
Analysis and Visualization

After the extracted features have been identified and
classified catalogued, they are examined visually and
then analyzed. Features may be marked at this stage for
use in the learning phase. Visualization tools include
a Feature Dendogram Catalog (FDC), a Time Between
Events Plot (TBEP), and a Feature Plot. The FDC Plot
provides a graphical catalog of the features clustered
according to the attributes used at the extraction stage.
For each feature or cluster of features, the TBEP shows
the time since the feature cluster was last observed. This
plot is useful for detecting whether certain feature clus-
ters are periodic. As its name implies, the Feature Plot
shows the segment of the time series that contains the
feature and its context.

Learning

At the end of the analysis and visualization stage, all
identified features are classified into one of two groups:
those that were flagged at the analysis and visualization
stage and those that were not. At this stage, the FEa-
TureS code begins an optimization based on the ability
of each feature identification tool to classify the features
correctly. The optimization process is repeated for each
of the available tools. This process may be viewed as
a multivariate optimization in which the objective is
to minimize the number of misclassified features. The
optimization results will differ both quantitatively and
qualitatively from one tool to another. From a sum-
mary of these results, the scientist may decide which
“optimized” tool to use.

In Conclusion
With today’s automated data collection systems, it is
possible to assemble enormous data sets with compar-
ative ease. The ability to acquire data is outstripping
our capacity to analyze them. The result is that in many
cases only a small fraction of the data is ever examined.
Automated data monitoring systems such as those de-
scribed here offer one way method for recovering the
interesting features of large data sets before they are lost
forever.
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TOPICS IN SCIENTIFIC VISUALIZATION

Parallel Coordinate
Variants Of CDF and
Quantile Plots
by Daniel B. Carr and Anthony R. Olsen

Introduction

This article describes two new plots for representing
cumulative probability (p) and quantile (q) pairs. Tra-
ditional quantile and CDF plots represent pq pairs using
Cartesian coordinates. Given the same pq pairs, the
Cartesian plots are basically equivalent. The CDF plot
puts probabilities on the vertical axis and the quantile
plot puts probabilities on the horizontal axis. The pro-
posed parallel coordinate approach uses two vertical
axes. We call the plots pq plots or qp plots depending
on the left-to-right order of the two axes.

Parallel coordinate plots provide an alternate approach
to representing number pairs. The basic idea is to con-
struct parallel axes and to connect the coordinates of
point pairs using straight lines. Two key papers, Insel-
berg (1985) and Wegman (1990), describe the geometry
and interpretation of parallel coordinates plots. The cur-
rent application is particularly simple. Since the cdf is
a function, lines for distinct points pairs never cross be-
tween the axes. Lines can intersect on the probability
axis. That is, for discrete distributions a probability may
connect to an interval on the quantile axis. However,
the expected practice is to show connecting lines just
for selected jump points. Lines appearing to intersect
on the quantile axis can only be low resolution artifacts.
For table look-up purposes following straight lines is
easy. The absence of crossing lines makes the task even
easier.

This article calls attention to two pq plot variations, the
pq density plot and the pq piecewise linear plot. Carr
and Olsen (1995) describe additional variations and pro-
vide construction details. The pq density plot represents
the surface created by interpolating densities along the
pq lines between parallel axes. When shown as color
images (see Figures 1a and 1b) or as rendered surfaces,
such colorful plots draw student interest. The second
variation, the pq piecewise linear plot (see Figures 2a
and 2b), is more of a visual table. This distributional
summary retains substantial detail and is suitable for
use as a map legend.
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CDF Plot and Legend Limitations

CDF plots similar to that in Figure 3 (the grid is typically
omitted) provide distributional summaries and appear in
reports by EPA and other government agencies. While
commonly used, such plots prove awkward in regard
to several tasks. The awkward tasks include looking
up value pairs and, in the map legend context, showing
color links to Choropleth map classes.
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Figure 3: A CDF Plot

Consider the table look-up process in Cartesian coor-
dinate plots. The visual path from quantile to curve to
probability (or vice versa) involves a right angle turn.
The visual path length differs markedly from small to
large quantiles so the treatment of quantiles is not uni-
form. Standard horizontal and vertical grid lines based
on pretty axis values do not typically intersect on the
cdf curve and thus do not directly support the reading
of specific pq pairs.

If the plot includes right-angle reference lines from the
quantile scale to the cdf curve to the probability scale,
interpolation may be still be required to "read" the values
of one or both members of each reference pair. Adding
reference lines and labeling their endpoints is a possibil-
ity but linear scales often leave little space for labeling
especially along the horizontal axis. If skewness pro-
vides labeling space for one tail of the distribution, it
robs space from the rest of the distribution. Common
cdf plots show no reference pairs.

For typical cdf plots, readers must expend mental en-
ergy to obtain verbally expressed pq (or qp) pairs. In an
application setting, such energy could be put to better

use in memorizing a few values for later reference or
in comparing values to other distributions. The Carte-
sian coordinate representation may seem to be a good
storage device but is less than ideal for quick reading of
value pairs. We conjecture that few people read more
than one or two pairs from a typical CDF plot.

Data analysts often find Choropleth maps more informa-
tive if they include statistical summaries of the spatial
phenomena. The pq pairs can represent a variety of sum-
maries such as the population size in different classes,
the map area in different classes, and the number of re-
gions in different classes (see Carr 1993). Having cho-
sen an appropriate summary, a statistician’s first thought
might be to add class colors to a cdf plot and use it as
a legend. However, cdf plots are awkward for this task
for two reasons. First, the cdf plot takes up a large area
relative to the linear resolution of the two axes. Second,
the addition of class colors to a cdf plot is a design chal-
lenge. Figure 4 uses gray levels in the plotting region to
show class definitions. The disportionately large areas
for large quantiles are not acceptable. A second choice
is to add colored rectangles along the probability (or
quantile) axis when the probabilities (or quantiles) de-
fine the classes. The smallest of these rectangles has to
be of sufficient area so that the reader can easily perceive
its color. Adding colored rectangles along an axis takes
up more space as well as complicating the placement of
tics and tic labels. The Cartesian coordinate approach
is less than optimal for use as a legend.

Typical cartographic legends show the class colors in
rectangles. Map makers label these rectangles with
quantile (value) bounds or percent (probability) bounds
but not typically both (for example see Dent 1992).
Goldman (1991) shows both quantile and percent leg-
ends. By looking from legend to legend and focusing on
corresponding class boundaries one can figure out a few
pq pairs. Most of the distributional information is lost.
Typical legends provide poor statistical summaries.

Estimation Issues
Before further describing the example pq plots, a few
comments on the estimation of probabilities seem ap-
propriate. Computing probabilities from samples is an
essential task. For a simple random sample two estima-
tion approaches are common, the empirical cdf approach
and the distribution-of-order-statistics approach.

The empirical cdf for a sample of size n is

P(x) = i=n x(i) � x < x(i+1) for i = 0; :::; n

where x(i) are order statistics, x(0)=-1 and x(n+1)=1.
The definition is troublesome in the tails. That is, the
estimated probability for future observations more ex-
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treme than the sample extrema is zero. Such probability
estimates for extreme values are biased low and hence
counter-intuitive. While theory shows that the bias ap-
proaches zero as the sample size approaches infinity
most people work with finite samples. Recognizing the
possibility of more extreme values seems reasonable.
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Figure 4: A Legend Attempt

Order statistics results (see Blom 1958, David 1972 and
Hoaglin 1983) suggest a more plausible expression:

P(x) = (i� a)=(i + 1� 2 � a) for x = x(i)

i = 1; :::; n and 0 � a � :5

Chambers et al (1983) suggest obtaining probability es-
timates for quantiles between the order statistics by
linear interpolation and estimates beyond the sample
extrema by extending the probabilities at the sample ex-
trema. The estimates for the current graphics use this
approach with a=.5. The software referenced by this
article will require revision when linear interpolation
produces poor estimates.

Even with a distribution-of-order-statistics approach,
probability estimates near extrema are uncomfortably
close to pure guesses given the amount of scrutiny they
may receive. The proposed graphic design allows users
to finesse the issue by specifying quantiles or proba-
bility limits for the plot. The plot labeling can then
list the sample extrema or user-imposed limits without
attaching the corresponding probability estimates.

The PQ Density Plot

The pq density plot applies to distributions with density
functions. The plot construction follows from a few
simple observations. First, we can compute a density
along each axis. Then we can interpolate the density
along pq lines between the axes. The construction of
density estimates for the quantile axis is a well-studied
problem (see Scott 1992). We can chose from many
methods. The probability integral transform states that
the density is uniform on the probability axis. Since we
assume a density function for the quantile axis, the cdf
has no jump points. Consequently we can pick any point
between the p and q axes and find the pq line that goes
through the point. Doing this for a rectangular lattice
of points between the axes and interpolating densities
between line endpoints yields a density image.

Figure 1a is a pq density plot for a truncated standard
normal distribution. The figure shows a few standard
pq lines. The labeling for the p axis shows percents
rather than probabilities. With minor exceptions the
color assignment from blue to gray to red to yellow rep-
resents increasing densities with increasingly brighter
colors (see Carr 1994). The color assignment fixes the
number of color levels so that the "average density" on
the q axis is gray. Correspondingly the whole p axis
is gray. The blue regions on the q axis indicate below
average density. The red and yellow regions indicate
above average density. A pair of qp lines (right to left)
starting in a blue region must converge (or compress the
area between the lines) to achieve the uniform density
value. A pair of qp lines starting in a red or yellow
region must diverge (or expand the area between lines)
to achieve the uniform density value. The plot can help
student intuition. The color scale may not be the stu-
dents’ favorite and the opportunity to experiment with
colors may lead to more than a passing glance at such
plots.

The construction of Figure 1a uses theoretical density
and quantile functions. In contrast Figure 1b uses func-
tion estimates based on a sample of 2000 points from a
Weibull distribution. This distribution is not symmet-
ric. Figure 1b illustrates a particular scaling choice for
the axes. The choice forces the median line to be hori-
zontal. The user specified quantile bound furthest from
the median provides a second point and the two points
determine the linear graphic scale. This scale leaves
the q axis empty beyond the short tail and Figure 1b
shows the empty region in black. The color assignment
in Figure 1b should be adjusted so that the p axis is gray.
(The process of generating both images directly on the
same page introduced a color reassignment puzzle that
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we have not yet solved.) The pq density plot applies to
both theoretical and empirical distributions.
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Figure 5: A Perspective View

The construction of the pq density plot brings to-
gether concepts of cumulative probabilities, quantiles,
the probability integral transformation, order statistics,
densities, interpolation, image construction and surface
representation. Figure 5 shows a perspective view from
the quantile side. This view provides more geometric
intuition. The mesh would be better if it showed pq
lines rather than a rectangular grid of lines. A fully ren-
dered color surface with highlights and reference lines
would look even better. The construction of different
pq density views is an instructive exercise.

Inspection of the two plots reveals some omissions. The
small plot size pretty well hides the dropped pixels along
edges. The pixel problem can be fixed. The distress-
ing omissions are the 5 and 99 percent labels. Due to
the lack of plotting space, the software drops the labels.
The problem is not just a coding artifact. Percents such
as 1 and 5 are going to be close on any small plot with
a linear percent scale. This labeling problem motivates
the next variation, the pq piecewise linear plot.

The PQ Piecewise Linear Plot
The pq piecewise linear plot is a generalization of the
legends shown in Carr, Olsen and White (1992). The
previous legends had a linear p axis and represented
key pq pairs using horizontal lines. Their approach im-
plied a nonlinear q axis and readers could not estimate
values for other pq pairs. The new version shown in
Figures 2a and 2b is a set of vertically juxtaposed linear
pq plots. The black triangles and thick horizontal black

lines mark the division between the linear plots. The
composite p axis is not linear. For example the regions
above 95 percent and below 5 percent are larger than
they would be on a linear scale. This facilitates labeling
and showing more detail in the regions that are often of
most interest.

When the plot is a legend for a Choropleth map the
key pq pairs are the boundaries between the Choropleth
classes. The regions between the axes then show the
class colors.

Triangles at the top and bottom of the plots point to
extrema. The user selects either quantile limits for the
quantile axis or the probability limits for the probability
axis and this determines the corresponding limits for
the other axis. Either approach can exclude the sam-
ple extrema, increase resolution for values represented,
and finesse uncertainties in calculating probabilities for
extrema.

The plot design encourages reading from percents to
percentiles (quantiles). The design provides lines for
standard percents with 5 percent increments in the cen-
ter and 1 percent increments near the tails. This gen-
erally corresponds to reader interest. For example, the
96th percentile is usually of more interest than the 51th

percentile. For visibility the reference line colors need
to contrast with the class colors. Figure 2a and 2b uses
white lines for the extreme classes. This provides an ad-
ditional cue about the special treatment of the extreme
classes. Following the lines between the axes is easy.

To determine values in addition to the key pq pairs
readers must interpolate quantiles using the probability-
based reference lines. While interpolation is not trivial,
the numerous quantile tics and tic labels provide bounds
on the answer. The interpolation always occurs on a lin-
ear scale with bounding tics.

Close inspection correctly suggests that the number of
quantile tics and regular spacing for the quantile labels
drives the piecewise space allocation. Figures 2a and
2b suppress some of regularly spaced labels. The addi-
tional labels are useful to those interpolating values but
begin to make the plot appear complicated. Cognitive
studies may suggest an appropriate balance.

The Figure 2a represents a theoretical truncated nor-
mal distribution. Figure 2b represents pq values com-
puted from probability sampling in an EMAP (EPA
Environmental Monitoring and Assessment Program)
study. Since the current emphasis is the graphical de-
sign, Figure 2b omits the context and measurement
units. However, note that the reference lines show
considerable angular variation. Large changes in the
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quantiles sometimes correspond to small changes in
probability. The largest quantile class shows consid-
erable skewness. More resolution can be provided by
selecting the 97th percentile as the bounding quantile.
Of course this would hide the information about the
higher percentiles.

Researchers who collect the data represented on maps
are inclined to find most map legends impoverished.
Those who study maps often want more distributional
detail. The pq piecewise linear plot includes more detail
without taking up much space. The plot provides a nice
compromise between simple legends and extensive pq
tables.

Closing Remarks
With an already burdensome variety of methodological
alternatives, new methods proposed for use should be
demonstrably superior to existing alternatives in some
significant domain. Newness is not sufficient. (Our
interpretation of Pregibon’s Razor). In this article we
suggest that the pq density plot and the piecewise linear
plot have sufficient merit to warrant serious considera-
tion.

The ability of plotting methods to generalize is also an
important consideration. Can one compare two distri-
butions? What would a parallel qq plot look like? How
does one add confidence bounds? First thoughts might
be that the comparison of Cartesian coordinate curves
is so effective that there could not be a viable competi-
tor, but is it so? Cleveland (1985) notes that humans
do not judge distances between curves in the correct
vertical direction but rather assess distances in a direc-
tion roughly normal to the curves. Common confidence
lines for CDF plots can be very deceptive. Just maybe
there is a better representation for some tasks but that is
a topic for another article.

Readers can obtain Splus functions and example
script files to conduct their own evaluations or adapt
methods to their own applications. Use anony-
mous ftp to galaxy.gmu.edu and look in directory
/pub/submissions/pq.
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