures
can be programmable.

Let us consider a program to process a dataset
containing data chunks with equal or various sizes.
Processing the entire dataset requires K cycles. On a
conventional processor, the execution time of a program, cT ,
can be expressed by

KCTc = (1)
In Fig. 4, let N be the number of processors/cores. If the

entire dataset can be processed on all N cores, on the
average, the number of cycles on each processor/core, n, can
be given by

N
Kn = (2)

Thus, the total time spent on the conventional processor

cT can also be described in combination with above two
equations as

nNCTc = (3)

For the N-core pipeline, let m be the number of cycles
for each interval of the equal duration in the pipeline. Thus,
the length of the N-core pipeline for processing of data, Lp,
can be described by

mNnLp)1(−+= (4)

Let q be the number of the internals for the entire
pipeline, it can be

)1(−+

=

=

N
m
n
m
L

q p

 (5)

Since switching by crossbar may take some extra time,
let d be the number of cycles of processing and delays or
latencies for each switching based on hardware. The total
number of cycles of the overhead of the context switching in
the N-core pipeline, can be expressed as

dN
m
n

dqH

)2(

)1(

−+

=

−=
 (6)

Thus, in the N-core pipeline system, the total length of
the pipeline, noted by L, to process the same size of the data
including the overhead of content switching, can be
described by

dN
m
nmNn

HLL p

)2()1(−+

+−+=

+=
 (7)

The total time spent T on this multi-core pipelined
system can be obtained by

LCT = (8)
Let’s first calculate the speed-up of the execution time

on the new N-core pipeline system compared to the time on
one conventional processor.

Combined with Equation (1), Equation (3), Equation (7),
and Equation (8), the speed-up is given by

dN
m
nmNn

nN
T
T

Speedup c

)2()1(−+

+−+

=

=
 (9)

B. Simulation Analysis

We developed a tool to evaluate this new architecture. In
this section, some experimental results are reported based on
this architecture with various overheads taken into account.

In the first four experiments as shown in Fig. 5, Fig. 6,
Fig. 7, and Fig. 8, we assume the total execution of a given
sequential program takes K = 10,000 cycles and one-time
switching overhead d takes 2 cycles.

The Performance for Different Intervals

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Number of Cycles of the Interval

Sp
ee

du
p

Fig. 5 The performance for different Intervals

Fig. 5 shows the performance increases with interval
time m increasing for fixed number of cores, N (N=10), and
switching time, d, and reaches the maximum then decreases
slowly. This is because the pipeline will become longer if m
becomes bigger. The performance is affected by the length
of the pipeline.

Fig. 6 shows the performance increases with number of
cores increasing for fixed interval time, m (m=2), and
switching time, d, and reaches the maximum, then decreases
slowly. This is also because the pipeline may increase

P1 = Processor 1 P2 = Processor 2 P3 = Processor 3
S = Switching

0

P1

P2

P3
L

n

m

S S S S S
Time

Parallel & Cloud Computing PCC Vol. 2, Iss. 2

PCC Vol. 2 Iss. 2, 2013 PP. 49-57 © 2013 American V-King Scientific Publishing
54

slowly while the number of cores becomes big. That is to
say, for a given program with fixed interval time, m, and
switching time, d, the performance may not reach the
maximum for some numbers of cores. Put another way, if
given an appropriate interval time m and switching time, d,
the performance can reach the maximum speedup. In
practice, since d is usually fixed for such a multi-core
system due to the crossbar switch, the maximum speedup
can be obtained with an appropriate m.

The Performance for Different Number of Cores

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of Cores

Sp
ee

du
p

Fig. 6 The performance for different number of cores

Maximum Performance for Different Switching Time

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Cycles of Switching Time

Sp
ee

du
p

&
 In

te
rv

al
 T

im
e

(C
yc

le
)

Interval Cycle Number
Maximum Speedup

Fig. 7 Maximum performance for different switching time

Fig. 7 shows the maximum performance for different
switching time, d. In the figure, the blue line shows the
interval time, m, and the red line shows the maximum
performance, max_Speedup. For a given program and fixed
number of cores, N (N=10), with the increase of the
switching time, d, the best interval time, mb, to reach the
maximum performance, max_Speedup, increases when the
switching time, d, increases. However, the max_Speedup
decreases slowly accordingly. This clearly indicates the
pipeline length increases with the increase of both interval
time and overhead of content switching (i.e. m and d).
Accordingly, the performance decreases.

Fig. 8 shows the performance Speedup increases with
increasing the number of cores and the size of the data.
Note that the Speedup is the maximum, max_Speedup, in
this experiment. The figure clearly indicates when the
application program becomes larger, the Speedup increases
linearly with the number of cores. That is, the Speedup is
almost close to the number of cores for the large-size
applications. This indicates the performance increases the

times of number of cores, which is the maximum
performance for any multi-core system in theory.

Performance for Different Dataset Size with Different Number of Cores

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of Cores

Sp
ee

du
p

K = 10,000
K = 100,000
K = 1,000,000
K = 10,000,000
K = 100,000,000

.

Fig. 8 The performance for different dataset size with different number of
cores

Fig. 9 shows the best interval time, mb, to reach the
maximum performance decreases and then become stable
with the increase of the number of cores. Furthermore, all
the best interval time, mb, for different size of the
application programs is close to each other when the number
of cores increases. This implies that the most appropriate
interval time, m, can be chosen to maximize the
performance for all the application programs on a multi-core
system with the certain amount of cores. This is a trade-off
for a multi-core system to ensure the best performance for
all the applications.

Maximum Performance for Different Interval and Number of Cores

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of Cores

Nu
m

be
r o

f C
yc

le
s

of
 In

te
rv

al

K = 10,000
K = 100,000
K = 1,000,000
K = 10,000,000
K = 100,000,000

Fig. 9 Maximum performance for different intervals and number of cores

In summary, with the increase of the number of cores,
the performance increases totally. However, choosing the
best interval time, mb, is the key to make full use of all the
cores to maximize the performance for all the application
programs. Such a possible mb can be found for all the
application programs based on the analysis of Fig. 9. In
addition to selecting one fixed best interval time, mb, for the
entire system, the dynamical best interval time, mb, can also
be automatically assigned to each application program
according to the total application and data size, the number
of cores, and the switching time on a multi-core system
while the program is compiled.

C. Experimental Results and Performance Comparison

We developed a function simulator to evaluate this

Parallel & Cloud Computing PCC Vol. 2, Iss. 2

PCC Vol. 2 Iss. 2, 2013 PP. 49-57 © 2013 American V-King Scientific Publishing
55

multi-core pipelined parallel system and compare it with
existing multi-core systems. The testing multi-core
programs are based on the algorithms of DEM generation
from LIDAR dataset designed and developed by me before.

(a) (b)

Fig. 10 16 stripes of the LIDAR data

The tests were run on a Dell PC with Pentium (R) D a
single processor 3.0GHZ and 2GB RAM equipped with a
GPU, NVidia GeForce GTX 260 featured with 192 CUDA
cores.

The LIDAR dataset contains 214,665 points in (x, y, z,
value). In order to test it on the multi-core architectures, it is
divided into 16 stripes along Y-direction as shown in Fig. 10
(a). The DEM generation algorithm is employed for each
LIDAR stripe. The size of each DEM stripe is 534 by 40.
The experimental results are reported in the Figs. 10 - 13.

(a)

(b)

Fig. 11 (a) LIDAR matches the generated DEM in 3D space; (b) Generated
DEM rendering in color ramps

Fig. 10 (b) shows the corresponding rendering effects of
the combined DEM with 16 pieces. Fig. 11 (a) shows the
generated DEM matches the original LIDAR data very well
in 3D space. The 3D terrain based on the DEM is rendered
in color ramping as indicated in Fig. 11 (b).

Fig. 12 and Fig. 13 show the experimental results on the
single-processor system using the algorithms to generate a
DEM based on LIDAR data. Fig. 12 indicates the time spent
on the DEM generation for all LIDAR stripes from 1 to 16.
Obviously, the processing time for each LIDAR stripe is
different.

Fig. 13 shows the comparison of the new multi-core
pipelined GPUs and existing multi-core GPUs to generate
the same DEM from the 16 LIDAR stripes with the size of
534x640. It obviously indicates the performance of new
multi-core GPU architecture is better than existing ones.
This is because data partition and load balancing and
scheduling need be considered for existing multi-core GPU
system. Moreover, these conventional parallel methods
cannot be done easily on current multi-core systems. The
performance may be affected by different data partition or
load balancing and scheduling methods. However, the new
multi-core system can directly use original sequential
program for parallel computing. Thus, it does not need to
take into account the data distribution and load balancing
and scheduling issues. All of the data can be automatically
partitioned and scheduled onto the different cores through
the pipeline. Furthermore, with the increase of the number
of cores, the performance of the new architecture increases
much more than the existing ones with the same number of
cores.

Time Spent on Each LIDAR Stripe

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Slice Number

D
TM

 G
en

er
at

in
g

Ti
m

e
(s

)

Fig. 12 Time spent on each LIDAR stripe

Comparison of the Multi-core Pipelined Architecture and Conventional Multi-core Archteture

0

2

4

6

8

10

12

14

4 6 8 10 12

Number of Cores

Sp
ee

du
p

Speedup of Multi-Core Pipelined Architecture

Speedup of Conventional Multi-Core Architecture

Fig. 13 Comparison of the new multi-core pipelined architecture and

existing multi-core architectures

Parallel & Cloud Computing PCC Vol. 2, Iss. 2

PCC Vol. 2 Iss. 2, 2013 PP. 49-57 © 2013 American V-King Scientific Publishing
56

V. CONCLUSIONS AND FUTURE WORK

This paper presents a new multi-core pipelined
architecture based on core crossbar switching driven
multiprocessor pipelining and dynamic memory and cache
management techniques. The new architecture is very
suitable for processing large data in parallel without parallel
programming in geospatial domain as well as other high
performance computing areas. The proposed architecture
provides a simple and effective implementation for on-the-
fly parallel computing by switching the entire data from
core to core through the crossbar switch. This architecture
makes full use of the pipeline. It can automatically partition
data and schedule them onto multi-cores through the
pipeline. It does not need conventional complicated parallel
computing methods, such as load balancing, scheduling, and
data distribution. This is exactly the advantage of this
proposed architecture.

Obviously, the new multi-core pipeline architecture
significantly overcomes all these limitations of the original
multiprocessor pipeline as described in Section 2.2.
Especially, the core difference of these two multiprocessor
architectures is the new architecture relocates the cores
instead of moving the data in the original one. More
specifically, the new pipeline advantages over the original
pipeline limitations are summarized as follows:

• No data relocation

 Content switching is employed to minimize big
overhead costs due to data relocation while a switch is
employed.

• No data overlapping

 Due to content switching, no processed data chunks
across the segmentation.

• All the Switches (S) are forced by the crossbar
switching control at a regular time

 All the data are switched to their corresponding
processors. However, the original multiprocessor
pipeline only allows one data relocation at a particular
time due to one shared bus.

• No special handling for the data required longer
pipeline to process

 The new architecture does not need special handing
for the data required longer pipeline to process. But,
the original multiprocessor pipeline need overflow
facility or accumulation and sending back while the
data stream ceases.

Additionally, more specific advantages for the new
switch-based dynamic memory and cache-management
technology in the new architecture are emphasized as
follows:

• avoids moving the data from one memory to
another memory

• allows more than one Switching operation at a time;
all the Switchings occur at the same time

• reduces bus limitations and large bus traffic using
the bus crossbar

• improves performance in both space and time

Finally, to summarize, there are several overall
advantages of this new multi-core pipelined architecture as
follows:

• provides the continuous data processing of
intensive information flows

• requires essentially the same software as ordinary
sequential algorithm

• avoids load balancing and scheduling
• avoids the need for synchronization among the

processors
• avoids busy waiting of processors on a spin-lock
• avoids the duplication for incoming data stream
• be suitable for highly variable data processing time

Another advantage worth mentioning is that this core
multiprocessor/multi-core pipelining technology provides an
important solution to processing the continuous intensive
information flows without limitation by size. Consequently,
this would be very helpful to real-time massive data
processing, especially geospatial computing.

REFERENCES

[1] AMD Corporation, White Paper: AMD Multi-core Processors.
AMD Corporation. 2006.

[2] S. Berkovich, Z. Kitov, A. Meltzer: On-the-fly processing of
continuous data streams with a pipeline of microprocessors. In
Proceedings of the International Conference on Databases,
Parallel Architectures, and Their Applications (PARBASE-
90), IEEE Computer Society, Maiami Beach, Florida, March
1990, pp. 85-97.

[3] S. Berkovich, M. Loew, and M. Zaghloul: On-Line
Processing and Archiving of Continous Data Flows. In IEEE
Proceedings of 35th Midwest Symposium on Circuits and
Systems. Washington DC, Aug. 1992, pp. 777-779.

[4] E. Berkovich, S. Berkovich, M. Loew: A Multi-Layer
Conveyor for Processing Intensive Information Flows. The
Technical Report, GWU-IIST-94-13, The George Washington
University, 1994.

[5] S. Berkovich, E. Berkovich, and M. Loew, 2000. “Multi-
Layer Multi-Processor Information Conveyor with Periodic
Transferring of Processor’s States for On-The-Fly
Transformation of Continuous Information Flows and
Operating Method Therefor”, US PATENT No. 6145071,
owned by George Washington University. Date issued -
November 7, 2000.

[6] Crossbar Switch on Wikipedia.
http://en.wikipedia.org/wiki/Crossbar_switch. 2008.

[7] NVidia. NVIDIA CUDA Compute Unified Device
Architecture Programming Guide (Version 2.1 Beta), Oct.
2008.

[8] NVidia. NVIDIA CUDA Compute Unified Device
Architecture Reference Manual (Version 2.1 Beta), Nov. 2008.

[9] D. Culler, J.P. Singh, Anoop Gupta, Parallel Computer
Architecture: A Hardware/Software Approach, Morgan
Kaufmann, © 1998. ISBN 1-55860-343-3.

[10] Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar,

Parallel & Cloud Computing PCC Vol. 2, Iss. 2

PCC Vol. 2 Iss. 2, 2013 PP. 49-57 © 2013 American V-King Scientific Publishing
57

An Introduction to Parallel Computing, Design and Analysis
of Algorithms: 2/e, Addison-Wesley, © 2003. ISBN 0-201-
64865-2.

[11] Intel Corporation, White Paper: Intel® Multi-Core Processor
Architecture Development Backgrounder. Intel Corporation.
2006.

[12] NVidia Corporation, Technical Brief: GeForce3: Lightspeed
Memory Architecture. Nvidia Corporation. 2001.

[13] Aaftab Munshi, The OpenCL Specification (Version 1.0).
Khronos OpenCL Working Group. Dec. 2008.

[14] RapidMind. Easily build applications for multi-core.
http://www.rapidmind.net/product.php. 2008.

[15] Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M.,
Dubey, P., Junkins, S., Lake, A., Sugerman, J., Cavin, R.,
Espasa, R., Grochowski, E., Juan, T., and Hanrahan, P. 2008.
Larrabee: a many-core x86 architecture for visual computing.
In ACM SIGGRAPH 2008 Papers (Los Angeles, California,
August 11 - 15, 2008). SIGGRAPH '08. ACM, New York,
NY, 1-15.

[16] Stompel, A., Ma, K., Lum, E.B., Ahrens, J., and Patchett, J.
2003. SLIC: Scheduled Linear Image Compositing for
Parallel Volume Rendering. In Proceedings of the 2003 IEEE
Symposium on Parallel and Large-Data Visualization and
Graphics (October 20 - 21, 2003). Parallel and large-data
visualization and graphics. IEEE Computer Society,
Washington, DC, 6.

Duoduo Liao earned a Ph.D. and a M.S. in Computer Science
from George Washington University and Purdue University in
USA, respectively. Since 2002, she has worked for the federal
government agencies and universities on PC-clustered highway
driving simulator systems, 3D graphics & visualization, virtual
reality, GIS, traffic simulation, air traffic management, multi-core
architectures, heterogeneous computing, etc. She ever worked at
ESRI and developed the first version of Stereo Viewer for ArcGIS
in 2001. In 1996, she pioneered the product development of the
PC-based high-resolution quad-buffered 3D stereographic
accelerators using the earliest PC graphics chips invented by 3D
Labs. Dr. Liao has authorized more than 80 technical publications
and two professional books on GPU-based research and OpenGL
programming. She has been invited to give the talks by the federal
governments, leading industries, and universities. She was an
adjunct professor at George Mason University. She is a member of
ACM and IEEE, and serves the conference chairs, editorial boards,
and committees of several international conferences.

Simon Y. Berkovich earned a M.S. in Applied Physics from
Moscow Physical-Technical Institute and a Ph.D. in Computer
Science from the Institute of Precision Mechanics and Computer
Technology of the USSR Academy of Sciences. He is a Professor
of School of Engineering and Applied Science at George
Washington University. Prof. Berkovich played a leading role in a
number of research and development projects on the design of
advanced hardware and software systems. Those projects include
construction of superconductive associative memory, development
of large information systems for economics, investigation of
computer communications for multiprocessor systems, and
enhancement of information retrieval procedures. Prof. Berkovich
has several hundred professional publications in various areas of
physics, electronics, computer science, and biological cybernetics.
He is an author of six books and holds 30 patents. Among his
inventions is a method for dynamic file construction that later
become known as B-tree and extendible hashing. In 2002, he was
elected a member of the European Academy of Sciences “for an
outstanding contribution to computer science and the development
of fundamental computational algorithms”.

