
Copyright © 2008 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
VRCAI 2008, Singapore, December 8 –9, 2008.
© 2008 ACM 978-1-60558-335-8/08/0012 $5.00

GPU-accelerated Multi-valued Solid Voxelization
by Slice Functions in Real Time

Duoduo Liao*

George Washington University

Figure 1: Solid voxelization results (2563) with different slice functions. (a) is a volumetric dragon model in

FUNC_COLORFUL_CHECKER, (b) is a volumetric happy Buddha model with a slice function of
semi-translucent jade, (c) is a volumetric dragon model in FUNC_COLOR_RAMP.

Abstract
This paper presents a GPU-accelerated slice-independent solid
voxelization approach that utilizes a dynamic slice function
mechanism and masking techniques to significantly improve solid
voxelization speed in real time as well as create various multi-
valued solid volumetric models with different slice functions. In
particular, by dynamically applying different slice functions, any
surface-closed geometric model can be voxelized into a solid
volumetric representation with any kind of interior materials, such
as rainbow, marble, wood, translucent jade, etc. In this paper, the
design of the dynamic slice function, the principle and algorithm
of solid slice creation, the algorithm of real-time solid
voxelization, and GPU-based acceleration techniques will be
discussed in detail. The algorithms introduced in this paper are
easy to implement and convenient to integrate into many
applications, such as volume modeling, collision detection,
medical simulation, volume animation, volume deformation, 3D
printing, and computer art. The experimental results and data
analysis for the complex objects demonstrate the effectiveness,
flexibility, and diversity of this approach.

CR Categories: I.3 [Computer Graphics]: Solid Representations,
Frame Buffer Operations, Volume Modeling, Solid Voxelization,
Masking, Procedural Texturing, Hardware Acceleration

Keywords: volume modeling, solid voxelization, masking, solid
slice function, GPU acceleration

*e-mail: dliao@gwu.edu, duoduo@acm.org

1 Introduction

Recently volumetric data have been used in a wide range of
applications including medical imaging, scientific visualization,
CAD/CAM, virtual reality, and entertainments. There is a
tremendous demand for a wide variety of volumetric models and
the approaches to generate them. While there has been significant
progress in the area of volume rendering for over the past decades,
creating and acquiring high-fidelity volumetric models remains a
challenging and expensive process. Especially, how to fast
acquire internal features of 3D objects in real time is still one of
great challenges. Some biomedical scanning devices, such as
CT/MRI, can acquire some internal features. However, these
methods can be slow, expensive, destructive, impractical or, used
for certain materials or objects. Voxelization is another way to
acquire the internal volumetric data of geometry objects. It is an
indispensable stage in volume graphics [Kaufman 1991].

The earliest voxelization idea, 3D scan-conversion [Kaufman and
Shimony 1986] for voxel-based volume, was inspired by the
extension of 2D scan-conversion for a pixel-based image. In early
years, the voxelization research started with geometric objects,
such as lines, curves, and surfaces, as studied in [Cohen and
Kaufman 1995][Danielsson 1970][Huang et al. 1998][Kaufman
1987][Kaufman 1988][Mokrzycki 1988][Sramek and Kaufman
1999]. The extensive surface voxelization studies have continued
in recent years [Chen and Fang 2000][Dachille and Kaufman
2000][Eisemann and D`ecoret 2006][Wang and Kaufman 1993].
But this kind of voxelization does not provide internal features.
The voxelization of solid geometric objects, called solid
voxelization, is much more difficult and time-consuming because
this process requires an inside test for each voxel in the volume
space. Generally speaking, less research on solid voxelization has
been carried out. With the development of graphics hardware in
recent years, some solid voxelization methods based on pure
software, hardware acceleration, or software and hardware mixing
has been studied. Unfortunately, limitations in algorithms, such as
low speed, missing voxels, slice dependency, binary-only voxels,
incontinuous voxelization, non-transparency, etc. still exist.

The main contribution of this paper is to propose a real-time solid
voxelization approach using dynamic solid slice functions and
masking techniques based on GPU acceleration to convert solid
geometric objects into any size of diverse multi-valued volumetric
models at the same time. This approach significantly improves the
voxelization speed for solid geometric objects in real time.
Furthermore, the algorithm is slice-independent voxelization
processing, which is very suitable for parallelization. Additionally,
Stencil buffer is a core technique used for the important masking
techniques in this solid voxelization algorithm. Although stencil
buffer technique has been used widely in many applications, such
as shadow volumes, surface-based CSG rendering, it was first
used for solid voxelization in [Liao 2001][Liao 2002]. This paper
extends and enhances this technique to combine stencil buffer
with GPU techniques to first propose the dynamic solid slice
functions to generate diverse solid volumes.

The rest of the paper is organized as follows. Section 2 provides a
brief survey of related work. Section 3 describes the definition
and design of dynamic solid slice functions. Section 4 discusses
the important principles and algorithms of the solid slice creation
and real-time solid voxelization with arbitrary orientation,
respectively. Section 5 provides some detailed experimental
results. At last, the conclusions and future work are addressed.

2 Related Work

Although less research has been done on solid voxelization than
surface voxelization in volumetric modeling and representation in
a volumetric domain, the relevant prior work has been certainly
studied for over the past years, but they are still limited.

In early year, a general purpose algorithm based on point
classification [Lee and Requicha 1982] is too slow. Traditional
pure software based 3D scan-conversion approaches for
voxelization were studied thoroughly [Kaufman and Shimony
1986][Kaufman 1988]. Later, some algorithms based on filtering
and distance volume use different filtering or distance values to
fill all interior voxels or to thicken the boundaries of the polygons
to avoid aliasing [Breen et al. 1998][Sramek and Kaufman
1999][Wang and Kaufman 1993]. Additionally, a new,
morphological criterion was presented for determining whether a
geometric solid is suitable for voxelization [Baerentzen 2000].

In recent years, more and more studies explore the benefits of
graphics hardware for more efficient rendering. Some fast
hardware-based techniques have been employed for solid
voxelization. A slice-based algorithm [Chen and Fang 2000] for
solid voxelization is presented through setting one slice-thick
projection as a clipping plane to generate a voxel-based closed
surface boundary and then applying a logical XOR operation
between the current slice and the previous slice that has already
been classified against the solid object. However, only a binary
volume is generated due to XOR operations. The problem of
missing voxels leading to prolonged lines exists.

Later, a stencil buffer based solid voxelization algorithm was first
proposed in [Liao and Fang 2002]. The stencil buffer is utilized as
a mask to generate interior voxels while solid geometric objects
are clipped by a clipping plane without setting a thick projection
for each slice. However, this algorithm needs to draw the object
twice to count the number of front and back faces. The total
voxelization speed is influenced by 2D texture mapping due to the
large amount of memory swapping between GPU and CPU. Also,
only one fixed color for an object volume is generated.

One multiple Z-buffer based solid voxelization algorithm
[Karabassi et al. 1999] was proposed to use six z-buffers to

project an object to six faces of its bounding box for the outermost
parts and read back the information from depth buffer to
synthesize the volume. However, it only works well on convex
objects. Also, it take much time to generate the inside voxels due
to using pure software methods to check each voxel. Later, this
algorithm was improved to handle non-convex objects and use
double layer buffering techniques to determine the number of
actual intersections per voxel [Passalis et al. 2004]. However, this
algorithm becomes slow as the number of z-buffers increases.

Recently, the max-norm distance computation algorithm
[Varadhan et al. 2003] is used for the design of a reliable voxel-
intersection test to determine whether the surface of a primitive
intersects a voxel for solid voxelization and generate adaptive
distance fields with the guarantee of Hausdorff distance. However,
the overall algorithm runs slowly even with rasterization hardware
for local refinement. Another distance-field voxelization approach
by GPU acceleration [Hsieh et al. 2005] was presented but tested
only for surface voxelization. The solid voxelization has not been
fully tested due to the bottleneck of pixel shader performance.

Some GPU-based voxel coding approach [Dong et al. 2004] and
[Eisemann and DŽcoret 2006] were proposed. The former uses
GPU acceleration to rasterize and texelize an object into three
directional textures and then synthesize these textures back to the
final volume. This algorithm is designed for surface voxelization
but could be extended to solid voxelization, which uses 3D scan-
filling operation along three axis directions then check for
common voxels. However, prolonged lines appear where some
voxels are missing at the rasterization stage. The 3D scan-filling
operation is time-consuming. The latter algorithm employs similar
techniques. However, only a subset of voxels, instead of the entire
interior voxels, is generated. Likwise, some voxels are missing as
aligned with the view direction and some are not voxelized
continuously due to a large slope in z direction.

3 Solid Slice Function

3.1 The Definition of Solid Slice Function
The realtime solid voxelization proposed in this paper is the slice-
based voxelization. That is, such a volumetric object voxelized by
a solid geometric object is composed of a set of solid slices. A
solid slice is an image or texture with interior pixel information
besides the boundary pixel information. Thus, the ith solid slice Si
can be described as }),,({),(3RiyxfyxS i ∈= ,
where),,(,,...,1,,...,1,,...,1 iyxfNziNyyNxx ===
is a solid slice function. Such a volumetric object V can be
described as },...,1,{)(NziSzV i == .
 In theory, a solid slice function can be any function, which is
static or dynamic, continuous or incontinuous in 2D or 3D space
or even higher dimensional space. For example, such a function
could be a color, intensity, index, fixed texture, noise, procedural
texture [Ebert et al. 2003], filter, blending function,
transformation, deformation, logic, etc. In addition, for special
purpose or application needs, these functions can be defined by
users themselves. Specifically, the solid slice function fs can be
described as

⎪
⎪

⎩

⎪
⎪

⎨

⎧
−

=

),,(
),,(
),(),,(

zyxf
zyxf
yxf

valuefixed
zyxf

customized

s

The design of a solid slice function constitutes an important
process of real-time solid voxelization. One or more parameters

can be defined in each function, and may be modified
dynamically by the users during interaction since the entire solid
voxelization can be done in real time. That is, each solid slice
defined in this paper can be not only filled by constant values but
also described by a certain function. Furthermore, each solid slice
can be applied by different functions to generate special effects
for the volumetric object.

3.2 Several Typical Solid Slice Functions

Several typical functions used for this paper are described in
Table 1. FUNC_NOISE_WOOD, FUNC_NOISE_MARBLE, and
FUNC_NOISE_ROCK are solid slice functions defined by Perlin
noise [Perlin 2002] in 3D continuous space. FUNC_MY_TYPE* are
other customized solid slice functions such as translucent jade.
These functions can be designed to meet users’ special
requirements according to their applications. In addition, some
example effects of these solid slice functions are shown in Figure
1, 6, and 7. There are detailed explanations in Sec. 5.

Table 1: Math description of some typical solid slice functions

Function Type Math Function Description Comment

FUNC_SINGLE_COLOR colorzyxf s =),,(color:
a constant

FUNC_COLOR_RAMP
)],2[(

),,(
zcolorColorramp

zyxf s

=

 color[2]:
two constants

FUNC_INTERPOLATED
_COLORS),],4[(

),,(
yxcoloreInterpolat

zyxf s

=

 color[4]:
four constants

FUNC_COLORFUL_CHE
CKER

)],2[ker(),,(zcolorCheczyxf s = color[2]:
two constants

FUNC_NOISE_WOOD),,(_),,(zyxnoisePerlinzyxfs = Perlin noise in 3D
space

FUNC_NOISE_MARBLE),,(_),,(zyxnoisePerlinzyxfs = Perlin noise in 3D
space

FUNC_NOISE_ROCK),,(_),,(zyxnoisePerlinzyxfs = Perlin noise in 3D
space

FUNC_MY_TYPE*),,(),,(Customized zyxfzyxf s = Other customized
functions

4 Solid Voxelization

To achieve real-time solid voxelization, many OpenGL buffers
techniques are used for solid slice creation. One of the core ideas
of this approach is to use depth buffer and stencil buffer to create
a mask by surface parity check and then to apply diverse slice
functions to generate corresponding solid slices. Furthermore,
using this idea, the multi-valued volume can be efficiently created
only once at the same time of the voxelization. This is much
different from prior inefficient multi-valued volume computation
methods, in which a binary volume is usually first generated and
then the value is applied to each pixel.

4.1 Surface Parity Check and Mask Creation

The surface of an object can be categorized as front or back facing,
in relation to the position of the viewer. Surface parity refers to
whether a surface in the depth buffer is inside or outside of a
given volume. The parity of each depth buffer element can be
determined by toggling a parity flag (i.e. front or back facing) at
that pixel in front of the depth buffer. Regions of odd parity,
where the flag is set to one, correspond to depth buffer elements
volumetrically inside an object. The parity flag information is
recorded correspondingly in the stencil buffer as a mask.

Figure 2 illustrates the principle of surface parity check on each
solid slice. The parity flag is initially set to be zero. Given a slice
plane, the parity of each depth buffer element is toggled at that
pixel in front of the depth buffer. Along the Line Of Sight (LOS)
from the viewpoint, the flag is toggled when the LOS intersects
with front or back facets of the solid object which are in front of
the slice plane. If the final parity flag is set to one, it shows that
pixel is inside the solid object. Otherwise, the pixel is outside the
solid object. In this approach, stencil buffer is used as a mask to
store the parity check, which will be used to determine the interior
information of the clipped solid object. After the mask created in
the stencil buffer, the solid slice can be obtained through the mask
in combination with the solid slice function.

Figure 2: Surface parity check and mask creating

In general, all the processes of the surface parity check and mask
creating can be implemented by GPU hardware. This important
feature makes full use of GPU hardware acceleration.
Consequently, the solid slice can be obtained at interactive or
even real-time speed, which depends on the complexity of input
solid slice functions.

4.2 The Principle of Solid Slice Creation

Figure 3 illustrates the principle of one solid slice creation based
on masking and solid slice function techniques. First, one slice

viewpoint

Z slice plane

Z

X
Y

1
2
3
4
5
6
7
8
9

10

11

: Line Of Sight (LOS)
: Voxels with interior information

Calculate the ith
mask by surface

parity check

Input slice
function

Output ith solid
slice

Mask
Out

Move the clipping
slice to the ith slice
position and record

its depth info

),,(zyxf s

Select one slice
function

Figure 3: The principle of one solid slice creation

plane is moved to its corresponding position in 3D space. A depth
buffer with the same size of this slice, normally Nx by Ny, is used
for recording its depth information. Second, a stencil buffer with
the same size is used to generate a mask of the solid object
clipped by the slice plane at that slice position. Third, in
combination with one selected slice function, the interior
information of the clipped solid object on the corresponding slice
plane is generated dynamically. Thus, one solid slice is created
with interior information specified by the slice function.

4.3 The Algorithm of Solid Slice Creation

The algorithm of solid slice creation is summarized in Figure 4.
Conceptually, one depth buffer, one stencil buffer, and one color
buffer are utilized to generate one solid slice at one time.
Additionally, the generation of the final solid slice actually in the
frame buffer avoids any copying after rendering. The entire
algorithm can be fully implemented on the standard graphics
system. If multiple or larger buffers are used, more solid slices
can be created at the same time. Thus, the total creation speed will
increase correspondingly.

Figure 4: Algorithm of solid slice creation

4.4 The Algorithm of Real-time Solid Voxelization

The solid voxelization algorithm proceeds by moving a slice plane,
which is parallel to the projection plane, with a constant step size
in volume space. For each new slice, if it is inside the bounding
box of the solid geometric object, a new solid slice is created by
calling CreateSolidSlice(). Then it is directly stored into a given
3D texture volume without taking time to do swapping between
GPU and main memory. In addition, This algorithm can do
voxelization in an arbitrary orientation.

The algorithm of real-time solid voxelization for arbitrary
orientation is summarized in Figure 5.

5 Experimental Results

Some experimental image results of the algorithm of real-time
solid voxelization described in this paper are presented in Figures
1, 6, and 7. The time spent to create models at different
resolutions and sizes are listed in Table 2 and Table 3.

All tests were run on a Dell PC with Pentium (R) D a single
processor 3.0GHZ and 2GB RAM equipped with an Nvidia
GeFore 7800 GTX (8-bit stencil buffer, 24-bit depth buffer,
256MB texture memory, and 3D texture mapping supported). The
program is written in Microsoft VC++, OpenGL 2.0.3, and Cg.
The operating system is Winsows XP. All volumetric data models
were rendered using 3D texture mapping.

5.1 The Image Results of Solid Voxelization
In Figure 1, for the dragon model, (a) and (c) are the solid
voxelization results by using the solid slice function
FUNC_COLORFUL_CHECKER and FUNC_COLOR_RAMP
defined in Table 1. For the happy Buddha model, (b) is the solid
voxelization result by using the slice function of semi-translucent
jade.

In Figure 6, (a) shows the dragon model is voxelized using the
slice function FUNC_COLOR_RAMP. However, the voxelization
orientation and color settings are different from Figure 1 (c). The
orientation is from the dragon head to its tail while Figure 1 (c) is
from the left side to the right side. Figure 6 (b) uses
FUNC_INTERPOLATED_COLOR. (c) and (d) are the cutting effects
after voxelization using the slice function FUNC_NOISE_MARBLE
and FUNC_NOISE_WOOD, respectively. All interior materials can

Algorithm 1: Solid Slice Creation
CreateSolidSlice()
Input:
L ← a display list of a closed surface-based object
i ← the number of the ith slice which need to be voxelized
into a solid slice
SolidSliceFunc() ← a specified solid slice function
Output:
S← the solid slice
Begin
1 Clear the color, stencil, and depth buffers
2 Initialize depth buffer of ith slice with the same size as the

projection window
3 Use stencil buffer to toggle parity flag for front or back
surfaces by calling the display list L in front of ith slice
4 Apply the solid slice function SolidSliceFunc() to ith slice
into color buffer
5 Use stencil mask for parity check to mask out the solid slice

5.1 If stencil buffer value is 1 then
 Corresponding portion of ith slice is updated by slice

function in color buffer
5.2 Else cleared to background color
 End of if

6 Get voxelized solid slice S from the frame buffer
7 Output the entire voxelized solid slice S
End

Algorithm 2: Realtime Solid Voxelization
SolidVoxelization()
Input:
O ← a closed surface-based object
Nx, Ny, Nz ← size of the output volume
Bmin, Bmax ← minimum and maximum 3D vectors (x, y, z)
of the bounding box
SolidSliceFunc() ← a specified solid slice function
Output:
V← the voxelized solid volume
Begin
1 Set the viewport (0, 0, Nx, Ny)
2 Set orthogonal projection
3 Set background color to be (0, 0, 0, 0)
4 Do transformation for the object, O, to make its orientation

specified for voxelization consistent with Z axis. Generate
the display list L for the geometric object O drawing.

5 Initialize or preprocess the slice function SolidSliceFunc()
6 For each slice i = 0 to Nz – 1 do
 6.1 If slice i insides the bounding box (Bmin, Bmax) then
 6.1.1 ith solidSlice ← CreateSolidSlice(L, i,
SolidSliceFunc())
 6.1.2 Insert ith solidSlice into the 3D texture volume V
 End of if
 End of for
7 Output the entire volume V
End

Figure 5: Algorithm of realtime solid voxelization

be seen in the image results. They keep continuous in 3D space by
using Perlin 3D noise during solid voxelization.

Likewise, in Figure 7, (a) uses FUNC_COLOR_RAMP. (b) is the
solid voxelization result of one customized solid slice function to
simulate the effect of semi-translucent jade. (c) is the back effect
of (b). (d) uses the slice function FUNC_NOISE_ROCK. (e) is the
cutting effect of (d). (f) uses the slice function
FUNC_NOISE_MARBLE and (g) is the cutting effect of (f).

5.2 The Performance of Solid Voxelization

In Table 2 (a) and Table 3, different resolutions of the dragon and
Buddha models were voxelized using FUNC_SINGLE_COLOR
slice function into solid volumetric models by the size of 643,
1283, 2563, and 5123, respectively. All the solid voxelization
performances are less than 0.5ms, even for 1M polygons of
Buddha model by the voxelization size 5123. In Table 2 (b),
different resolutions of the dragon models were voxelized using
other color-based slice functions, FUNC_COLOR_RAMP and
FUNC_INTERPOLATED_COLORS into solid volumetric models by
the size of 1283 and 2563, respectively. All the solid voxelization
performances are less than 0.5ms.

Table 2: Time spent of solid voxelization of the dragon model

 (a) Solid voxelization using FUNC_SINGLE_COLOR slice function

 (b) Solid voxeliaztion using other color-based slice functions

Table 3: Time spent of solid voxelization of the buddha model

6 Conclusions and Future Work

In this paper, this new real-time solid voxelization approach
markedly improves the voxelization speed for solid geometric
objects in real time. In particular, by dynamically applying
different slice functions, any surface-closed geometric model can
be voxelized into a solid volumetric representation with many
different kinds of interior materials or textures. This approach has

been demonstrated to be effective, robust, flexible, and diverse for
both convex and concave complex models. It is easy to implement
and integrate this approach into various interactive applications,
such as volume modeling, volumetric collision detection, medical
simulation, volume animation, 3D printing, and computer art.
However, there are still some limitations in the current approach.
The computation of complex solid slice functions, such as Perlin
noise, takes much more time than that of color-based functions.
Like many other voxelization algorithms, anti-aliasing problem
exists. The surface boundary of the volumetric object is not
generated smoothly during the voxelization in both 2D and 3D
spaces. Due to slice-based voxelization, the running time is
influenced by the number of slices.

There are several improvements and directions for the future work.
More efficient methods based on software and hardware
acceleration may be explored to improve the computation for
complex solid slice functions and quality (i.e. smoothness and
accuracy) of the volumetric data during voxelization. Another
interesting area of future research is to extend this approach to
volume animation and volume deformation to explore the solid
voxelization of time-varying input geometric model data in a
progressive manner. Moreover, with increasing demands of real-
time large volumetric data processing, many parallel and large-
scale data volumetric rendering approaches have been studied
intensively. However, very few parallel voxelization algorithms
are investigated so far. Since the voxelization approach proposed
in this paper is based on slice-independent processing, it is very
suitable for parallelization. In the feature, parallel voxelization
algorithms will be employed to further improve the performance
of real-time voxelization for large-data processing.

References

BAERENTZEN , J. A., SRAMEK, M., AND CHRISTENSEN, N. J. 2000. A
Morphological Approach to Voxelization of Solids. In
Proceedings Of 8th Central Europe on Computer Graphics,
Visualization and Digital Interactive Media, Pilsen, Czech
republic, 44-51.

BREEN, D. E., MAUCH, S., AND WHITAKER, R. T. 1998. 3D Scan
Conversion of CSG Models into Distance Volumes. In
Proceedings of IEEE/ACM Symposium on Volume
Visualization, 7-14.

CHEN, H. and FANG, S. 2000. Hardware Accelerated Voxelization.
Computer and Graphics 24, 3, 433-442.

COHEN, D. and KAUFMAN, A. 1995. Fundamentals of Surface
Voxelization. CVGIP: Graphics Models and Image Processing,
56 (6), 453-461.

DACHILLE, F. and KAUFMAN, A. 2000. Incremental Triangle
Voxelization. In Proceedings Of Graphics Interface 2000, 205-
212.

DANIELSSON, P.E. 1970. Incremental Curve Generation. IEEE
Transactions on Computers. C-19, 80-87.

DONG Z, CHEN W., BAO, H., ZHANG, H. and PENG, Q. 2004. Real-
time Voxelization for Complex Polygonal Models. In
Proceedings of Pacific Graphics 2004, Seoul, Korea. 73-78.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K., and
WORLEY, S. 2003. Texturing & Modeling: A Procedural
Approach, Third Edition (eries in Computer Graphics). The
Morgan Kaufmann.

EISEMANN, E. and D`ECORET, X. 2006. Fast Scene Voxelization
and Applications. In Proceedings of ACM Symposium on
Interactive 3D Graphics and Games. Redwood City, California.

FERNANDO, R. 2004. GPU Gems: Programming Techniques, Tips,
and Tricks for Real-Time Graphics. The Addison-Wesley.

Time Spent
643 1283 2563 5123

1MB 8MB 64MB 512MB
Model

of
Vertices

of
Polygons

1T
2T

3T
4T

Dragon_res4 5,205 11,102 0.05ms 0.07ms 0.12ms 0.22ms
Dragon_res3 22,998 47,794 0.04ms 0.06ms 0.11ms 0.19ms
Dragon_res2 100,250 202,520 0.04ms 0.06ms 0.10ms 0.20ms

Dragon 437,645 871,414 0.05ms 0.07ms 0.12ms 0.33ms

Time Spent
FUNC_COLOR_

_RAMP
FUNC_INTERPOL
ATED_COLORS

1283 2563 1283 2563
Model

of
Vertices

of
Polygons

8MB 64MB 8MB 64MB
Dragon_res3 22,998 47,794 0.07ms 0.12ms 0.09ms 0.13ms

Dragon 437,645 871,414 0.07ms 0.12ms 0.15ms 0.15ms

Time Spent
643 1283 2563 5123

1MB 8MB 64MB 512MB

Model

of
Vertices

of
Polygons

1T
2T

3T
4T

Buddha_res4 7,108 15,536 0.04ms 0.06ms 0.10ms 0.17ms
Buddha_res3 32,328 47,794 0.04ms 0.06ms 0.10ms 0.18ms
Buddha_res2 144,647 293,232 0.04ms 0.06ms 0.10ms 0.18ms

Buddha 543,652 1,087,716 0.06ms 0.09ms 0.13ms 0.32ms

HAUMONT, D. and WARZEE, N. 2002. Complete polygonal scene
voxelization. ACM Journal of Graphics Tools, 7(3):27–41.

HUANG, J., YAGEL, R., FILIPPOV, V., and KURZION, Y. 1998. An
Accurate Method for Voxelizing Polygon Meshes. In Porc.
IEEE/ACM Symposium on Volume Visualization, 119-126.

HSIEH, H., LAI, Y., TAI, W., AND CHANG, S. 2005. A flexible 3D
slicer for voxelization using graphics hardware. In Proceedings
of the 3rd international Conference on Computer Graphics and
interactive Techniques in Australasia and South East Asia
GRAPHITE '05. Dunedin, New Zealand. 285-288.

KARABASSI, E.A., PAPAIOANNOU, G., and THEOHARIS, T. 1999. A
Fast Depth Buffer Based Voxelization Algorithm, Journal of
Graphics Tools, ACM, 4(4), 5-10.

KAUFMAN, A. and SHIMONY, E. 1986. 3D Scan-conversion
Algorithms for Voxel-based Graphics. In Proceedings of 1986
Workshop on Interactive 3D Graphics, 45-75.

KAUFMAN, A. 1987. Efficient Algorithms for 3D Scan-conversion
of Parametric Curves, Surfaces, and Volumes. In
SIGGRAPH’87, volume 21, 171-179.

KAUFMAN, A. 1988. Efficient Algorithms for Scan-converting 3D
Polygons. Computers and Graphics, 12(2):213-219.

KAUFMAN, A. 1991. Volume Visualization. IEEE Computer
Society Press.

LEE, Y. T. and REQUICHA, A. A. G. 1982. Algorithms for
Computing the Volume and Other Integral Properties of Solids.
Communications of the ACM, 25(9):635-650.

LIAO, D. 2001. Volume Fusion. M.S. Thesis, Purdue University.
LIAO, D. and FANG S. 2002. Fast volumetric CSG Modeling Using

Standard Graphics System. In Proceedings of ACM Symposium
on Solid Modeling and Application, 204-211.

MOKRZYCKI, W. 1988. Algorithms of Discretization of Algebraic
Spatial Curves on Homogeneous Cubical Grids. Computers &
Graphics, 12(3/4) 477-487.

PASSALIS, G., KAKADIARIS, I.A., and THEOHARIS, T. 2004.
Efficient hardware voxelization. In Proceedings of Computer
Graphics International 2004 (CGI'04). Volume , Issue , 16-19,
374-377.

PERLIN, K. 2002. Improving noise. In Proceedings of the 29th
ACM Annual Conference on Computer Graphics and
interactive Techniques (SIGGRAPH '02). San Antonio, Texas,
681-682.

PHARR, M., FERNANDO, R. 2005. GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-
Purpose Computation. The Addison-Wesley.

SRAMEK, M. and KAUFMAN, A. 1999. Alias-free voxelization of
geometric objects. IEEE Transactions on Visualization and
Computer Graphics 3(5), 251-266.

VARADHAN, G., KRISHNAN, S., KIM, Y. J., Diggavi, S., and
Manocha, D. 2003. Efficient max-norm distance computation
and reliable voxelization. In Proceedings of the
Eurographics/ACM SIGGRAPH symposium on Geometry
processing, 116–126. Eurographics Association.

WANG, S. and KAUFMAN, A. 2003. Volume Sampled Voxelization
of Geometric Primitives. In Proceedings Of IEEE
Visualization’93, 78-84.

 (a) (b) (c) (d)
Fig. 6. Solid voxelization results (2563) of the dragon model with different slice functions. (a) is a volumetric result with FUNC_COLOR_RAMP, (b) is a
volumetric result with FUNC_INTERPOLATED_COLOR, (c) is a cut volumetric result with FUNC_NOISE_MARBLE, and (d) is a cut volumetric result with
FUNC_NOISE_WOOD.

 (a) (b) (c) (d) (e) (f) (g)
Fig. 7. Solid voxelization results (2563) of the happy Buddha model with different slice functions. (a) is a volumetric result with FUNC_COLOR_RAMP,
(b) is a volumetric result with one customized slice function of semi-translucent jade, (c) is a back effect of (b), (d) is a volumetric result with
FUNC_NOISE_MARBLE, (e) is a cut volumetric result of (d), (f) is a volumetric result with FUNC_NOISE_ROCK, and (g) is a cut volumetric result of (f).

