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TOPICS IN SCIENTIFIC VISUALIZATION

Color Perception, the
Importance of Gray
and Residuals, on a
Choropleth Map
By Dan Carr

Note: This article is the third in the sequence on choro-
pleth maps. The previous articles addressed smooths
and legends, respectively. This article shows the resid-
ual map for the continuing example of white male colon
cancer mortality rates. As will be discussed below, the
residuals are of interest in the context of generating epi-
demiological hypotheses. Since the plot is in color I
have chosen to begin the article with a discussion of
color and color perception.

The color discussion below provides a physics-based
description and comments on perception. Many aspects
of color use are not covered such as distinguishing fore-
ground from background, adding additional layers of in-
formation, creating perceptual groups, providing depth
cues, achieving balance in terms of complementary col-
ors, and highlighting in terms of complementary colors.
Further, little is said about color systems. Readers want-
ing more information can refer to the newsletter article
on color systems (Eddy 1990) and a host of additional
resources such as Foley et al (1990), Durrett (1987),
Friedhoff and Benzon (1989), Tufte (1990), and Mante
(1972).

Color
A physics-based description of visible light yields an
intensity versus wavelength curve over the spectrum of
400 to 700 nanometers. Figure 1 provides an example
for one color. Light consists of photons with character-
istic wavelengths and wavelength corresponds inversely
with frequency and energy. A physics-based intensity
(energy) measure for a specific wavelength counts the
number of photons striking a given area in a given length
of time and scales the count by the energy for that par-
ticular wavelength. The perception of color is based
on a weighted visual response to the intensity curve.
Common descriptions refer to three different weight-
ings, one for each of the three basic photon responsive
components of the eye: rods, green cones and red cones.
The construction of a brightness measure, called lumi-
nance, proceeds by settling on a single luminous effi-
ciency curve (see Figure 1) as being representative of
the composite visual response. The integrated product
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of the intensity function with the efficiency curve (or
weighting function) produces a measure with units such
as foot lumens. This measure is a rough approximation
to perceived brightness.
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Figure 1. Intensity and Luminance Curves.

Many different intensity curves produce the same per-
ceived color. Such colors are called monomers. De-
scriptive systems for characterizing perceptually dis-
criminable colors typically involve three facets or di-
mensions. The HLS system describes color using the
concepts of hue, lightness and saturation.

For monochromatic light, hue corresponds directly to
the wavelength of the light. For example wavelengths
of 470, 490, and 572 nanometers correspond to what is
generally perceived to be pure blue, green and yellow,
respectively. Most light that we see is not monochro-
matic but rather is composed of wavelength mixtures
over regions of the visible spectrum. The hue of a mix-
ture can be found by perceptually matching the color
with mixtures of a monochromatic light and achromatic
light. The monochromatic light in the match gives the
hue. Hue is conveniently thought of as the dominant
wavelength of a color. However in some cases the
color actually has zero intensity for that particular wave-
length. For example the combination of monochro-
matic red and green light does not contain yellow but
appears yellow because photons with those two wave-
lengths jointly stimulate the red and green cones in the
eye in a fashion similar to that of yellow light photons.
Multidimensional scaling of judgements concerning hue
closeness places hues on a “C” shaped curve in a plane
(Shepard and Carroll 1966). The HLS descriptive sys-

tem orders hues around a circle. Consequently hues are
not good for representing values of an ordered variable.

A second aspect of color, saturation, refers to excitation
purity. Monochromatic light appears fully saturated in
color (provided the photon rate is high enough). Light
containing a mixture of different wavelengths appears
less saturated. Sunlight and other mixtures that are of
roughly uniform intensity across the visible spectrum
appear as totally unsaturated or achromatic. Saturation
can be thought of as an ordered scale that involves a
mixture of a pure chromatic color (such as red) and an
achromatic color (such as some shade of gray). Rep-
resenting an ordered variable using saturation is rea-
sonable. The main limitation is that humans cannot
discriminate many levels of saturation.

When the wavelength specific intensities are roughly
the same across the visible spectrum, the color is per-
ceived as being achromatic. Achromatic light can be
thought of as gray levels from white through black. We
perceive the mixtures produced by the sun and many
electric bulbs as white light. We perceive surfaces re-
flecting white light equally across the visible spectrum
as white when the reflectance is above 80% A surface
reflecting 3% or less light appears to be black (Murch
1987). We perceive intermediate reflectances as levels
of gray. In printing, the half-toning process produces
grey-levels by putting patterns of black ink on white pa-
per to reduce the reflectance. For CRT displays, “equal”
mixtures of red, green and blue light emitted by the CRT
phosphors produce gray. The apparent gray-level from
white to black, depends on the intensity of the light from
the three phosphors and the surrounding brightness.

Different authors refer to the notion of composite light
intensity (or intensity contrast) using such words as
brightness, lightness, and value. Whatever the word
chosen, humans are very responsive to the intensity di-
mension of light. Humans can discriminate many levels
of brightness, so brightness is the best color dimen-
sion for representing an ordered variable. The use of
gray-levels is particularly convenient since it provides
a brightness dimension without the risk of suggesting
other competing orderings based on hue and saturation.

The above physics-based description of brightness fol-
lows that of Foley et al (1990). However, luminance as
a measure of brightness does not tell the whole story.
Murch (1987) uses the word brightness to refer to per-
ceptual color changes that are a function of light in-
tensity or roughly speaking, photon rates. As intensity
increases it first becomes possible to see something,
then it becomes possible to see dark unsaturated colors,
next it is possible to see more and more saturated col-
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ors, and eventually it is possible to see saturated reds
and yellows. At greater extremes of light intensity, the
hues appear more desaturated and the colors can appear
dazzling. A further phenomena is the apparent change
in hue that accompanies a change in luminance. This
is known as the Bezold-Brucke Effect and can neces-
sitate some adjustments except at the three pure colors
indicated above.

In controlled settings, colors can be ordered in terms
of saturation and brightness but commonly encountered
situations are much more complicated because color
perception is relative. Our eye-brain systems diminish
in response to steady state stimulation. When a small
colored disk is surrounded by an annulus of a different
color, adaptation (or diminished response) to the an-
nulus color shifts the apparent color of the small disk
toward the complementary color of the annulus. (Com-
plementary colors in an additive light model are color
pairs that produce white light.) If the annulus is green,
the visual response to the green rapidly diminishes both
for the annulus and the disk. For the disk, this adaptation
produces a perceptual shift toward magenta. Land (see
Friedhoff and Benzon 1991) discovered that he could
produce richly colored images using two lights sources,
such as white and red. He produced two gray-level
slides using red and green filters. He then projected red
light through the red filter slide and white light through
the green filter slide. The result was not pink as in
pigment mixing but a full color image with the color
of regions relatively low in red saturation being shifted
toward cyan. Apparent gray levels also relative. A
brighter surround makes the inner disk appear darker.
The relativity of color perception can complicate in-
terpretation when color represents an ordered variable
in choropleth maps and other varying-local-background
applications.

Visual Subchannels
According to Friedhoff and Benzon (1991), visual pro-
cessing involves separate pathways or channels that
emphasize different facets of a scene. Their descrip-
tion gives three channels, a color channel that does
not see the objects in great detail, a channel associated
with movement and binocular depth information, and a
channel that carries high-resolution information about
shapes. The high-resolution shape channel processes
changes in value (or brightness). This shape channel
also carries much of the monocular information about
depth.

Readers can perform a simple experiment to gain insight
into the importance of brightness contrast in monocular
depth perception. Start with a perspective view such

that in Figure 2. Then make a similar image using a
background color such as green and lines in another
color such as red. Modify the intensities until the colors
are brightness matched. In other words the lines should
be as difficult as possible to see. Then observe how
flat the image appears compared to the black and white
version.
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Figure 2. A simple pserspective plot.

Many scientific images use a spectral color order (red,
orange, yellow, green, blue, violet) to represent an or-
dered variable. This can produce unintended visual
effects because the colors are not ordered in bright-
ness. The shape-channel picks out edges between col-
ors of contrasting brightness and extracts monocular
depth information based on local brightness compar-
isons. While purposeful jumps in brightness may em-
phasize selected contours and create perceptual groups
that are relatively close in brightness, all to often people
make color selections without regard to the shape and
depth information that the color selection generates.

A gray-level plot can be used as a rough consistency
check for a plot that uses color to encode an ordered
variable. When colors have been encoded as RGB val-
ues and the RGB values are based on the standard NTSC
phosphors, the Y component of the YIQ transformation,
Y= .299R+.587G+.114B (see Eddy 1990) corresponds
to luminance. This Y value can be equated to gray-level
for production of the plot on a CRT display or on pa-
per. (The paper version can have much better spatial
resolution but may not be as effective because of half-
tone edge problems.) If the gray-level version appears
inconsistent with the intended message, then the color
selection should be reconsidered.

Controlling Contrast Noise

Tufte’s (1990) description of laying and separation pro-
vides an introduction the elegant use of color. In his
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description, wild local variations in brightness (value)
appear as noise. This phenomena is likely to occur in
a choropleth map that represents residuals from spa-
tial smooths. Figure 3 addresses the noise problem by
plotting HSAs in gray when their residuals are small in
absolute value. (See Carr and Pickle (1993) and Carr
(1993) for details concerning the data and smoothing.)
The legend in the noisy residual plot (not shown) prior to
Figure 3, gave approximate values for the 5th and 95th
population-based percentiles. The class interval from
-3 to 3 is a convenient, symmetric rounding of those
percentiles. The values of -8 and 8 were chosen heuris-
tically based on the residual extrema. The double-ended
color scale with darker saturated colors at the extremes
is consistent with the separate representation of positive
and negative residuals. This color scheme uses satu-
rated color sparingly in accordance with Tufte’s advice.

White Male Colon Cancer
Residuals From Smooth: Rate Per 100,000

-8

-3

3

8

Max=15

Min=-16.5

Figure 3. Residuals from a smooth fit.

Hypothesis Generation
Plotting residuals from spatial smooths of mortality
rates is a useful device for generating epidemiological
hypotheses. Knowing the location of a large mortal-
ity rate residual triggers the mental search for possible
cancer related variables that are also unusual for the lo-
cation. A match with locally unusual values provides
a hypothesis for investigation. The failure to find a
match among the immediately known variables sug-
gests checking on additional variables. More generally,
spatial smoothing provides a surrogate adjustment for
cancer related variables that vary smoothly over space.
The residuals can call attention to cancer related vari-
ables that do not vary smoothly over space.

In the residual plot, the red HSA in eastern Nebraska
comes as no surprise to epidemiologists. In past decades
epidemiologists noticed high rates in eastern Nebraska
compared to other midwest rates. Further study found

that the rates were associated with people of Czechoslo-
vakian background and their dietary patterns (see Pickle
et al 1987). Based on viewing cancer mortality maps for
the three previous decades, it is possible that the other
dark red HSAs in Figure 3 have not yet been studied
as having locally high colon cancer rates. In Pennsyl-
vania, the red HSA draws additional attention because
of the light blue (low) neighboring HSA rates. Readers
having hypotheses about any of the dark red regions are
encouraged to send them to me. The clusters of light
red HSAs in Montana and Texas are roughly consistent
with the three decade trend map shown in Pickle et al
1987. However most of the other significant trend re-
gions do not appear in this residual plot. The Montana
cluster is evident in the 1970-1979 map but the Texas
cluster is new. The dark blue HSAs and the light blue
clusters can also be consider for possible associations.

Cautious Interpretation
Interpretation of this residual plot should proceed cau-
tiously for several reasons. Unexplained variability re-
mains. The smoothing fraction may be too large and
the use of Poisson-based weights needs to be reviewed.
The large residuals call for robust residual weights. In
general smoothing methods are suspect at map edges
and most methods are not designed to track discontinu-
ities, should they be present in the data. In addition,
the use of class intervals can hide important detail. As
examples of this, the apparent Texas cluster is the result
of smoothing two locally high HSA rates and the single
dark red Nebraska HSA is not the only high rate HSA in
the area. Smoothing methods accomplish their purpose
when the examination of the smooth and residuals helps
the analyst focus attention. The results are not to be in-
terpreted in isolation from data, diagnostics and related
knowledge.

The data are available and readers
are encouraged to produce their own
smoothed plots.

The impact of inverse variance weights should be con-
sidered in the interpretation of ordinary residuals. For
example, Long Island has a large population and corre-
spondingly the mortality rate has a small variance esti-
mate. The inverse variance weight is relatively large, so
the Long Island rate strongly influences its own smooth
estimate and the estimates for the neighboring HSAs.
This is evident if one examines the maps in the two pre-
vious articles. Seeing a large residual for Long Island
would be a surprise. The anticipated result is that ex-
treme residuals will tend to belong to small population
HSAs. With a Poisson model for the number of deaths,
the small population rates are more variable and the
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HSA’s exert less pull on the local smooth. Clusters of
small population HSAs with extreme residuals are not
particularly surprising. Since counties have been aggre-
gated into HSAs to reduce the population size imbalance
among analysis units, the situation is not as extreme as
in county residual maps. Still, patterns in Figure 3 may
be predominantly due to the “random variation” in small
population HSA rates so plotting studentized residuals
is an obvious next step.

Readers are encouraged to improve on the smooth-
ing, to make their own choropleth residual maps,
to generate their own hypotheses and reach their
own conclusions. The data structures, modeling
and plotting scripts, and postscript files are avail-
able by anonymous ftp to galaxy.gmu.edu under
submission/eda/maps.
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UNIX COMPUTING

What is a Shell, Part Two
by Phil Spector

Note: This article is a continuation of the article ap-
pearing in the December, 1993 issue of this newsletter.

Job Control
The UNIX operating system accommodates the exe-
cution of programs in two modes: foreground mode,
where the terminal or window being used does not
prompt for a response until the program is completed;
and background mode, which executes the program
without tying up the terminal or window from which
the command invoking the program was executed. By
default, the commands you type are carried out in the
foreground. In an environment with multiple windows,
these distinctions are not so critical, since additional
windows can be opened if the one in which a command
was entered is not available.

Background commands are particularly
useful in non-windowed environments.

When using a terminal with just one window, it can be
very useful to run one or more commands in the back-
ground while an interactive session is being carried out.
Even in a windowed environment, it can often be useful
to run a program in the background if you know you will
be logging off before the program has completed exe-
cuting, since jobs in the foreground will terminate when
you logoff. To make it known the the UNIX operating
system that you wish to run a job in the background,
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