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Figure 1: Solid voxelization results (2563) with different slice functions. (a) is a volumetric dragon  model in 

FUNC_COLORFUL_CHECKER, (b) is a volumetric happy Buddha model with a slice function of 
semi-translucent jade, (c) is a volumetric dragon model in FUNC_COLOR_RAMP. 

 
Abstract 
This paper presents a GPU-accelerated slice-independent solid 
voxelization approach that utilizes a dynamic slice function 
mechanism and masking techniques to significantly improve solid 
voxelization speed in real time as well as create various multi-
valued solid volumetric models with different slice functions. In 
particular, by dynamically applying different slice functions, any 
surface-closed geometric model can be voxelized into a solid 
volumetric representation with any kind of interior materials, such 
as rainbow, marble, wood, translucent jade, etc. In this paper, the 
design of the dynamic slice function, the principle and algorithm 
of solid slice creation, the algorithm of real-time solid 
voxelization, and GPU-based acceleration techniques will be 
discussed in detail. The algorithms introduced in this paper are 
easy to implement and convenient to integrate into many 
applications, such as volume modeling, collision detection, 
medical simulation, volume animation, volume deformation, 3D 
printing, and computer art. The experimental results and data 
analysis for the complex objects demonstrate the effectiveness, 
flexibility, and diversity of this approach. 
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1 Introduction 

Recently volumetric data have been used in a wide range of 
applications including medical imaging, scientific visualization, 
CAD/CAM, virtual reality, and entertainments. There is a 
tremendous demand for a wide variety of volumetric models and 
the approaches to generate them. While there has been significant 
progress in the area of volume rendering for over the past decades, 
creating and acquiring high-fidelity volumetric models remains a 
challenging and expensive process. Especially, how to fast 
acquire internal features of 3D objects in real time is still one of 
great challenges. Some biomedical scanning devices, such as 
CT/MRI, can acquire some internal features. However, these 
methods can be slow, expensive, destructive, impractical or, used 
for certain materials or objects. Voxelization is another way to 
acquire the internal volumetric data of geometry objects. It is an 
indispensable stage in volume graphics [Kaufman 1991]. 

The earliest voxelization idea, 3D scan-conversion [Kaufman and 
Shimony 1986] for voxel-based volume, was inspired by the 
extension of 2D scan-conversion for a pixel-based image. In early 
years, the voxelization research started with geometric objects, 
such as lines, curves, and surfaces, as studied in [Cohen and 
Kaufman 1995][Danielsson 1970][ Huang et al. 1998][Kaufman 
1987][Kaufman 1988][Mokrzycki 1988][Sramek and Kaufman 
1999]. The extensive surface voxelization studies have continued 
in recent years [Chen and Fang 2000][Dachille and Kaufman 
2000][Eisemann and D`ecoret 2006][Wang and Kaufman 1993]. 
But this kind of voxelization does not provide internal features. 
The voxelization of solid geometric objects, called solid 
voxelization, is much more difficult and time-consuming because 
this process requires an inside test for each voxel in the volume 
space. Generally speaking, less research on solid voxelization has 
been carried out. With the development of graphics hardware in 
recent years, some solid voxelization methods based on pure 
software, hardware acceleration, or software and hardware mixing 
has been studied. Unfortunately, limitations in algorithms, such as 
low speed, missing voxels, slice dependency, binary-only voxels, 
incontinuous voxelization, non-transparency, etc. still exist.   



The main contribution of this paper is to propose a real-time solid 
voxelization approach using dynamic solid slice functions and 
masking techniques based on GPU acceleration to convert solid 
geometric objects into any size of diverse multi-valued volumetric 
models at the same time. This approach significantly improves the 
voxelization speed for solid geometric objects in real time. 
Furthermore, the algorithm is slice-independent voxelization 
processing, which is very suitable for parallelization. Additionally, 
Stencil buffer is a core technique used for the important masking 
techniques in this solid voxelization algorithm. Although stencil 
buffer technique has been used widely in many applications, such 
as shadow volumes, surface-based CSG rendering, it was first 
used for solid voxelization in [Liao 2001][Liao 2002]. This paper 
extends and enhances this technique to combine stencil buffer 
with GPU techniques to first propose the dynamic solid slice 
functions to generate diverse solid volumes.  

The rest of the paper is organized as follows. Section 2 provides a 
brief survey of related work. Section 3 describes the definition 
and design of dynamic solid slice functions. Section 4 discusses 
the important principles and algorithms of the solid slice creation 
and real-time solid voxelization with arbitrary orientation, 
respectively. Section 5 provides some detailed experimental 
results. At last, the conclusions and future work are addressed.  

2 Related Work 

Although less research has been done on solid voxelization than 
surface voxelization in volumetric modeling and representation in 
a volumetric domain, the relevant prior work has been certainly 
studied for over the past years, but they are still limited.  

In early year, a general purpose algorithm based on point 
classification [Lee and Requicha 1982] is too slow. Traditional 
pure software based 3D scan-conversion approaches for 
voxelization were studied thoroughly [Kaufman and Shimony 
1986][Kaufman 1988]. Later, some algorithms based on filtering 
and distance volume use different filtering or distance values to 
fill all interior voxels or to thicken the boundaries of the polygons 
to avoid aliasing [Breen et al. 1998][Sramek and Kaufman 
1999][Wang and Kaufman 1993].  Additionally, a new, 
morphological criterion was presented for determining whether a 
geometric solid is suitable for voxelization [Baerentzen 2000].  

In recent years, more and more studies explore the benefits of 
graphics hardware for more efficient rendering. Some fast 
hardware-based techniques have been employed for solid 
voxelization. A slice-based algorithm [Chen and Fang 2000] for 
solid voxelization is presented through setting one slice-thick 
projection as a clipping plane to generate a voxel-based closed 
surface boundary and then applying a logical XOR operation 
between the current slice and the previous slice that has already 
been classified against the solid object. However, only a binary 
volume is generated due to XOR operations. The problem of 
missing voxels leading to prolonged lines exists.  

Later, a stencil buffer based solid voxelization algorithm was first 
proposed in [Liao and Fang 2002]. The stencil buffer is utilized as 
a mask to generate interior voxels while solid geometric objects 
are clipped by a clipping plane without setting a thick projection 
for each slice. However, this algorithm needs to draw the object 
twice to count the number of front and back faces. The total 
voxelization speed is influenced by 2D texture mapping due to the 
large amount of memory swapping between GPU and CPU. Also, 
only one fixed color for an object volume is generated. 

One multiple Z-buffer based solid voxelization algorithm 
[Karabassi  et al. 1999] was proposed to use six z-buffers to 

project an object to six faces of its bounding box for the outermost 
parts and read back the information from depth buffer to 
synthesize the volume. However, it only works well on convex 
objects. Also, it take much time to generate the inside voxels due 
to using pure software methods to check each voxel. Later, this 
algorithm was improved to handle non-convex objects and use 
double layer buffering techniques to determine the number of 
actual intersections per voxel [Passalis et al. 2004]. However, this 
algorithm becomes slow as the number of z-buffers increases.  

Recently, the max-norm distance computation algorithm 
[Varadhan et al. 2003] is used for the design of a reliable voxel-
intersection test to determine whether the surface of a primitive 
intersects a voxel for solid voxelization and generate adaptive 
distance fields with the guarantee of Hausdorff distance. However, 
the overall algorithm runs slowly even with rasterization hardware 
for local refinement. Another distance-field voxelization approach 
by GPU acceleration [Hsieh et al. 2005] was presented but tested 
only for surface voxelization. The solid voxelization has not been 
fully tested due to the bottleneck of pixel shader performance.  

Some GPU-based voxel coding approach [Dong et al. 2004] and 
[Eisemann and DŽcoret 2006] were proposed. The former uses 
GPU acceleration to rasterize and texelize an object into three 
directional textures and then synthesize these textures back to the 
final volume. This algorithm is designed for surface voxelization 
but could be extended to solid voxelization, which uses 3D scan-
filling operation along three axis directions then check for 
common voxels. However, prolonged lines appear where some 
voxels are missing at the rasterization stage. The 3D scan-filling 
operation is time-consuming. The latter algorithm employs similar 
techniques. However, only a subset of voxels, instead of the entire 
interior voxels, is generated. Likwise, some voxels are missing as 
aligned with the view direction and some are not voxelized 
continuously due to a large slope in z direction. 

3 Solid Slice Function 

3.1 The Definition of Solid Slice Function 
The realtime solid voxelization proposed in this paper is the slice-
based voxelization. That is, such a volumetric object voxelized by 
a solid geometric object is composed of a set of solid slices. A 
solid slice is an image or texture with interior pixel information 
besides the boundary pixel information. Thus, the ith solid slice Si 
can be described as }),,({),( 3RiyxfyxS i ∈= , 
where ),,(,,...,1,,...,1,,...,1 iyxfNziNyyNxx ===  
is a solid slice function. Such a volumetric object V can be 
described as },...,1,{)( NziSzV i == . 
 In theory, a solid slice function can be any function, which is 
static or dynamic, continuous or incontinuous in 2D or 3D space 
or even higher dimensional space. For example, such a function 
could be a color, intensity, index, fixed texture, noise, procedural 
texture [Ebert et al. 2003], filter, blending function, 
transformation, deformation, logic, etc. In addition, for special 
purpose or application needs, these functions can be defined by 
users themselves. Specifically, the solid slice function fs can be 
described as  
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The design of a solid slice function constitutes an important 
process of real-time solid voxelization. One or more parameters 



can be defined in each function, and may be modified 
dynamically by the users during interaction since the entire solid 
voxelization can be done in real time. That is, each solid slice 
defined in this paper can be not only filled by constant values but 
also described by a certain function. Furthermore, each solid slice 
can be applied by different functions to generate special effects 
for the volumetric object. 

3.2 Several Typical Solid Slice Functions 

Several typical functions used for this paper are described in 
Table 1. FUNC_NOISE_WOOD, FUNC_NOISE_MARBLE, and 
FUNC_NOISE_ROCK are solid slice functions defined by Perlin 
noise [Perlin 2002] in 3D continuous space. FUNC_MY_TYPE* are 
other customized solid slice functions such as translucent jade. 
These functions can be designed to meet users’ special 
requirements according to their applications. In addition, some 
example effects of these solid slice functions are shown in Figure 
1, 6, and 7. There are detailed explanations in Sec. 5. 

Table 1: Math description of some typical solid slice functions 

Function Type Math Function Description Comment 

FUNC_SINGLE_COLOR colorzyxf s =),,(  color:  
a constant  

FUNC_COLOR_RAMP 
)],2[(

),,(
zcolorColorramp

zyxf s

=

 color[2]:  
two constants 

FUNC_INTERPOLATED 
_COLORS ),],4[(

),,(
yxcoloreInterpolat

zyxf s

=

 color[4]:  
four constants 

FUNC_COLORFUL_CHE
CKER 

)],2[ker(),,( zcolorCheczyxf s =  color[2]:  
two constants   

FUNC_NOISE_WOOD ),,(_),,( zyxnoisePerlinzyxfs =  Perlin noise in 3D 
space 

FUNC_NOISE_MARBLE ),,(_),,( zyxnoisePerlinzyxfs =  Perlin noise in 3D 
space 

FUNC_NOISE_ROCK ),,(_),,( zyxnoisePerlinzyxfs =  Perlin noise in 3D 
space 

FUNC_MY_TYPE* ),,(),,(  Customized zyxfzyxf s =  Other customized 
functions 

4 Solid Voxelization  

To achieve real-time solid voxelization, many OpenGL buffers 
techniques are used for solid slice creation. One of the core ideas 
of this approach is to use depth buffer and stencil buffer to create 
a mask by surface parity check and then to apply diverse slice 
functions to generate corresponding solid slices. Furthermore, 
using this idea, the multi-valued volume can be efficiently created 
only once at the same time of the voxelization. This is much 
different from prior inefficient multi-valued volume computation 
methods, in which a binary volume is usually first generated and 
then the value is applied to each pixel. 

4.1 Surface Parity Check and Mask Creation 

The surface of an object can be categorized as front or back facing, 
in relation to the position of the viewer. Surface parity refers to 
whether a surface in the depth buffer is inside or outside of a 
given volume. The parity of each depth buffer element can be 
determined by toggling a parity flag (i.e. front or back facing) at 
that pixel in front of the depth buffer. Regions of odd parity, 
where the flag is set to one, correspond to depth buffer elements 
volumetrically inside an object. The parity flag information is 
recorded correspondingly in the stencil buffer as a mask. 

Figure 2 illustrates the principle of surface parity check on each 
solid slice. The parity flag is initially set to be zero. Given a slice 
plane, the parity of each depth buffer element is toggled at that 
pixel in front of the depth buffer. Along the Line Of Sight (LOS) 
from the viewpoint, the flag is toggled when the LOS intersects 
with front or back facets of the solid object which are in front of 
the slice plane. If the final parity flag is set to one, it shows that 
pixel is inside the solid object. Otherwise, the pixel is outside the 
solid object. In this approach, stencil buffer is used as a mask to 
store the parity check, which will be used to determine the interior 
information of the clipped solid object. After the mask created in 
the stencil buffer, the solid slice can be obtained through the mask 
in combination with the solid slice function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Surface parity check and mask creating 

In general, all the processes of the surface parity check and mask 
creating can be implemented by GPU hardware. This important 
feature makes full use of GPU hardware acceleration. 
Consequently, the solid slice can be obtained at interactive or 
even real-time speed, which depends on the complexity of input 
solid slice functions. 

4.2 The Principle of Solid Slice Creation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 illustrates the principle of one solid slice creation based 
on masking and solid slice function techniques. First, one slice 
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Figure 3: The principle of one solid slice creation 



plane is moved to its corresponding position in 3D space. A depth 
buffer with the same size of this slice, normally Nx by Ny, is used 
for recording its depth information. Second, a stencil buffer with 
the same size is used to generate a mask of the solid object 
clipped by the slice plane at that slice position. Third, in 
combination with one selected slice function, the interior 
information of the clipped solid object on the corresponding slice 
plane is generated dynamically. Thus, one solid slice is created 
with interior information specified by the slice function. 

4.3 The Algorithm of Solid Slice Creation 

The algorithm of solid slice creation is summarized in Figure 4. 
Conceptually, one depth buffer, one stencil buffer, and one color 
buffer are utilized to generate one solid slice at one time. 
Additionally, the generation of the final solid slice actually in the 
frame buffer avoids any copying after rendering. The entire 
algorithm can be fully implemented on the standard graphics 
system. If multiple or larger buffers are used, more solid slices 
can be created at the same time. Thus, the total creation speed will 
increase correspondingly. 

 
Figure 4: Algorithm of solid slice creation 

4.4 The Algorithm of Real-time Solid Voxelization 

The solid voxelization algorithm proceeds by moving a slice plane, 
which is parallel to the projection plane, with a constant step size 
in volume space. For each new slice, if it is inside the bounding 
box of the solid geometric object, a new solid slice is created by 
calling CreateSolidSlice(). Then it is directly stored into a given 
3D texture volume without taking time to do swapping between 
GPU and main memory. In addition, This algorithm can do 
voxelization in an arbitrary orientation. 

The algorithm of real-time solid voxelization for arbitrary 
orientation is summarized in Figure 5.  

5 Experimental Results  

Some experimental image results of the algorithm of real-time 
solid voxelization described in this paper are presented in Figures 
1, 6, and 7. The time spent to create models at different 
resolutions and sizes are listed in Table 2 and Table 3.  

All tests were run on a Dell PC with Pentium (R) D a single 
processor 3.0GHZ and 2GB RAM equipped with an Nvidia 
GeFore 7800 GTX (8-bit stencil buffer, 24-bit depth buffer, 
256MB texture memory, and 3D texture mapping supported). The 
program is written in Microsoft VC++, OpenGL 2.0.3, and Cg. 
The operating system is Winsows XP. All volumetric data models 
were rendered using 3D texture mapping. 

5.1 The Image Results of Solid Voxelization 
In Figure 1, for the dragon model, (a) and (c) are the solid 
voxelization results by using the solid slice function 
FUNC_COLORFUL_CHECKER and FUNC_COLOR_RAMP 
defined in Table 1. For the happy Buddha model, (b) is the solid 
voxelization result by using the slice function of semi-translucent 
jade. 
 
In Figure 6, (a) shows the dragon model is voxelized using the 
slice function FUNC_COLOR_RAMP. However, the voxelization 
orientation and color settings are different from Figure 1 (c). The 
orientation is from the dragon head to its tail while Figure 1 (c) is 
from the left side to the right side. Figure 6 (b) uses 
FUNC_INTERPOLATED_COLOR. (c) and (d) are the cutting effects 
after voxelization using the slice function FUNC_NOISE_MARBLE 
and FUNC_NOISE_WOOD, respectively. All interior materials can 

Algorithm 1: Solid Slice Creation  
CreateSolidSlice() 
Input: 
L ← a display list of a closed surface-based object 
i ← the number of the ith slice which need to be voxelized 
into a solid slice 
SolidSliceFunc() ← a specified solid slice function 
Output:  
S← the solid slice  
Begin 
1 Clear the color, stencil, and depth buffers 
2 Initialize depth buffer of ith slice with the same size as the 

projection window 
3 Use stencil buffer to toggle parity flag for front or back 
surfaces by calling the display list L in front of ith slice 
4 Apply the solid slice function SolidSliceFunc() to ith slice 
into color buffer 
5 Use stencil mask for parity check to mask out the solid slice 

5.1 If stencil buffer value is 1 then  
          Corresponding portion of ith slice is updated by slice 

function in color buffer 
5.2 Else cleared to background color 
      End of if 

6 Get voxelized solid slice S from the frame buffer 
7 Output the entire voxelized solid slice S  
End 

Algorithm 2: Realtime Solid Voxelization  
SolidVoxelization() 
Input: 
O ← a closed surface-based object 
Nx, Ny, Nz ← size of the output volume 
Bmin, Bmax ← minimum and maximum 3D vectors (x, y, z) 
of the bounding box 
SolidSliceFunc() ← a specified solid slice function 
Output:  
V← the voxelized solid volume 
Begin 
1 Set the viewport (0, 0, Nx, Ny) 
2 Set orthogonal projection 
3 Set background color to be (0, 0, 0, 0) 
4 Do transformation for the object, O, to make its orientation 

specified for voxelization consistent with Z axis.  Generate 
the display list L for the geometric object O drawing. 

5 Initialize or preprocess the slice function SolidSliceFunc() 
6 For each slice i = 0 to Nz – 1 do 
   6.1 If slice i insides the bounding box (Bmin, Bmax) then  
          6.1.1 ith solidSlice ← CreateSolidSlice(L, i, 
SolidSliceFunc()) 
          6.1.2 Insert ith solidSlice into the 3D texture volume V 
          End of if 
   End of for 
7 Output the entire volume V 
End

Figure 5: Algorithm of realtime solid voxelization 



be seen in the image results. They keep continuous in 3D space by 
using Perlin 3D noise during solid voxelization. 

Likewise, in Figure 7, (a) uses FUNC_COLOR_RAMP. (b) is the 
solid voxelization result of one customized solid slice function to 
simulate the effect of semi-translucent jade. (c) is the back effect 
of (b). (d) uses the slice function FUNC_NOISE_ROCK. (e) is the 
cutting effect of (d). (f) uses the slice function 
FUNC_NOISE_MARBLE and (g) is the cutting effect of (f). 

5.2 The Performance of Solid Voxelization 

In Table 2 (a) and Table 3, different resolutions of the dragon and 
Buddha models were voxelized using FUNC_SINGLE_COLOR 
slice function into solid volumetric models by the size of 643, 
1283, 2563, and 5123, respectively. All the solid voxelization 
performances are less than 0.5ms, even for 1M polygons of 
Buddha model by the voxelization size 5123.  In Table 2 (b), 
different resolutions of the dragon models were voxelized using 
other color-based slice functions, FUNC_COLOR_RAMP and 
FUNC_INTERPOLATED_COLORS into solid volumetric models by 
the size of 1283 and 2563, respectively. All the solid voxelization 
performances are less than 0.5ms. 
 
Table 2: Time spent of solid voxelization of the dragon model 

 (a) Solid voxelization using FUNC_SINGLE_COLOR slice function 
 

 (b) Solid voxeliaztion using other color-based slice functions 

Table 3: Time spent of solid voxelization of the buddha model 

6 Conclusions and Future Work 

In this paper, this new real-time solid voxelization approach 
markedly improves the voxelization speed for solid geometric 
objects in real time. In particular, by dynamically applying 
different slice functions, any surface-closed geometric model can 
be voxelized into a solid volumetric representation with many 
different kinds of interior materials or textures. This approach has 

been demonstrated to be effective, robust, flexible, and diverse for 
both convex and concave complex models. It is easy to implement 
and integrate this approach into various interactive applications, 
such as volume modeling, volumetric collision detection, medical 
simulation, volume animation, 3D printing, and computer art. 
However, there are still some limitations in the current approach. 
The computation of complex solid slice functions, such as Perlin 
noise, takes much more time than that of color-based functions. 
Like many other voxelization algorithms, anti-aliasing problem 
exists. The surface boundary of the volumetric object is not 
generated smoothly during the voxelization in both 2D and 3D 
spaces. Due to slice-based voxelization, the running time is 
influenced by the number of slices. 

There are several improvements and directions for the future work. 
More efficient methods based on software and hardware 
acceleration may be explored to improve the computation for 
complex solid slice functions and quality (i.e. smoothness and 
accuracy) of the volumetric data during voxelization. Another 
interesting area of future research is to extend this approach to 
volume animation and volume deformation to explore the solid 
voxelization of time-varying input geometric model data in a 
progressive manner. Moreover, with increasing demands of real-
time large volumetric data processing, many parallel and large-
scale data volumetric rendering approaches have been studied 
intensively. However, very few parallel voxelization algorithms 
are investigated so far. Since the voxelization approach proposed 
in this paper is based on slice-independent processing, it is very 
suitable for parallelization. In the feature, parallel voxelization 
algorithms will be employed to further improve the performance 
of real-time voxelization for large-data processing. 
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                               (a)                                                       (b)                                                 (c)                                                   (d)  
Fig. 6. Solid voxelization results (2563) of the dragon model with different slice functions. (a) is a volumetric result with FUNC_COLOR_RAMP, (b) is a 
volumetric result with FUNC_INTERPOLATED_COLOR, (c) is a cut volumetric result with FUNC_NOISE_MARBLE, and (d) is a cut volumetric result with 
FUNC_NOISE_WOOD. 
 

 
                  (a)                          (b)                            (c)                           (d)                           (e)                          (f)                          (g)  
Fig. 7. Solid voxelization results (2563) of the happy Buddha model with different slice functions. (a) is a volumetric result with FUNC_COLOR_RAMP, 
(b) is a volumetric result with one customized slice function of semi-translucent jade, (c) is a back effect of (b), (d) is a volumetric result with 
FUNC_NOISE_MARBLE, (e) is a cut volumetric result of (d), (f) is a volumetric result with FUNC_NOISE_ROCK, and (g) is a cut volumetric result of (f). 
 
 


