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Given a data set 𝐷 = {𝒙𝑖, 𝑦𝑖}𝑖=1
𝑛  with 𝒙𝑖 ∈ 𝑅

𝑝 and 𝑦𝑖 ∈ {+1,−1}, the goal of logistic regression is to 

learn a function that estimates 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝒙𝑖).  A logistic regression model is a Generalized 

Linear Model (GLM) having the following form: 𝑙𝑛 (
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝒙𝑖)
1−𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝒙𝑖)

) = 𝒘𝑡𝒙𝒊.  The function 

𝑙𝑛 (
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝒙𝑖)
1−𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝒙𝑖)

) is known as the logit function.  While simple linear regression could be 

used to estimate the 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝒙𝑖) directly, the range of the probability function is zero to 

one.  By taking the logarithm of the odds ratio, we are converting the range from [0,1] to (−∞,∞).  

Solving 𝑙𝑛 (
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝒙𝑖)
1−𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝒙𝑖)

) = 𝒘𝑡𝒙𝒊 for 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝒙𝑖), we get  

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝒙𝑖) =
1

1+𝑒𝑥𝑝(−𝒘𝑡𝒙𝒊)
:  

𝑙𝑛 (
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖)

1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖)
) = 𝒘𝑡𝒙𝒊 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖)

1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖)
= 𝑒𝑥𝑝(𝒘𝑡𝒙𝒊)  

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖) = 𝑒𝑥𝑝(𝒘
𝑡𝒙𝒊)(1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖)) 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖) = 𝑒𝑥𝑝(𝒘
𝑡𝒙𝒊) − 𝑒𝑥𝑝(𝒘

𝑡𝒙𝒊) 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖) 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖) + 𝑒𝑥𝑝(𝒘
𝑡𝒙𝒊) 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖) = 𝑒𝑥𝑝(𝒘

𝑡𝒙𝒊) 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖)(1 + 𝑒𝑥𝑝(𝒘
𝑡𝒙𝒊)) = 𝑒𝑥𝑝(𝒘

𝑡𝒙𝒊) 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖) =
𝑒𝑥𝑝(𝒘𝑡𝒙𝒊)

1 + 𝑒𝑥𝑝(𝒘𝑡𝒙𝒊)
 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖) =

𝑒𝑥𝑝(𝒘𝑡𝒙𝒊)
𝑒𝑥𝑝(𝒘𝑡𝒙𝒊)

1
𝑒𝑥𝑝(𝒘𝑡𝒙𝒊)

+
𝑒𝑥𝑝(𝒘𝑡𝒙𝒊)
𝑒𝑥𝑝(𝒘𝑡𝒙𝒊)

 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖|𝒙𝑖) =
1

1 + 𝑒𝑥𝑝(−𝒘𝑡𝒙𝒊)
 

The objective for logistic regression is to minimize the negative log likelihood loss function.  By 

likelihood, we mean the likelihood of the model parameters.  Given the mapping 𝑦𝑖
∗ =

𝑦𝑖−1

2
, which 

converts 𝑦𝑖  to a binary zero/one indicator, the loss function can be expressed as  

– 𝑙𝑜𝑔(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖| 𝒙𝒊; 𝒘)) 

= −𝑙𝑜𝑔((
1

1 + 𝑒𝑥𝑝(−𝒘𝑡𝒙𝒊)
)
(𝑦𝑖

∗)

(1 −
1

1 + 𝑒𝑥𝑝(−𝒘𝑡𝒙𝒊)
)
(1−𝑦𝑖

∗)

) 

= −𝑙𝑜𝑔 (
1

1+𝑒𝑥𝑝(−𝑦𝑖 𝒘
𝑡 𝒙𝒊)

) = 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(−𝑦𝑖 𝒘
𝑡  𝒙𝒊)). 

  



Stochastic gradient descent is a commonly used method for learning the logistic regression model.  The 

gradient of a function identifies the direction of change with the greatest increase for the value of a 

function, so gradient descent for logistic regression involves subtracting the gradient of the negative log 

likelihood loss function from the weight vector.  The negative gradient of the loss function with respect 

to the weight vector is computed as follows: 

−
𝜕

𝜕𝑤
𝑙𝑛(1 + 𝑒𝑥𝑝(−𝑦𝑤𝑥)) = −

1

1 + 𝑒𝑥𝑝(−𝑦𝑤𝑥)

𝜕

𝜕𝑤
(1 + 𝑒𝑥𝑝(−𝑦𝑤𝑥))

= −
1

1 + 𝑒𝑥𝑝(−𝑦𝑤𝑥)
(
𝜕

𝜕𝑤
(1) +

𝜕

𝜕𝑤
(𝑒𝑥𝑝(−𝑦𝑤𝑥)))

= −
1

1 + 𝑒𝑥𝑝(−𝑦𝑤𝑥)
(0 +

𝜕

𝜕𝑤
(𝑒𝑥𝑝(−𝑦𝑤𝑥))) = −

1

1 + 𝑒𝑥𝑝(−𝑦𝑤𝑥)

𝜕

𝜕𝑤
(𝑒𝑥𝑝(−𝑦𝑤𝑥))

= −
1

1 + 𝑒𝑥𝑝(−𝑦𝑤𝑥)
𝑒𝑥𝑝(−𝑦𝑤𝑥)

𝜕

𝜕𝑤
(−𝑦𝑤𝑥) = −

𝑒𝑥𝑝(−𝑦𝑤𝑥)

1 + 𝑒𝑥𝑝(−𝑦𝑤𝑥)

𝜕

𝜕𝑤
(−𝑦𝑤𝑥)

= 𝑦𝑥 (
𝑒𝑥𝑝(−𝑦𝑤𝑥)

1 + 𝑒𝑥𝑝(−𝑦𝑤𝑥)
) = 𝑦𝑥 (

1

1 + 𝑒𝑥𝑝(𝑦𝑤𝑥)
) = 𝑦𝑥 (1 −

1

1 + 𝑒𝑥𝑝(−𝑦𝑤𝑥)
)

=

{
 

 (1 −
1

1 + 𝑒𝑥𝑝(−𝑤𝑥)
) 𝑥, 𝑦 = +1

(0 −
1

1 + 𝑒𝑥𝑝(−𝑤𝑥)
) 𝑥, 𝑦 = −1

 

Stochastic gradient descent involves updating the weight vector using a randomly selected training set 

observation: 𝒘 = 𝒘+ 𝜆 (𝑦𝑖
∗ −

1

1+𝑒𝑥𝑝(−𝒘𝑡𝒙𝑖)
)𝒙𝑖  where 𝜆 is the size of the step in the direction of the 

negative gradient.  The parameter 𝜆 is known as the learning rate parameter in the machine learning 

literature and the shrinkage parameter in the statistical learning literature. 

Here’s a simple synthetic logistic regression example.  We assume the following model for generating 

the synthetic data: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝑥𝑖) =
1

1+𝑒𝑥𝑝(−(2𝑥𝑖−1))
.  To generate random data, we can 

compare a uniform random number in the interval [0, 1] to the assumed probability for positive class 

membership, assigning the positive class label if the random number is less than the assumed 

probability.  The following contingency table shows the proportion of positive class members for 𝑥𝑖 = 1 

and 𝑥𝑖 = 0 for 2,000 training set observations. 

 𝑦𝑖 = +1 𝑦𝑖 = −1 

𝑥𝑖 = 1 731 269 

𝑥𝑖 = 0 269 731 

 

The expected negative log likelihood for an optimal weight vector (logistic regression model) is 

−(
1000

2000
(

1

1+𝑒𝑥𝑝(−(2−1))
𝑙𝑛 (

1

1+𝑒𝑥𝑝(−(2−1))
) + (1 −

1

1+𝑒𝑥𝑝(−(2−1))
) 𝑙𝑛 (1 −

1

1+𝑒𝑥𝑝(−(2−1))
)) +

1000

2000
(

1

1+𝑒𝑥𝑝(−(0−1))
𝑙𝑛 (

1

1+𝑒𝑥𝑝(−(0−1))
) + (1 −

1

1+𝑒𝑥𝑝(−(0−1))
) 𝑙𝑛 (1 −

1

1+𝑒𝑥𝑝(−(0−1))
))) = 0.582. 



The following graph shows the progress of the stochastic gradient descent algorithm with 𝑤 initialized 

to [0,0] and 𝜆 = 0.001.  The expected negative log likelihood for the optimal model is marked by the 

dotted horizontal line.  After 50 iterations, 𝑤 = [1.96,−0.98].  The first element of the weight vector is 

the coefficient for 𝑥𝑖, while the second element of the weight vector is the intercept (also known as a 

bias term). 

 

A discriminant function is a function that assigns an observation to a class.  For example, using logistic 

regression for discrimination, we may choose to assign observations to the positive class based on 

𝑠𝑖𝑔𝑛(𝒘𝑡𝒙𝑖), assigning observations to the positive class if 𝒘𝑡𝒙𝑖 > 0 or to the negative class otherwise. 

  



The term boost is a verb that means "to improve."  In machine learning, boosting is the use of an 

ensemble of "weak" (slightly better than random) machine learning models (often stumps or shallow 

trees), where each model added focuses on reducing residual error for previously constructed models.  

The Logit Boost algorithm was defined by Friedman, Hastie, and Tibshirani in their “Additive Logistic 

Regression: a Statistical View of Boosting” paper: 

http://www.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf. 

As shown in algorithm 3 of their paper, an adaptive Newton method is used for learning the Logit Boost 

(additive logistic regression) model.  The Logit Boost algorithm has 3 major steps: 

1. For all observations, initialize observation weight 𝑤𝑖 =
1

𝑛
, log odds 𝐹0(𝒙𝑖) = 0, and probability 

𝑝(𝒙𝑖) =
1

1+𝑒𝑥𝑝(−𝐹0(𝒙𝑖))
 

2. Repeat for model 𝑚 = 1, 2,… ,𝑀: 

a. Compute the working responses (residual error) 𝑟𝑖 and weights 𝑤𝑖 for the current 

iteration 

𝑟𝑖 =
𝑦𝑖
∗ − 𝑝(𝒙𝑖)

𝑝(𝒙𝑖)(1 − 𝑝(𝒙𝑖))
 

𝑤𝑖 = 𝑝(𝒙𝑖)(1 − 𝑝(𝒙𝑖)) 

b. Fit the function 𝑓𝑚(𝒙𝑖) by a weighted least-squares regression (using 𝒙𝑖 to predict the 

residual 𝑟𝑖) 

c. Update 𝐹𝑚(𝒙𝑖) = 𝐹𝑚−1(𝒙𝑖) + 𝑓𝑚(𝒙𝑖) and 𝑝(𝒙𝑖) =
1

1+𝑒𝑥𝑝(−𝐹𝑚(𝒙𝑖))
 

3. Output the additive logistic regression function as 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑦𝑖 = +1|𝒙𝑖) =
1

1 + 𝑒𝑥𝑝(−∑ 𝑓𝑚(𝒙𝑖)
𝑀
𝑚=1 )

 

The working response 𝑟𝑖 is simply the ratio of the negative first derivative of the negative log likelihood 

loss function to the second derivative of the negative log likelihood loss function.  The negative first 

derivative of the negative log likelihood function is −
𝜕

𝜕𝐹(𝒙)
𝑙𝑛 (1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))) = 𝑦∗ −

1

1+exp (−𝐹(𝒙))
.   

  

http://www.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf


The second derivative of the negative log likelihood function is: 

𝜕2

𝜕2𝐹(𝒙)
𝑙𝑛 (1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))) =

𝜕

𝜕𝐹(𝒙)
(−𝑦(

𝑒𝑥𝑝(−𝑦 𝐹(𝒙))

1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))
))

= −𝑦
𝜕

𝜕𝐹(𝒙)
(

𝑒𝑥𝑝(−𝑦 𝐹(𝒙))

1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))
)

= −𝑦(
(1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙)))

𝜕
𝜕𝐹(𝒙)

(𝑒𝑥𝑝(−𝑦 𝐹(𝒙))) − 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))
𝜕

𝜕𝐹(𝒙)
(1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙)))

(1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙)))
2 )

= −𝑦(
(1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))) 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))

𝜕
𝜕𝐹(𝒙)

(−𝑦 𝐹(𝒙)) − 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))𝑒𝑥𝑝(−𝑦 𝐹(𝒙))
𝜕

𝜕𝐹(𝒙)
(−𝑦 𝐹(𝒙))

(1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙)))
2 )

= −𝑦(
(1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))) 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))(−𝑦) − 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))𝑒𝑥𝑝(−𝑦 𝐹(𝒙))(−𝑦)

(1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙)))
2 )

= 𝑦2(
(1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))) 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))

(1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙)))
2 −

𝑒𝑥𝑝(−2𝑦 𝐹(𝒙))

(1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙)))
2)

=
𝑒𝑥𝑝(−𝑦 𝐹(𝒙))

1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))
−

𝑒𝑥𝑝(−2𝑦 𝐹(𝒙))

(1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙)))
2 =

𝑒𝑥𝑝(−𝑦 𝐹(𝒙))

1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))
(1 −

𝑒𝑥𝑝(−𝑦 𝐹(𝒙))

1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))
)

=
1

1 + 𝑒𝑥𝑝(𝑦 𝐹(𝒙))
(1 −

1

1 + 𝑒𝑥𝑝(𝑦 𝐹(𝒙))
) = (1 −

1

1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))
)

1

1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙))
 

 

The residual 𝑟𝑖 =
− 

𝜕

𝜕𝐹(𝒙𝑖)
𝑙𝑛(1+𝑒𝑥𝑝(−𝑦 𝐹(𝒙𝑖)))

𝜕2

𝜕2𝐹(𝒙𝑖)
𝑙𝑛(1+𝑒𝑥𝑝(−𝑦 𝐹(𝒙𝑖)))

=
𝑦𝑖
∗−

1

1+exp (−𝐹(𝒙𝑖))

1

1+exp (−𝐹(𝒙𝑖))
(1−

1

1+exp (−𝐹(𝒙𝑖))
)

 is simply an application of the 

Newton-Raphson learning method to additive logistic regression, based on Taylor Series expansion.  The 

Taylor Series can be used to approximate the value of some function value g(𝑥 + 𝛿): 

𝑔(𝑥 + 𝛿) ≈ 𝑔(𝑥) + 𝑔′(𝑥)((𝑥 + 𝛿) − 𝑥) 

We want to add 𝛿  so the gradient of the negative log likelihood function will be zero, which gives us: 

𝑔(𝑥) + 𝑔′(𝑥)((𝑥 + 𝛿) − 𝑥) ≈ 0 

𝑔′(𝑥)((𝑥 + 𝛿) − 𝑥) ≈ −𝑔(𝑥) 

((𝑥 + 𝛿) − 𝑥) ≈
−𝑔(𝑥)

𝑔′(𝑥)
 

𝛿 ≈
−𝑔(𝑥)

𝑔′(𝑥)
 

The 𝑟𝑖 residual is our 𝛿 and the 
𝜕

𝜕𝐹(𝒙𝑖)
𝑙𝑛 (1 + 𝑒𝑥𝑝(−𝑦 𝐹(𝒙𝑖))) function is our 𝑔(𝑥). 



Regression stumps are commonly used for the 𝑓𝑚(𝒙𝑖) functions.  Each possible split is evaluated to 

construct each regression stump.  For numeric features, the partition conditions are “less than or equal 

to split value” and “greater than split value.”  For nominal features, the partition conditions are “equal 

to the split value” and “not equal to the split value.”  The split that minimizes the weighted variance of 

the predicted responses is chosen as the partitioning criteria: 

min
𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑡

( ∑ (
∑ 𝑤𝑖𝑖∈𝑃

∑ 𝑤𝑖
𝑛
𝑖=1

(
∑ (𝑤𝑖(𝑟𝑖

2))𝑖∈𝑃

∑ 𝑤𝑖𝑖∈𝑃
− (

∑ (𝑤𝑖𝑟𝑖)𝑖∈𝑃

∑ 𝑤𝑖𝑖∈𝑃
)

2

))

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑃∈𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑡

) 

 

For each partition, the stump predicts the expected response for observations in that partition: 

∑ (𝑤𝑖𝑟𝑖)𝑖∈𝑃

∑ 𝑤𝑖𝑖∈𝑃
 

 

For the synthetic example, the first regression stump would be: 

𝑓1(𝑥𝑖) ≔ 

    𝑖𝑓 𝑥𝑖 == 1 𝑡ℎ𝑒𝑛 

        𝑟𝑒𝑡𝑢𝑟𝑛
731 ∗ (

1

2000
)∗ (+2)+ 269 ∗ (

1

2000
)∗ (−2)

1000 ∗ (
1

2000
)

= +0.972 

    else 

        𝑟𝑒𝑡𝑢𝑟𝑛
731 ∗ (

1

2000
)∗ (−2)+ 269 ∗ (

1

2000
)∗ (+2)

1000 ∗ (
1

2000
)

= −0.972 

 

Implementation notes: 

The range of 𝑟𝑖 is often restricted to [-3, 3]. 

A learning rate parameter 𝜆 is often applied to the 𝑓𝑚(𝒙𝑖) estimates, to encourage smaller steps.  



For multi-class problems with 𝐽 classes, we simply construct 𝐽 weight functions as shown in algorithm 6 

of the additive logistic regression paper cited earlier (repeated below).  The probability that observation 

𝒙𝑖 belongs to class 𝑗 is estimated as 

𝑝𝑗(𝒙𝑖) =
𝑒𝑥𝑝 (𝐹𝑗(𝒙𝑖))

∑ 𝑒𝑥𝑝(𝐹𝑘(𝒙𝑖))
𝐽
𝑘=1

 

where ∑ 𝐹𝑘(𝒙𝑖)
𝐽
𝑘=1 = 0. 

 

 

 


