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1. Introduction
This article presents three variations on boxplots for use
in a spatial context. The three variations are linked mi-
cromap boxplots, linked micromap bivariate boxplots,
and angular boxplot glyphs. The specific examples
show Omernik Level II Ecoregions. The variables cho-
sen for illustration purposes are growing degree days
and precipitation.

This article is closely related to papers by Carr et al
(1998a, 1998b). The first paper provides a general de-
scription of linked micromap (LM) plots such as that
in Figure 1b. The second paper puts LM plots to work
in describing Omernik Level II ecoregions. It also pro-
motes LM plots as useful methodology in the KDD pat-
tern discover process and as overviews that provide an
orienting context for drilling down to finer detail in ex-
tensive hierarchically organized summaries. This rel-
atively brief article adapts graphics and text from the
second paper while focusing attention on boxplots.

In this paper Section 2 provides context for the graphics
with a description of Omernik ecoregions and the data
sets. Section 3 provides background on boxplots and
then presents both univariate and bivariate LM boxplots.
Section 4 motivates two angular boxplot glyphs and
presents the one that is more striking, the Portuguese
man of war. Section 5 closes with connections to other
work and challenges for the future.

2. Ecoregions and Datasets
While this paper focuses on graphics design, a scien-
tific context exists behind the examples: the presenta-
tion of summary statistics for ecoregions and the at-
tempt to learn about the intellectual structure that un-
derlies ecoregion definition. In this section we provide
background on ecoregions and associated datasets.

2.1 Ecoregions

Ecoregions are a way of codifying the recognizable re-
gions within which we observe particular patterns or

mosaics in ecosystems. The general consensus is that
such ecological regions, or ecoregions exist. However,
disagreement in how the regions should be constructed
continues to be a scientific issue (Omernik, 1995). In
describing ecoregionalization in Canada, Wiken (1986)
stated: “Ecological land classification is a process of
delineating and classifying ecologically distinctive ar-
eas of the earth’s surface. Each area can be viewed as
a discrete system which has resulted from the mesh and
interplay of the geologic, landform, soil, vegetative, cli-
matic, wildlife, water and human factors which may be
present. The dominance of any one or a number of these
factors varies with the given ecological land unit. This
holistic approach to land classification can be applied
incrementally on a scale-related basis from very site-
specific ecosystems to very broad ecosystems.”

Within the United States two alternative approaches
in the construction of ecoregions are those developed
by Omernik (1987, 1995) and Bailey (1995a, 1995b,
1998). Each constructs a hierarchy of ecoregions that
corresponds to viewing the United States at different
scales. Omernik’s approach is conceptually similar to
that described by Wiken, where the ecological regions
gain their identity through spatial differences in the
combinations of the defining factors and which factors
are important vary from one place to another and at all
scales. Bailey (1998) develops ecological regions hi-
erarchically. First, he identifies ecological regions of
continental scale based on macroclimate, where macro-
climates influence soil formation, help shape surface to-
pography, and affect the suitability of human habitation.
The continent is subdivided with three levels of detail
into domains, within domain divisions, and within divi-
sion provinces. Domains and divisions are based largely
on broad ecological climatic zones while provinces fur-
ther sub-divide the divisions on the basis of macro fea-
tures of the vegetation. Hence Bailey uses macroclimate
as the controlling factor in the formation of ecoregions
while Omernik uses all available factors where the im-
portance of the factors varies among ecoregions. Some
scientists question whether enough is known to delin-
eate ecoregions. While our knowledge is limited, oth-
ers proceed on the basis that our approximations of the
“true” ecoregions will continue to improve as more in-
formation is gathered.

Our interest is not to define ecoregions or even to val-
idate them. We simply believe that it is important to
describe quantitatively some of the key characteristics
associated with ecoregions to gain a better understand-
ing of how ecoregions have partitioned these character-
istics. In view of the newsletter page size, we show
Omernik’s level II ecoregions (Figure 1a) for the
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Figure 1.  a=Omernik Ecoregions   b=Linked Micromap Boxplots
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Figure 2: LM Bivariate Boxplots

1961-1990 Precipitation (x) versus Growing Degree Days/100 (y)

continental U.S. examples here. This coarse level of ag-
gregation bothers some people, for example when they
see the Mississippi Valley in the same ecoregion with
the Southeastern seacoast and Cape Cod. Level III and
level IV ecoregions are progressively finer partitions of
North America and are much more homogeneous in
terms of familiar variables.

2.2 Data Sets

The data sets used in our graphics are readily available.
Substantial thought and processing was involved in pro-
ducing the data sets. Thus this paper builds upon the
work of others.

Ecoregion delineation depends on climate as a major
forcing function. We use nationally consistent climate
data sets developed using PRISM (Parameter-elevation
Regressions on Independent Slopes Model). PRISM,
described by Daly et al (1994), is an analytical model
that uses point data and a digital elevation model (DEM)
to generate gridded estimates of monthly and annual cli-
matic parameters. PRISM models data from individ-
ual climate stations to a regular grid through locally
weighted precipitation/elevation regression functions.
Orographic effects on precipitation and other climate
parameters are well known and are used to define the
local regions. PRISM has been shown to out perform
other common spatial interpolation procedures such as
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kriging. The regular grid used is 2.5 minute by 2.5
minute latitude/longitude grid, i.e., a nominal 5 km
by 5 km grid. For our purposes having a regular
grid of climate data ensures that the entire area of an
ecoregion is represented in any statistical summary we
construct. PRISM data we use are based on 30-year
normal climate data for 1961-1990. Key annual pa-
rameters investigated are mean temperature, temper-
ature range, growing degree days, and total precip-
itation, and monthly precipitation. Further informa-
tion on PRISM and the data sets can be found at
www.ocs.orst.edu/prism/.

Figures 1 and 2 focus attention on just two PRISM vari-
ables, growing degree days and precipitation. The de-
lineation of ecoregions depends not only on the annual
characteristics of climate but also on seasonal character-
istics. Thus monthly precipitation is important to study.
As indicated above many variables such as elevation,
land cover, and soils also relate to ecoregions. A dated
visual summary of level II ecoregion land cover classes
is available in Carr and Olsen 1996. (A few boundaries
have changed.)

Figure 3 (page 10) in this paper concerns precipita-
tion trends. The figure makes direct use of annual
weather station precipitation data for the period 1961-
1996. The precipitation data (72 Mbytes) and weather
station location descriptors (10.2Mbytes) are avail-
able from the National Climatic Data Center Web
site www.ncdc.noaa.gov/ol/climate/onlye/
coop-precip.html#Files.

Our data processing classified weather stations into
ecoregions. We used each station’s most recent latitude
and longitude (some change over time) to locate it in
one of 672 polygons that define the Level II ecoregions
in the continental U.S. We omitted stations that had
fewer than 24 annual values over the 36 years. Some
4075 weather stations satisfied the criteria of being in
an ecoregion and having sufficient annual values. We
then calculated trend using Sen’s slope, which is the
median of slopes computed using all pairs of available
years for each station. This provides an estimate that
is little influenced by an occasional extreme value. The
angular boxplot glyphs in Figure 3 represent variation
in 36-year trends at different weather stations with the
21 Level II ecoregions.

3. LM Boxplots

Figure 1b shows linked micromap univariate boxplots.
We briefly discuss the basic LM plots elements: mi-
cromaps, linking labels, boxplots, and sorting. For more
LM plot details see the previously mentioned papers.

The micromaps on the left are caricatures of level
II ecoregions. The caricatures simplify the polygon
boundaries and reduce the 672 polygons for the con-
tinental U.S. to 44 polygons. Arguments can be more
for going even further and, for example, removing Cape
Cod and the island in Lake Superior.

Omernik’s Level II definition of ecoregions partitions
the continental U.S. into 21 ecoregions. The long labels
for the ecoregions appear in Figure 1a. Linking ecore-
gion name to location is difficult in Figure 1a. There
are many ecoregions and some involve disjoint areas.
The colors may be pleasant to view, but are not easy to
discriminate. For most readers the colors do not have
names, and this can make it much harder to remember
the exact color that is to be found on the map. Plot-
ting the ecoregion numbers on the map typically solves
the memory problem, but serial search is still involved.
With disjoint areas for the same ecoregion, finding one
number does not mean the search task has been com-
pleted. The symbol congestion and search problem gets
worse with Level III ecoregions.

Micromaps with color links provides a solution to the
name and region linking problem. To find the polygons
for Ecoregion 3 one simply looks for the red regions
in the top micromap. The only difficulty concerns mi-
cromap caricatures with polygons so small that they do
not reveal their color. The state map in Carr and Pier-
son 1996 enlarge small states to make sure their color is
visible. In the current map caricature, Cape Cod (Ecore-
gion 9) is too small to reveal its color. The development
of micromap caricatures involves compromise.

The use of integers as ecoregion labels is another com-
promise. Descriptive labels always have merit. How-
ever, in this and other examples involving more statis-
tical summary columns, we choose to reserve space for
the statistical graphics panels. The integer labels take up
little space and become familiar with repeated usage.

The color rectangle as a part of the label can be dropped
in Figure 1b because the boxplots provide the color.
For those experienced with LM plots, dropping the line
of colored rectangles simplifies appearance and compli-
cates color linking only slightly. We retain the rectan-
gles in the current context.

The boxplot or box and whiskers plot is a well-known
distributional caricature that has now appeared in some
grade school curriculum. However, the choice of sum-
mary statistics and the graphical representation are not
universal (see McGill, Tukey and Larsen 1978; Frigge,
Hoaglin, and Iglewicz 1989; Tukey 1993; and Carr
1994). Figure 1b shows a five number summary: the
extrema, the 1st and 3rd quartiles and the median. An-
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other common choice represents adjacent values and
outliers rather than just extrema. We note that the out-
lier portion of this choice does not scale well for large
samples from thick tailed distributions. For example
if estimates followed a t-distribution with 3 degrees of
freedom roughly 2.75 percent of the estimates would be
flagged as outliers on each end of the distribution. Out-
lier overplotting was problematic for precipitation in an
alternative version of Figure 1b. When outlier overplot-
ting is problematic a compromise caricature that we do
not show uses adjacent values and adds an outlier dot for
a maximum or a minimum that is not an adjacent value.
The compromise uses a filled dot to indicate multiple
outliers thus hiding the details of outlier multiplicity and
location.

Our graphical representation follows the design of Carr
(1994). That is, the thick rectangle extends from the 1st
to the 3rd quartile, the thin rectangle extends to the ex-
trema, and the vertical median line extends outside the
thick rectangle. Comparison of adjacent medians can
typically be based on the judgement of horizontal dis-
tance between line endpoints. Using dots for the median
(Becker and Cleveland 1993) is a viable choice since
the area symbol is easy to spot even though enclosed
in a rectangle. However, the comparison of neighboring
medians may not be as accurate since the direct distance
between points is not the correct distance to judge.

The boxplot is suitable for describing a batch of data.
The batch of data here reflects variation due to changing
spatial location. However, one would like the items in
a batch to be as comparable as possible. This is not the
case here because the cells are defined using equal angle
grids and not equal area grids. Carr et al (1997) question
the use of equal angle grids in environmental sciences
and in NASA’s level 3 satellite products. They promote
the use of discrete global equal area grids. While trans-
formations can be made so the North Pole is not as wide
as the equator, changing to equal area grids for reasons
of comparability or polar modeling adds complexity and
uncertainty. We choose to avoid the complexity of re-
gridding the data for this article on boxplots. A conse-
quence is that in large north to south ecoregions, such as
Ecoregion 9, the northern portion is over represented in
the boxplot due to smaller area grid cells. If the North
is cooler than the South the growing degree day per-
centiles will be shifted a bit toward cooler values.

The notion of growing degree days many not be famil-
iar, but the calculation is straight forward. If the av-
erage daily temperature is over 50 degrees Fahrenheit,
the day counts. The degrees accumulated for each day
that counts is the average daily temperature minus 50

degrees. As a calibration case suppose a grid cell in
Florida had a daily average value of 75 degrees, each
day for the whole year. The growing degrees days
would then be 365 * (75-50) = 9125. To provide eas-
ier to remember two digit numbers, the scale for Figure
1b shows growing degree days divided by 100.

The precipitation data for Figure 1b has a thick right
tail. A logarithmic transformation helps to pull in the
tail, and provides better resolution for small precipita-
tion values. The choice here was to use log base 2,
since powers of 2 are familiar to many scientists (see
Cleveland 1985).

Sorting helps to bring out patterns in LM plots. Carr
and Olsen (1996) discuss sorting methods and show
ecoregion examples. In Figure 1b sorting by increas-
ing growing degree days arranges the ecoregions in the
micromap panel sequence so that northern ecoregions
tend to appear in the top panels and southern ecoregions
appear in the bottom panels. This matches common ex-
pectation. Some of the north to south anomalies, such
as Ecoregion 20, are easier to understand when eleva-
tion boxplots are included. While pattern details may
be well-known to experts, those new to the field may de-
light in seeing patterns that confirm their limited knowl-
edge and in finding anomalies. As an interpretation re-
minder, the patterns in growing degree days refers to the
thirty year average and not to a particular day or year.

Sorting Figure 1b by increasing precipitation reveals
a strong West to East pattern. With the exception of
Ecoregion 4 that contains the Pacific Northwest rain for-
est, the high precipitation is in the East. A plot is avail-
able on our Web site.

The juxtaposed plots make it tempting to look at the
growing degree day and precipitation medians to see
if there is a relationship. The first impression is that
if there is a relationship, it is weak. Of course juxta-
posed univariate plots, such as bar plots, dot plots or
boxplots, provide a poor way to look for a functional
relationship even if one variable is sorted. While per-
haps unknown to popular press, the scatterplot provides
the standard for assessing a functional relation between
two variables. We omit this scatterplot and proceed to
represent the bivariate data for all grid cells and not just
the univariate medians.

The current application with 481,475 grid cells war-
rants the use of density estimation as part of the graphic
representation process. Scott (1992) provides methods
for both density estimation and graphical representions
that emerged from years of research with binning and
other density estimation methods. Proponents of bin-
ning for dealing with large data sets also include Carr et
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al (1987). Their space-time example included point in
polygon selection on a map to defined two subsets, rep-
resentation of density differences in a scatterplot matrix,
and a representation of a temporal mismatch. Bivariate
binning methods scale well in the number of cases. Carr
(1998) shows a scatterplot matrix representing over bil-
lion point pairs. Such density estimates can vary over
many orders of magnitude. Appreciating the density
surface details is not necessarily a trivial task. For an
overview we seek something far simpler and turn to a
bivariate boxplot.

Chances are that many people have proposed bivariate
boxplots. So far bivariate boxplots have not seemed to
catch on, likely due to lack of promotion. Possibly dis-
agreement on details is behind this lack of promotion.
Certainly there are issues concerning what generaliza-
tion is most appropriate for the 1st, 2nd, and 3rd quar-
tiles. (See Small [1989] concerning bivariate median
options that were available years ago.) Perhaps it is bet-
ter to show density modes and two alpha contours. Our
attitude is to get on with the graphics. We illustrate the
approach of Carr (1991) but are quite willing to substi-
tute other methods.

Carr (1991) binned the data using hexagon grids to
speed the processing. He directly used the high density
cells containing 50 percent of the data in place of the in-
terquartile range. To obtain a median he smoothed the
high density cells (an optional step), and then eroded
the cells using gray level erosion. The gray level ero-
sion process removes counts from the cells proportional
to exposed surface area. The last cell eroded provides
location of the median in the binned density represen-
tation. (S-PLUSTM now provides the needed tools for
hexagon grids.) This simple procedure generalizes to
other regular grids in two and higher dimensions. With
translucence or the see through contour representations
in Scott (1992), showing 3-D boxplots is not a problem.

If one were to use the 50% high density region in
univariate boxplots rather than the interquartile range,
comparison becomes harder because the high density
region can be disjoint. Carr (1991) addresses the in-
creased difficulty of comparison in the bivariate context
by developing a difference plot. Cells in two gray lev-
els distinguish the two mismatched portions of the high
density region. An arrow shows the change in the me-
dian. The example interleaves difference plots between
bivariate boxplots in an age and sex conditioned two-
way layout of bivariate boxplots. With more space we
could interleave the bivariate difference plots in the lin-
ear sequence shown in Figure 2.

Figure 2 shows a bivariate boxplot of the combined data

in the lower right corner. The purple shows the sup-
port of the bivariate pairs, (30-year average precipita-
tion on a log scale, 30-year average growing degree
days). The yellow cells are the 50% high density cells
and the black cell is the median cell. The positive trend
of the high density cells contrasts strongly to the nega-
tive slope suggested by the region of support. The latter
is all one would see in an overplotted view. How useful
it is to study this aggregate plot can be argued. Scien-
tists tend to be interested in detail. When scientists see
a plot splitting into non-homogeneous pieces as in Fig-
ure 2 they naturally want to study the pieces. Nonethe-
less overviews are often valuable for providing a frame
of reference as one approaches the pieces.

We mention several patterns in Figure 2, but the ex-
istence of Level IV ecoregions suggests that scientists
would prefer to focus attention on more highly strati-
fied ecoregion views. Already suggested was the fact
the variation of individual ecoregions is generally much
smaller than that of the composite. The small amount of
yellow in the Ecoregion plots indicates a high concen-
tration of bivariate values within tight domains. Sev-
eral boxplots suggest that they are mixtures of tight pat-
terns. Few bear much resemblance to a bivariate normal
distribution. A moderately elliptical exception, Ecore-
gion 10, shows no yellow so the cell with yellow over-
plotting black median dot contains over 50 percent of
the observations. Panels 15, 18, and 16 (top to bottom
order) catch the eye with relatively big bivariate sup-
port regions (gray) that have negative slopes. The high
density yellow cells reflect the negative slopes as well.
The high density cells in Region 16 show a bifurcation
that motivates further investigation and suggests possi-
ble subdivision of the ecoregion. (Carr et al 1998b note
that Region 16 is homogeneous in terms of land cover).
Regions 10 and 9 show high positive slopes. This sug-
gests that most of the variation is in terms of growing
degree days and that growing degree days is not major
factor in their definition. Note that both regions cover
a large range of latitude. In general the growing degree
day variation in the bivariate boxplot appears associated
with latitude variation in the micromaps. This motivates
putting growing degree days on the y axis.

Figure 2 uses the univariate growing degree days as the
basis for sorting, but the micromap layout is different
than in Figure 1. Due to the size of bivariate boxplots,
Figure 2 shows four or fewer ecoregions per micromap.
The vertical list of names and color links is absent since
they are mostly redundant with the names and color tags
in each bivariate boxplot panel. The list would clarify
the bivariate boxplot order that is left to right, top to
bottom. Careful comparison of bivariate median values
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for growing degree day values against the reference grid
indicates the bivariate and univariate ranking are in rea-
sonable agreement. Other sorting can bring out other
patterns.

4. Angular Glyph Boxplots and a
Precipitation Trend Example
Carr and Pierson (1996) favored LM plots over choro-
pleth maps in terms of representing statistical sum-
maries more faithfully. Their reasons include better per-
ceptual accuracy of extraction and easy visual represen-
tation of uncertainty. However, classed choropleth maps
are not the only way to represent spatially indexed sta-
tistical summaries. Glyph plots provide a viable alterna-
tive for representing summaries so they deserve consid-

eration. Carr et al (1998b) propose two angular glyph
boxplots but illustrate only one. Figure 3 shows the
more controversial glyph that we call the Portuguese
man of war. The glyph extends the trend glyph de-
sign of Carr, Olsen, and White (1992). In their trend
glyph design, ray angle represents the sulfate deposition
trend and the straight edges of a circle sector represent
90 percent confidence bounds. A local scale, a circle
with lines at regular angles, provides the basis for judg-
ing ray angles. We continually attempt to put Cleveland
and McGills (1984) guidance concerning perceptual ac-
curacy of extraction into practice. They promote repre-
sentations that use position along a scale as being the
best. Our encoding uses position along a scale, albeit
an angular scale.

Figure 3:  1961-1996 Precipitation Trends

Angular Boxplots For Stations Within Ecoregions

-.91 -.61 -.30 0 .30 .61 .91

Trend in Inches Per Year

Median1st and 3rd QuartilesGrid, Min, and Max 
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Then boxplot glyph shown in Carr et al (1998b) uses
the circle sector to represent the interval from first to
third quartile. Two shorter length rays (but longer than
the reference circle) encode the extrema. The Por-
tuguese man of war glyph shortens the extrema rays
to the length of the reference circle and cuts away the
circle sector between extrema rays. As can be seen in
Figure 3, the glyph also removes the arc between lines
showing the first and third quartiles. The gestalt is strik-
ing. Some symbols are aligned and some twist. The de-
partures from symmetry about the horizontal zero trend
line and about the median line are clear. The gestalt is so
striking that it may impede people looking at the detail.
Also cutting away part of the reference circle makes it
a bit harder to judge angles. Thus this Portuguese man
of war glyph may lose in careful testing for perceptual
accuracy of extraction.

The angular limits for the boxplot glyph in Figure 3 are
from 135 degrees to 135 degrees. There is some advan-
tage in restricting the limits to 90 degrees so, for exam-
ple, the largest local y coordinate indicates the largest
increase. The extension here is to increase angular reso-
lution. The legend scale has limits of -.91 and .91 inches
per year. This implies a change of roughly 32 inches
over the 36 years. The scale is defined symmetrically
so both extremes are not necessarily achieved. How-
ever, a study of the glyphs indicate that this is nearly so.
Time series plots for individual stations confirm such
substantial change.

The existence of multiple polygons for the same ecore-
gion complicates examination of Figure 3. The same
glyph appears for each polygon that comprises a given
ecoregion. This gives more visual weight to ecoregions
with multiple polygons. If unequal visual weight is
given, a more reasonable choice is to favor large area
ecoregions. The glyph design itself could be modified
to indicate the number of weather stations with each
ecoregion.

Glyph plots have some problems. We have slightly
revised the GIS-provided representative point for each
polygon to eliminate glyph overplotting in Figure 3.
Symbol congestion control becomes increasingly prob-
lematic as the number of polygons increase, for exam-
ple with level III ecoregions. (The trend glyph plot in
Carr, Olsen and White [1992] was restricted to a reg-
ular hexagon grid to control symbol congestion.) The
glyphs provide a spatial overview, but in this gray level
example do not connect strongly to ecoregions and their
names. LM plots provide a strong summary to name
connection and avoid multiple glyphs, placement and
symbol congestion problems. Also the straight line

scale boxplot is a bit easier to assess than an angular
scale boxplot. Still, the gestalt spatial impression of
glyph plots has value.

5. Connections and Future Challenges

The article builds upon previous work by many people.
Carr et al (1998b) cite many that inspired our devel-
opment of LM plots. Our shortened list here includes
Cleveland and McGill (1984), Cleveland (1985), Mon-
monier (1988, 1993), Tufte (1990, 1993) and Kosslyn
(1994). Our scholarship in regard to bivariate boxplots
is at best dated. We welcome references to the work of
others and constructive comments about better designs.

The Splus script files we used to produce
the graphics are available by anonymous ftp
to galaxy.gmu.edu. The subdirectory is
pub/dcarr/newsletter/boxplots. The contexts
include the statistical summaries used in the graphics
but not the prior data. For more information on the
data or on algorithms such as gray level erosion in 3-D
and 4-D please contact us directly. There is also a Web
site, www.galaxy.gmu.edu/�dcarr/graphgall/
ecoregions/ecoregions.html that contains a
growing number of Omernik level II and level III ecore-
gion examples.

We want to make a point relative to our first presenta-
tion (Olsen et al 1996) of Omernik ecoregions. The 4
x 8 foot poster example provided a beginning descrip-
tion of Omernik’s Level III ecoregions. This poster in-
cluded over one hundred micromaps, boxplots of ecore-
gion digital elevations and even Loveland’s 8 million
pixel map of 159 land cover classes for the continen-
tal U.S. (See Loveland et al 1995). While large high-
resolution graphics that integrate different views would
seem to provide a powerful tool in the attempt to un-
derstanding large data sets, such graphics fall outside
the mainstream. Today’s emphasis is on Web graph-
ics. Tufte (www.clbooks.com/nbb/tufte.html)
comments that, “the problem with the Web is that it
is low resolution in both space and low in time.” As
one way to appreciate this statement, note that a typi-
cal workstation monitor shows only 1024 * 1280 pix-
els (roughly 1.3 million pixels). Thus without reduc-
ing resolution, Loveland’s map requires over six com-
plete screens. Something is lost in comparison to high
quality printed maps. There is no denying the power of
human computer interface methodology such as logical
pan and zoom, but the challenge of large data sets and
complex conceptual structures motivates use of all pow-
erful tools including good old human pan and zoom of
large high quality graphics.
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The task of developing and presenting statistical
overviews for massive data sets is a big challenge. The
environmental science community has worked on the
task longer than many disciplines. How does one rep-
resent environmental facts and knowledge? Two re-
cent book length overviews, Stone et al (1997) and
Wahlstrom, Hllanaro, and Maninen (1996), involved the
work of many people, including in one case layout spe-
cialists and graphics designers. The integration of pho-
tographs, text, and statistical graphics serves as an in-
spiration. Our challenge is to learn when others have
blazed the trail, to make the improvements when we see
the opportunity and to adapt the methods to other appli-
cations. Perhaps an even harder challenge is to see the
patterns in important data not collected and take action.
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Exploring Time Series
Graphically
By Antony Unwin and Graham Wills

Introduction
Interactive graphical tools are available in a number of
packages (Data Desk, JMP, SAS Insight and to a lesser
extent LispStat, S+ and others), but none provide inter-
active tools for working with time series. This is sur-
prising, as graphical displays have always been consid-
ered important for time series analysis. The natural time
ordering of the data makes graphs very informative and
the lack of independence of the data makes simple sum-
mary statistics less useful than in other contexts.

Diamond Fast was designed to provide some basic tools
for exploring multivariate, irregular, short time series
where analytic methods could not be applied, but it
proves to be valuable for working with univariate, regu-
lar, long series too [Unwin and Wills]. The main idea is
to display series in a common window, to query them, to
move them around, and to compare them. Its a bit like
working with icons in a window. As the package has not
been widely publicized but is still in use, we thought it
would be helpful to summarize its main features here.

Scaling
Most books on statistical graphics explain at length how
scales should be chosen and drawn. There are some
specific recommendations for time series in Cleveland
[1993], where he points out that different aspect ratios
may be necessary for studying local and global struc-
ture. This is not so relevant for interactive graphics
where a series can be interactively rescaled both ver-
tically and in time and where not only the scales, but
also individual points can be directly queried. Figure 1
shows weekly values of the Dow Jones Industrial av-
erage between 1929 and 1932. The series has been
queried at its maximum before the crash. The same
mouse click can call up information on a point, on an
axis or on the graph itself, depending on where you
click.

The main method of changing the vertical scaling in Di-
amond Fast is to grab the series graph and pull it up-
wards to magnify or downwards to shrink. This is very
effective as you can see how the series changes and
judge the effect you want to obtain. Technically this
is achieved by distorting the current screen image and
when the mouse button is released an accurate picture
of the graph is drawn at the new resolution.
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