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Turning Noises to Fingerprint-Free “Credentials”:
Secure and Usable Drone Authentication
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Abstract—Drones have been widely used in various services, such
as delivery and surveillance. Authentication forms the foundation
of the security of these services. However, drones are expensive
and may carry important payloads. To avoid being captured by
attackers, drones should keep a safe distance from the verifier
before authentication succeeds. This makes authentication methods
that only work in very close proximity not applicable. Our work
leverages drone noises for authentication. While using sounds for
authentication is highly usable, how to handle various attacks that
manipulate sounds is an unresolved challenge. It is also unclear how
to ensure robustness under various environmental sounds. Being
the first in the literature, we address the two major challenges
by exploiting unique characteristics of drone noises. We thereby
build an authentication system that does not rely on any drone
sound fingerprints, keeps resilient to attacks, and is robust under
environmental sounds. An extensive evaluation demonstrates its
security and usability.

Index Terms—Unmanned aerial vehicle, authentication,
machine learning.

I. INTRODUCTION

B ECAUSE of multiple advantages, such as fast speed, low
manual cost, and access to remote areas, drones have been

widely used in various services, such as delivery, surveillance,
telecommunication, etc [1]. However, the growing popularity of
drone services renders them an appealing target of attacks [2].
For instance, malicious drones could mimic legitimate ones to
gain unauthorized access to restricted locations and resources.
Likewise, attackers might impersonate legitimate users to ex-
ploit drone services, such as stealing packages carried by a
delivery drone [3].

Authentication plays a fundamental role in ensuring security.
For example, a user needs to authenticate a drone before trusting
it to pick up a package. Likewise, a delivery drone needs to
authenticate a user before releasing a package. Moreover, in
scenarios where a drone enters a warehouse, collaborates with a
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robot, acts as an agent for a customer, or approaches a sensitive
area, authentication serves as the foundation of security [3], [4].

Compared to many authentication scenarios, drone authen-
tication is unique [3]. Drones are expensive and may carry
important data and/or payloads. To avoid being captured by
attackers, drones should keep a safe distance from the verifier
before authentication succeeds. This makes authentication meth-
ods that work in very close proximity, such as NFC and keypads,
not usable.

The motors and propellers of each drone generate unique
noises due to manufacturing imperfections [5]. Thus, drone
noises present an opportunity for authentication. Our observa-
tion is that if a drone and a verifier are in proximity in the physical
world, both should be able to record the noises of the drone. We
propose that, when a drone hovers, the drone and the verifier
(e.g., the smartphone of a user) both record the drone noises.
After exchanging the recordings, the drone and the verifier can
independently check the similarity of the two recordings for mu-
tual authentication. Our work has the following advantages. (1)
Zero drone-sound fingerprints. Sound features of a drone vary
when the weight of its payload changes [6], affecting the sound
fingerprints. Unlike prior work [5], [7], our approach does not
rely on any sound fingerprints. (2) Conducting mutual authen-
tication. As the drone and the verifier independently check the
similarity of the exchanged recordings, mutual authentication
can be attained. (3) Resilience to attacks. An attacker can record
and replay a drone’s sounds to fool approaches that relies on
drone noises for authentication. Such attacks are not examined
in prior work, but carefully studied in our work. (4) Robustness
to environmental sounds. How to ensure the sound-based au-
thentication to be robust to various environmental noises is not
examined in prior work but studied in this work.

Our work addresses the following two major challenges.
The first challenge is to handle various attacks against sounds.
(1) Dominant sound attack: an attacker can impose the same
dominant sounds near both the verifier and the drone to fool
the authentication. (2) Audio relay attack: the sounds near the
verifier (or drone, resp.) can be recorded and replayed near the
drone (or verifier, resp.).

The other challenge is that drone services are conducted under
a variety of environmental sounds, such as traffic noises, people
chatting, radio news, and music. Moreover, the microphone on
the drone side mainly records the drone noises due to the close
proximity to the motors and propellers, while what is recorded
by the verifier tends to be affected by environmental sounds. The
significant disparity is a barrier to accurate sound comparison.
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To address these challenges, our insight is that a secure com-
munication channel can be established using mature techniques,
such as PKI. Instead of collecting a drone’s noise fingerprint [5],
[7], the drone and the verifier use the secure channel to exchange
the recordings of the current sounds. We devise a novel method
for accurate and robust audio comparison, which tackles the
disparity aforementioned. Plus, effective countermeasures that
exploit the uniqueness of drone noises are developed to defeat
attacks.

We build a system, named Hum2Auth (H2AUTH), and per-
form an extensive evaluation. Below is a subset of the questions
the evaluation studies. Is the accuracy high? Can the system
be used for different drones and verifiers? Is it resilient to
attacks? Can it work under various environmental sounds? The
evaluation results give positive answers to all the questions. We
make the following contributions.
� We propose a highly secure and usable mutual authentica-

tion solution for drone services that does not rely on any
drone noise fingerprints.

� This is the first work that defeats various attacks against
a sound-based authentication system and keeps resilient
to various environmental sounds, which distinguishes our
work from prior work. We devise a novel audio similar-
ity comparison method that exploits the characteristics of
drone noises to cope with the significant sound disparity
between drones and verifiers, attaining a high accuracy
(=0.997).

� This is the first mutual authentication approach for drones
without relying on biometrics. A robot, car, smart doorbell
or garage can work as the verifier, while prior state of the
art work requires a human being to be the present.

� We implement a prototype and conduct an extensive eval-
uation, demonstrating its security and usability.

II. DESIGN CHOICES AND THREAT MODEL

A. Design Choices

We first discuss some straightforward design choices.
Bluetooth. Much research has demonstrated the insecurity of

intuitively using radios for verifying proximity. For instance, in
the case of reduced-range Bluetooth, even if the communication
channel is protected by a key, attackers can launch radio relay
attacks (aka Mafia Fraud Attacks [8]) without breaking the
underlying cryptography key. Such attacks have been used to
compromise Passive Keyless Entry and Start (PKES) systems
used in modern cars [9]. As shown in Fig. 1(a), the attack
involves two attackers working together. One attacker stands
near the targeted car, while the other stays in proximity to
the car owner, equipped with a device capable of relaying the
signal from the key fob to the other attacker and further to the
car, without the need to crack cryptographic secrets. Car thefts
applying relay attacks have been reported [10] and are cheap
($22) [11]. Readers are referred to [12], [13] about the insecurity
of other naive methods for verifying proximity, such as RSSI,
radio fingerprinting, etc.

Like attacks against cars [9], radio relay attacks against drone
authentication can also be launched [4]. For example, a family

Fig. 1. Radio relay attacks.

who picnics in Central Park has ordered an expensive bottle of
wine; due to GPS navigation inaccuracy [14] or spoofing [15],
[16], [17], [18], as shown in Fig. 1(b), a droneD that delivers the
bottle hovers near an attacker, who controls a malicious device
C ′. The attacker, meanwhile, controls a malicious drone D′ to
hover in front of the legitimate user, who mistakenly considers
D′ as the service drone and starts the authentication procedure
(e.g., sending a purchase code or PIN from C [19]). Then, D′

relays the radio signal, without knowing the encryption key, to
C ′, which relays it to D.

Compared to attacks in the car scenario, attacks in the drone
scenario do not need an attacker to personally approach and stay
close to the victim user. Instead, they send a rogue drone to a
user expecting an authentic drone.

QR Code: A Google’s patent [20] has the droneD authenticate
a user by scanning a QR code shown on the user’s smartphoneC.
However, it is vulnerable to vision relay attacks [3]: as shown
in Fig. 1(b), the malicious drone D′ scans the QR code from
C and sends it to the malicious smartphone C ′, which displays
the same QR code to D. Readers are referred to [3] about the
insecurity of an enhanced version of QR code, that is, quickly
switching multiple QR code.

Distance Bounding: Distance bounding [21] enables one
device to securely establish an upper bound on its distance
to another device, which can be used to verify proximity for
authentication. However, as they are based on the time difference
between sending challenge bits and receiving the corresponding
response bits, the accuracy is sensitive to the slightest processing
latency. Thus, it requires special hardware [22], which is not
widely available. Indeed, it is unfair to require low-income
people to purchase high-end smartphones that support distance
bounding in order to benefit from the advances of technologies,
such as drone authentication. The security of distance bounding
protocols is still being actively studied [23], [24], [25]. As
an interoperable ecosystem for distance bounding is not yet
available [26], compatibility and interoperability issues between
drones and user-side devices cannot be ignored.

These straightforward designs are either insecure or not usable
(e.g., requiring special hardware on the user side). We aim at a
highly secure and usable authentication method.

B. Threat Model

1) Dominant Sound Attacks: As shown in Fig. 2(a), an at-
tacker can play identical and synchronized dominant sounds
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Fig. 2. Various attacks considered in our threat model. C: verifier device; D: legitimate drone; C ′: attacker’s device; D′: attacker’s drone.

near the service drone and the verifier device, with an intention
that the two devices record similar sounds. (Our evaluation in
Section VII-D1 demonstrates that when the malicious sound is
loud enough, the attack success rate can be over 95%, as depicted
in Fig. 14(a).)

2) Audio Relay Attacks: (i) As shown in Fig. 2(b), the ma-
licious device records the sounds near D and transmits the
recording over radio to D′, which replays it near C. We call it
a verifier-side audio relay attack. (ii) Fig. 2(c) shows an attack,
where D′ records the sounds near C and transmits the recording
to C ′, which replays it near D, called a drone-side audio relay
attack.1 (Our evaluation in Section VII-D2 and Section VII-D3
reveals that the success rate of audio replay attacks can exceed
95%, as illustrated in Fig. 14(b) and (c), respectively.)

3) Identical Drone Model Attacks: An adaptive attacker can
select a malicious drone D′, which is of the same model as
the service drone D, to fool our system. Due to manufacturing
imperfections, drones make different sounds and noises, even if
they are of the same mode. Our evaluation in Section VII-B finds
that such attacks has a near-zero attack success rate even when
a drone hovers. The attack success rate becomes zero when D
randomly and slightly moves during the authentication time.

In all the attacks, we assume a strong adversary who can use
powerful external/directional loudspeakers (i.e., not limited to
the built-in loudspeakers of smartphones or drones).

Attacks Out of Scope: An attacker may launch Denial-of-
Service (DoS) attacks, such as radio jamming [28], to disrupt
the communication. Handling DoS attacks are beyond the scope
of this work.

III. SYSTEM OVERVIEW

A. Approach and Assumptions

Our Approach: Given an order placed by a verifier, who owns
the verifier device C (e. g., a smartphone), assuming the drone
D is dispatched to serve the order; during the authentication
procedure, both C and D record sounds for a short time (the
duration is a parameter studied in Section VII-C). Then, the
recordings by C and D are sent to each other for comparison.
(Assuming the drone service company’s server can be trusted,

1We assume the attack has a negligible latency from record-time to replay-
time [27]. Thus, we do not rely on checking latency to detect attacks.

the computation can be offloaded to the server and the result is
sent to C and D.) We are to verify this hypothesis: if C and D
are in close proximity, the similarity score of the two recordings
is high; otherwise, low.

Assumptions: We assume a key-protected wireless channel
between the drone and the verifier, which is assumed in many
prior works, such as G2Auth [3], Smile2Auth [4], Qualcomm’s
patent [19], distance bounding [21], and SoundUAV [5]. Re-
garding key establishment, the drone service company’s server
simply assigns a key unique for each order to the drone and the
verifier; or, assuming each drone has a digital certificate, the
verifier can make use of PKI for key establishment. It is impor-
tant to note that despite the utilization of software-level digital
certificates to signify the individual identity of each drone, this
approach remains susceptible to impersonation attacks. This
vulnerability underscores the necessity of drone authentication.

We assume that (i) the verifier device C is installed with the
drone service company’s app for placing orders and authen-
tication, and (ii) both D and C have microphones for sound
recording, and are not compromised.

B. System Architecture

To make the discussion concrete, we consider the following
authentication procedure between a delivery drone D and a
user’s smartphone C. (The concrete steps may vary when the
verifier is a robot or smart doorbell.)

1) After the drone D arrives, it hovers and establishes a key-
protected communication channel with the user’s smart-
phone C. Next, C vibrates to let the user U know the
delivery drone’s arrival.

2) U then walks to D and unlocks C to confirm that she is
near D (note the drone hovering in front of her may be a
malicious one, and D may hover near an attacker due to
navigation inaccuracy [14] or GPS signal spoofing [15],
[16], [17], [18]; we thus need authentication).

3) D and C record audios for a short duration T , which is
studied as a parameter in our evaluation.

4) D and C exchange the recordings to calculate a similarity
score. If the authentication succeeds, the drone service
proceeds; otherwise, it goes back to Step 3 until the
maximum number of attempts is reached.
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Fig. 3. Architecture of H2AUTH.

As shown in Fig. 3, given the two recordings from D and C,
H2AUTH performs similarity comparison and attack detection.
The similarity comparison module (Section V) extracts features
from both the time and frequency domains, which are fed into
a machine learning model to make a decision whether the two
recordings are similar. The attack detection module (Section VI)
not only detects the various attacks in our Threat Model but also
considers environmental sounds that may cause inaccuracies. In
short, the authentication succeeds only if the two recordings are
similar and no attacks are detected.

Non-Human Scenarios: It is worth highlighting that our au-
thentication approach does not rely on humans. For example,
in the drone delivery scenario, a hovering drone and a dock
equipped with a microphone can apply H2AUTH for mutual
authentication. When a drone hovers near a destination dock,
it sends a notification to the dock to start audio recording.
Similarly, a smart doorbell containing a microphone can also
conduct mutual authentication with a drone. Therefore, H2AUTH

has prominent advantages over prior state of the art [3], [4] that
relies on human interactions to conduct drone authentication:
(1) Usability: Very often, a user is not home or does not want to
wait for the drone service e. g., drone delivery. Or, during a very
cold or hot day, a user does not want to go outside to interact
with a drone and would rather use her smart doorbell to finish
authentication. (2) Privacy: Some users do not want to show
themselves in front of a drone, which usually carries a camera.
(3) Generalizability: H2AUTH extends its applicability to other
scenarios, including the authentication process between a drone
and a robot/door bell/warehouse.

C. Multiple Drones and Verifiers

Multiple Drones: When multiple drones hover near C, even
if the authentication result is positive, it is difficult for C to
decide which drone is the right one. Note prior state of the
art [3], [4] also needs to tackle this issue. The verifier can
update the destination location slightly for a single-drone space.
If another drone follows closely to the new location, it reveals
an attack explicitly. Another simplest solution is that the service

Fig. 4. Power spectral density of sounds made by the same drone with different
payloads.

drone waits until it is the only drone nearby to conduct the
authentication. An attacker may control a drone to stay for DoS
attacks; however, since the attacker cannot make a profit but
explicitly reveals the malicious drone, such attacks are unlikely
to be attractive to attackers.

Multiple Verifiers. A positive authentication result can only
tell the legitimate verifier is in close proximity to the legitimate
drone. When there are multiple verifiers nearby, e.g., in a popular
place, the service drone D cannot decide which verifier is the
right one. Sound waves in the range 16 kHz to 20 kHz are near-
ultrasound insensitive to humans [29], and loudspeakers can play
sounds in this range [30]. Thus, D can request C announce a
sequence of specified numbers in this frequency range, and D
conducts sound source localization [31]. A device nearby that
clones the behavior reveals itself as a malicious one but cannot
make a profit.

IV. STUDYING DRONE NOISES

When a drone hovers, the spinning blades push air down and
meanwhile the air pushes up on the rotors, lifting the drone. It is
worth noting that when a drone hovers, it needs to continuously
adjust its actuators slightly to keep itself balanced [32]. The
sounds made by the propellers and the motors of a drone are
related to their rotational rates, which vary due to many factors,
such as the air flowing around the drone, the payload carried by
the drone, the current acceleration, and the posture change of
the drone [33].

For example, when a drone hovers with heavier payloads,
to remain steady, the drone needs a greater lift force. Thus, the
blades spin faster, which is reflected by the essential frequency—
the frequency that has the greatest amplitude. We conducted
an experiment to study the sounds of a Mavic Mini drone.
Fig. 4 shows how the essential frequency varies with different
payloads. When the drone hovers with no payloads, the essential
frequency of the sounds is 348.33 Hz; in comparison, when the
drone carries full payloads, it increases to 411.66 Hz.

Fig. 5 shows how the essential frequency changes in another
experiment. From 1 s to 1.5 s, the drone reduces the rotation
speed of its blades, which makes the drone drop down slightly
and the essential frequency decrease; from 1.5 s to 2 s, the
drone raises the rotation speed, making the drone fly up and
the essential frequency increase. (Regardless of the payloads
and operations, however, we find the essential frequency lies
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Fig. 5. Spectrogram of sounds made by a hovering drone. The repetitive stripes
show harmonics.

in the low-frequency range, which is consistent with prior
studies [34], [35].)

Given the multiple factors that complicate drone noises, we
seek a fingerprint-free authentication method. Moreover, as the
air flow is complex in nature and hard to predict, plus multiple
other factors, such as unique manufacturing imperfections in the
motors, it is unlikely to reproduce the noises of one drone using
another, even when they are of the same model, which is verified
(Section VII).

V. SOUND SIMILARITY COMPARISON

A. Background: Cross-Correlation

Cross-correlation serves as a widely-utilized standard method
for measuring similarity, as demonstrated in previous applica-
tions [36]. It tracks the movement of one or more sets of time
series relative to one another, which can be used to determine
how well they match up with each other. Assuming two inde-
pendent time series of length n are denoted as X and Y , cross
correlation cXY (l) with a lag l can be calculated as:

cXY (l) =

n−1∑

i=0

X(i)Y (i− l) (1)

where Y (i) = 0 if i < 0 or i > n− 1. To accommodate for
different amplitudes of the two signals, the cross correlation can
be normalized as: c′XY (l) =

cXY (l)√
cXX(l)cY Y (l)

. The normalized

cross correlation has the range of [-1, 1], where 1 indicates
the two time series have the same shape; -1 indicates the two
time series have the same shape but with opposite signs; and 0
indicates they are uncorrelated.

The computation overhead can be optimized by using the
Fourier transformation: cXY (l) = F−1(F (X)∗ · F (Y )), where
F () denotes the Fourier transformation, F−1() denotes the
inverse Fourier transformation, and the asterisk denotes the
complex conjugate.

Fig. 6. Comparison of audios recorded by the verifier and the drone.

B. Exploiting Drone Noises: Essential Frequency-Centered
Feature Selection

Raw Features. The raw audio recordings from the verifier
side and the drone side exhibit significant differences due to
varying distances from the drone. As depicted in Fig. 6, the
waveforms and spectra of the recordings from both sides exhibit
noticeable disparities in shape, posing challenges in assessing
their similarity directly from the raw data. To measure similarity
in a fine-grained scale, bandpass filters [37] can be used to divide
the sounds into multiple frequency bands and the maximum
cross-correlation value in each band can be used as a similarity
metric. Specifically, the audible range of frequencies are divided
in one-third octave bands, which split the first 10 octave bands
in three and the last octave band in two, for a total of 32 bands.
One-third octave bands are widely used in acoustics and their
frequency ranges have been standardized [37]. After calculating
the maximum cross-correlation value in each of the bands, a
vector of 32 dimensions is derived, each dimension denoting
the cross-correlation value in one band.

Insight and Investigation: Instead of regarding all the 32 bands
as equal, our insight is that the bands are not equal, and that the
essential frequencies of a drone usually lie in a narrow low-
frequency range (see Section IV).

We then apply a Fisher scoring algorithm [38], which is used
for feature selection, to study the importance of the scores from
different bands. It ranks the features prior to a learning task. We
compute the normalized Fisher scores of all the features with the
data points collected in our dataset (detailed in Section VII-A2),
and compare the Fisher scores with the power spectral density of
the sound. Fig. 7 shows the results of normalized Fisher scores
and power spectral density over all the frequency bands. The
maximum Fisher score is from the frequency band [355 Hz,
447Hz], which covers the essential frequencies of the drone.
Fig. 7 also reveals that features in frequencies with higher power
spectral density tend to have higher scores, which interprets and
confirms the validity of Fisher scores.

Idea: This inspires us to propose that the fine-grained band-
pass filters should take a closer look at the frequencies with
high power spectral density. For example, Fig. 7 shows that
the power of sound made by a hovering drone is concentrated
around its essential frequency. Therefore, instead of using the
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Fig. 7. Fisher scores and power spectral density.

standard one-third octave bands [37], we propose to divide the
frequency band that covers the essential frequencies of a drone
(the frequency width is denoted as N Hz) into M equal parts,
each occupying N/M Hz. The value of N should take into
consideration the range of essential frequencies when a drone
carries different weights of payloads. (Our parameter study finds
M = 5 works well across different drones.)

H2AUTH discards all other bands and only uses information
from theM features, called essential frequency-centered feature
selection, to train a binary classifier, which has the following
benefits: (1) it excludes the interference of a large variety of
environmental sounds; and (2) it significantly reduces the com-
putational overhead.

VI. DEFEATING ATTACKS & TOLERATING ENVIRONMENTAL

SOUNDS

A. Main Idea

Detecting dominant sound attacks and drone-side audio relay
attacks: Due to the very loud drone noises and the very small
distance between a drone’s sound sources and its microphone,
the microphone of a drone mainly records drone noises. (Also
note that when there are attacks, C is close to D′ and C mainly
records the drone noises of D′.) Attackers who launch domi-
nant sound attacks (Fig. 2(a)) or drone-side audio relay attacks
(Fig. 2(c)) need to impose very loud malicious sounds on D to
distort the recording by D (in order to obtain a high similarity
score), which motivates us to check the sound level on the side
of D to detect the two kinds of attacks (Section VI-B).

Detecting verifier-side audio relay attacks: A verifier-side
audio relay attack (Fig. 2(b)) records the noises ofD and replays
them towardsC. As this attack does not play any sounds towards
D, the detection idea above does not work. To make the attack
stealthy, the attacker may use a directional loudspeaker. We
propose to check the liveness of the sounds recorded by C; that
is, whether the sounds are due to a live drone or a loudspeaker
(Section VI-C).

Reducing false rejections: (1) Naive sound level checking may
cause false rejections, as environmental sounds, such as traffic

noises, can also influence the sound level. (2) What complicates
the liveness detection is that there may be loudspeakers playing
music or news on the verifier side. Not only does our work defeat
the various attacks that are ignored by prior work [5], [7], we
also devise methods to tolerate various environmental sounds to
reduce false rejections.

B. Sound Level Checking

Our observation is that to have a significant impact on the
sounds recorded by D, an attacker has to play malicious sounds
loudly. We thus study the feasibility of detecting such attacks
based on sound level checking.

A sound level can be denoted as the intensity (I) of the
sound wave, which is the amount of energy at a given area
per unit of time. It is measured as the intensity level (IL) in
decibel scale (dB), which can be converted from the sound
intensity with the unit of W/m2 following the formula IL =
10log(I/10−12) [39]. The intensity of combined sounds is the
sum of the individual intensities due to the independent sound
sources [40]. As a result, the sound intensity I ′D measured by
the microphone on the drone’s side can be denoted as I ′D =
ID + IE , where ID is the sound intensity of the drone noises
and IE the environmental noises.

To significantly distort the noises recorded by the drone-side
microphone, an attacker (A) has to make sounds of intensities
above IAmin. Assuming the typical environmental (E) sound
level is not greater than IEmax and IEmax < IAmin, a threshold
of I ′D, which is between I ′Dlow = ID + IEmax and I ′Dhigh =
ID + IAmin, can be used to detect attackers while allowing
benign verifiers to be authenticated under typical environmental
sounds, such as traffic. Typical environmental sounds are below
95 dB.2 Thus, we consider IEmax = 95 dB.

On the other hand, a drone spins its motors and propellers
intensively when hovering, which makes loud noises. The sound
level measured by the microphone on the drone side is thus very
high. For example, the sound level measured by a microphone
attached to the DJI Mavic Mini drone is 99.3± 1.8 dB. Ac-
cording to our evaluation, an attacker has to play sounds above
IAmin=100 dB to get a high similarity score. Based on the for-
mulas above, I ′Dlow = 100.672 dB and I ′Dhigh = 102.674 dB.
The threshold I ′D on the drone side can be chosen between I ′Dlow

and I ′Dhigh, such that H2AUTH impedes attacks by checking
whether the recorded sound level is above the threshold, and its
tolerate environmental sounds below 95 dB; i.e., it does not cause
false rejections. To measure sound levels during authentication,
drones can be equipped with inexpensive sound level meters. For
example, a small decibel detection module, which costs $12.25,
can measure sounds between 40 dB and 130 dB with a resolution
of 0.1 dB [42].

Our evaluation (Section VII-D) examines different drones,
malicious sounds, and environmental sounds.

2It is damaging to hearing after long exposure to sounds above 95 dB and it
can cause hearing loss after exposure to sounds above 100 dB [41].
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Fig. 8. Cumulative distribution of spectral power density.

C. Drone Sound Liveness Checking and Loudspeaker Content
Detection

We have the two observations: (1) to launch a successful
verifier-side audio relay attack, a loudspeaker needs to replay a
drone’s sounds on the verifier side; and (2) a legitimate verifier
may be playing music and news using a loudspeaker.

Therefore, if no loudspeakers are detected (that is, sound
liveness checking passes), we are ensured that there are no
verifier-side audio relay attacks. Otherwise, we do not immedi-
ately reject the authentication: if the loudspeaker plays sounds,
such as music and news, it should not be reported as attacks.
(However, if the verifier happens to be playing drone sounds
from a loudspeaker, a false rejection will occur. Such corner
cases are not common and H2AUTH can generate an alert to ask
the verifier to pause them.) Because of hardware imperfections,
sounds produced by a loudspeaker exhibit distinct characteristics
compared to original sounds. These characteristics have been
used to differentiate between live-human voices and replayed
ones by prior studies [43], [44], [45]. Expanding on this notion,
we propose to utilize these inherent loudspeaker features not
only for sound liveness checking but also for identifying whether
the sounds emitted by loudspeakers are drone noises. Notably,
while loudspeakers need to produce loud sounds to imitate
drone noises, their distortion tends to increase at high ampli-
tudes [46]. As a result, drone sounds played by loudspeakers
are distinguishable from authentic drone noises. We assess the
following features to study the two questions, including (i) decay
patterns in spectral power, (ii) peak patterns in spectral power,
and (iii) linear prediction cepstrum coefficients (LPCC). Since
these features stem from inherent hardware imperfections of
loudspeakers, there currently exist no known attacks capable of
circumventing sound liveness checking.

To compare the decay patterns of audios recorded in different
scenarios, we first record the live sounds made by a drone.
Then, we fly a drone of the same model to act the role of a
malicious drone D′ and meanwhile use a loudspeaker to play
the recorded drone noises, random music, or news. Fig. 8 shows
an example cumulative distribution of spectral power density
for the sounds recorded by the verifier device C in different
scenarios. For the live-drone sounds (the “No speaker” line), the
cumulative power density increases sharply in the frequency
below 500 Hz, and about 75% of the total power lies in it.
However, in the loudspeaker cases, no matter which sound is
played by the loudspeaker, less than 50% of the total power

Fig. 9. Signal power spectrum.

lies in the frequency below 500 Hz; in addition, the cumulative
spectral power density increases slowly within the frequency
ranging from 500 Hz to 4.5KHz, and about 75% of the total
power lies in the frequencies below 4.5KHz. Thus, this feature
can well distinguish live sounds from loudspeaker sounds.

We also examine the peak patterns in spectral power of the
sounds generated in the scenarios above. Fig. 9 shows the power
spectrum of the sounds collected above around the essential
frequency. It can be seen that the power of live drone sounds
is more concentrated around its essential frequency with fewer
peaks, while the sounds recorded in the scenario of replaying the
recorded sounds have the most fluctuations and different sounds
show different fluctuations.

The sounds produced by a real drone hovering in the air
has a very narrow dominant frequency range, while the sounds
played by loudspeakers have much wider frequency ranges. The
decay and peak patterns mainly look at low-frequency ranges.
To better distinguish loudspeakers playing music and news from
those playing drone’s noises, we perform an examination of
wider frequency ranges. LPCC uses the energy values of linear
filter banks, which equally emphasize the contribution of all
frequency components of an audio. Thus, LPCC is chosen as
a complementary feature to help cover frequencies in wider
ranges.

In short, we extract the following classification features: low
frequencies power features, higher power frequencies features,
signal power linearity degree features, and LPCC features. With
these features, we train two machine learning based binary
classifiers: one is to distinguish whether the sounds are due to
a loudspeaker, and the other whether the loudspeaker is playing
drone noises.

VII. EVALUATION

We received an IRB approval. An extensive evaluation is
conducted to study these questions. Q1: How accurate is
H2AUTH (Section VII-B)? Q2: How do different parameters
affect H2AUTH (Section VII-C)? Q3: How resilient is H2AUTH to
attacks and how robust is it to environmental sounds (Section VI-
I-D)? Q4: How quick is the authentication (Section VII-E)?

A. Experimental Setup and Data Collection

1) Devices and Metrics: Devices. We use a variety of devices
to collect data. As shown in Fig. 10, five (5) drones are used:
two DJI Mavic Mini drones, a DJI Mavic 2 Zoom drone, a
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Fig. 10. Devices used in our experiments: three speakers: an Abrato loud-
speaker, labeled as 1, a SONOS loudspeaker as 2, and a Bose loudspeaker as 3;
five drones: two DJI Mavic Mini drones labeled as 4 and 5, a DJI Mavic 2 Zoom
drone as 6, a Parrot ANAFI Thermal drone as 7, and a Parrot Bebop 2 drone as
8; five smartphones: an Honor V10 labeled as 9, a Nexus 5X as 10, an iPhone
11 as 11, a Pixel 4 as 12, and a Unihertz Atom as 14; an LG smartwatch W200
labeled as 13; a Meterk sound level meter labeled as 15.

Parrot ANAFI Thermal drone, and a Parrot Bebop 2 drone. A
small Android smartphone, Unihertz Atom, is closely attached
to the drones to record drone noises. Four (4) smartphones,
an Honor V10, a Nexus 5X, an iPhone 11, a Google Pixel
4, and a smartwatch LG W200 are used on the verifier side
for sound recording. Three loudspeakers (Abrato, SONOS, and
Bose) positioned at a distance of 4 meters from the drones and
verifiers are used to play sounds and launch attacks. We use a
MacBook Pro with a 2.6 GHz dual-core Intel Core i5 processor
as the server for data processing and decision making.

Metrics: False Acceptance Rate (FAR) and False Rejection
Rate (FRR) are two metrics used to evaluate the accuracy of
H2AUTH. FAR denotes the percentage of instances where attacks
are incorrectly authenticated and a lower FAR indicates higher
security. FRR shows the percentage of legitimate authentication
instances are rejected and a lower FRR shows better usability.
We also report Equal Error Rate (EER) when FRR is equal with
FAR. A lower EER indicates a higher accuracy of a system. We
also use a Receiver Operating Characteristics (ROC) curve to
show the accuracy of our system across all possible thresholds
and report Area Under the Curve (AUC) of the ROC curve.

2) Dataset I for Accuracy Evaluation: To evaluate the accu-
racy of our system, we build Dataset I. All the 5 drones are used
for this purpose. For each drone, we hover it at a height of 4
meters and place the smartphone 5 meters vertically apart from
the drone. In each authentication process, the smartphone and
the drone record audios through their microphones for 3 seconds.
Note the parameters, such as the distance and the recording
duration, are studied in Section VII-C.

Positive Pairs: When a drone hovers in front of a smartphone,
the smartphone and the drone record audios simultaneously. The
two audios form a positive data pair (c, d), where c is the audio
recorded by the smartphone and d by the drone. For each drone,
we collect 1000 positive data pairs, each labeled as l = 1.

Negative Pairs: Assuming we have two positive data pairs
(c1, d1) and (c2, d2) generated using two dronesD1 andD2, re-
spectively, we generate two negative pairs: (c1, d2) and (c2, d1).
For each drone, we generate 250 negative data pairs with each
of the other drones, so that each drone has 1000 (= 250× 4)
negative data pairs, each labeled as l = 0.

3) Dataset II for Attack Resilience Evaluation: Two DJI
Mavic Mini drones, i. e., D and D′, are selected to build Dataset
II as they are of the same model (hence, presumably generating
the most similar drone sounds and meaning the highest possible
attack success rate) and generate the least loud noises among the
drones in our experiments (hence, needing attack sounds at the
lowest sound level). D acts as the service drone and D′ acts as
the malicious one. The audios recorded by D, D′, C, and C ′ are
denoted as d, d′, c, and c′, respectively.

Dataset II-A: To assess resilience to dominant sound attacks
(Fig. 2(a)), we build Dataset II-A. We first record the sounds
made by a drone. As shown in Fig. 2(a), when D′ hovers near
C (and D near C ′), we play the recorded drone sounds loudly
via an external loudspeaker, and have the smartphones and the
drones record audios simultaneously. (Note that the loudspeaker
is placed to keep the same distance, 4 meters, to drone and
smartphone, so that the malicious sound level measured on both
sides are equal.) We change the malicious sound level, measured
on the phone/drone side, from 95 dB to 115 dB in steps of 5 dB
and record 1000 data pairs at each sound level. Data pairs, (c, d)
and (c′, d′), are used to build this dataset.

Dataset II-B: To evaluate resilience to verifier-side audio relay
attacks, we build Dataset II-B. As shown in Fig. 2(b), the audio,
denoted as d, produced and recorded byD is replayed nearC via
a loudspeaker. Data pairs, each in the form of (c, d), constitute
the dataset. We place a loudspeaker 4 meters away from the
smartphone and change the volume of the loudspeaker, which is
measured on the phone side, from 55 dB to 75 dB in steps of 5
dB and record 1000 data pairs at each sound level.

Dataset II-C: To evaluate resilience to drone-side audio relay
attacks, we build Dataset II-C. As shown in Fig. 2(c), we record
the noises produced by D′ and replay it where D hovers via a
loudspeaker placed 4 meters away. The audio d indicates the
sound recorded by drone D under drone-side audio relay attack.
Thus, data pairs, each in the form of (c, d), are used to build
this dataset. We change the volume of the loudspeaker, which is
measured on the drone side, from 95 dB to 115 dB in steps of 5
dB and record 1000 data pairs at each sound level.

B. Authentication Accuracy

Results: We use Dataset I and the 10-fold cross validation
to train and test our SVM model (the classifier is studied as
a parameter in Section VII-C). Fig. 11 shows the ROC curve,
EER=0.0030 and AUC=0.9998. The low EER indicates that
H2AUTH has a very high accuracy (= 1−EER) 0.9970. Both
H2AUTH and the prior work Acoustic Fingerprint [7] do not need
to land to conduct authentication, while Acoustic Fingerprint
relies on fingerprints and its accuracy is 96.2%.

We further evaluate how secure H2AUTH is under Identical
Drone Model Attacks. We compare the sounds of D′ recorded
by a verifier-side smartphone with the sounds of D recorded by
D itself. We construct 1000 such negative data pairs using two
Mavic Mini drones of the same model. The results show that only
0.6% of the negative samples are classified as positive, indicating
the high accuracy of our system in distinguishing drones of the
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Fig. 11. ROC curve, AUC, and EER.

Fig. 12. Power spectrum of sounds recorded by the drone in different wind
conditions.

same model. Moreover, when D randomly and slightly moves
around, the attack success rate becomes zero.

Failure Analysis: The rare failure cases are caused by oc-
casional gusty winds, as noises increase on microphones of
the hovering drone with gusty winds [47]. Fig. 12 shows the
power spectrum of the sounds recorded on the drone side on
different wind conditions, where Fig. 12(a) is a failure case
and Fig. 12(b) a regular case. The gusty winds rush across
the microphone attached to the drone, which induced noises
directly. To mitigate the impact caused by gusty winds, we find
it effective to add a windscreen to cover the microphone [48].
We thus suggest service drones carry windscreens on the
microphones.

C. Parameter Study

Classifier: We train the model with different commonly used
classifiers, including SVM, kNN and Random Forest. For SVM,
we examine three kernels, i. e., linear, polynomial and radial
basis function (RBF) kernels; after grid search, we finally adopt
the linear kernel and the optimal hyper-parameters are set as
follows, c as 5.0 and γ as 0.001. For kNN, we vary the values
of k from 1 to 20, and finally set 13 as the optimal parameter.
For Random Forest, we test the model by varying the number
of trees from 50 to 200, and adopt the optimal value as 90. The
results (EERSVM=0.0030, EERRF=0.0032, EERkNN=0.0038)
show that SVM has the lowest EER. Thus we adopt the linear
SVM classifier.

Duration of Audios: A longer audio provides richer informa-
tion but harms usability as more time is needed for authentica-
tion. We vary the duration from 1s to 5s in steps of 1s. Initially,
EER decreases as the duration increases. When it is ≥ 3s, EER
keeps stable. We thus chose 3s.

Training Dataset Size: We study how the size of the training
dataset impacts the accuracy. We train H2AUTH by varying the
the number of samples, and then test the model with the rest of
the samples that are not used for training. Fig. 13(a) shows that
the EER of the classifier converges, given the training dataset has
more than 1400 samples. Thus, the 2000 data samples collected
in Dataset I are sufficient.

Distance Between Verifier and Drone: We evaluate the impact
of the drone-phone distance on accuracy. We keep the drone
hovering at the height of 4m for the sake of safety and vary
the drone-phone vertical distance from 4 m to 8 m in steps of
1 m. We collect 2000 samples at each distance. As shown in
Fig. 13(b), the EER rises as the distance increases. In addition,
the EER grows faster than the distance increases. This is because
acoustic attenuation follows the inverse square law during its
propagation in the air [49]. When the distance is ≤ 5m meters,
the EER grows slowly. To balance accuracy and security, we
recommend a distance around 5m. The drones employed in
our experiment are compact and inexpensive models. It’s worth
noting that larger drones often generate louder noises, which
in turn enhances the effective authentication distance between
service drones and verifiers.

Environmental Sounds: To evaluate how well our system
works in different environments, we test H2AUTH in realistic
environments compliant with regulations of Federal Aviation
Administration (FAA) [50]: (1) a lawn 15 meters away from
a highway, (2) a backyard with a party going on, (3) a plaza
located in a town, (4) a front yard with a lawnmower working.
For each environment, we test H2AUTH in the time period with
some of the most complex background noises, i.e., when the
highway is in a rush hour for the lawn near the highway, in the
party with people talking as well as a loudspeaker playing music,
when the plaza is in its most popular hours, and the time when
the lawnmower is cutting grass. The average sound level for the
lawn is about 70 dB, for the backyard 71 dB, for the plaza 65 dB,
and for the front yard 73 dB. Fig. 13(c) illustrates the results.
There is no significant difference of the performance between
different environments, showing that our system is highly robust
under various environmental sounds.

Verifier-Side Devices: We study whether H2AUTH can work
well on smartphones of different models and operating systems
as well as smartwatches. We select four more mobile devices:
(1) Nexus 5X, an old Android smartphone released in 2015,
(2) iPhone 11, (3) Google Pixel 4, a high-end Android phone
released in 2019, and (4) LG W200, a smartwatch. No significant
difference is observed in the authentication performance be-
tween the verifier-side devices. We thus conclude that H2AUTH

works well on different mobile devices, which indicates that
H2AUTH can benefit a broad range of people owning various
mobile devices.

Unseen Drones: We adopt the Leave-One-Subject-Out
(LOSO) cross validation mechanism to evaluate how H2AUTH
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Fig. 13. Impact of different parameters and experimental settings.

Fig. 14. Attack success rates when only audio similarity is used for authentication (i.e., without attack detection). This also highlights the insecurity of prior
work [36], which only uses similarity for authentication.

performs on unseen drones. We iteratively choose one drone for
testing and use the data of the other drones to train the system.
The LOSO mechanism eliminates object bias and evaluates
system performance on unseen objects. The average EER over
the drones is 0.003 and the standard deviation is 0.0016. The
low EER and standard deviation show that H2AUTH performs
well on all of these drones and there is no significant difference
in their accuracy. Thus, H2AUTH can be generally deployed for
different drones without training a specific model for each drone,
which is preferable for large deployment.

D. Resilience to Attacks

We aim to not only defeat attacks that are ignored in prior
work [5], [36] but also reduce false rejections, in order that
both good security and usability are attained. We use Dataset
II to study both the attack success rate under various attacks and
robustness to environmental sounds.

1) Resilience to Dominant Sound Attacks. Attack success rate
without attack detection: Fig. 14(a) shows the attacker’s success
rate when launching dominant sound attacks under different
malicious sound levels from 95 to 115 dB at steps of 5 dB. The
attacker has to replay recorded drone noises, as the malicious
sounds, at a very high level (> 100 dB) to effectively fool audio
similarity comparison of H2AUTH. The reason is that a high
malicious sound level is required to distort sounds recorded by
the victim drone.3 Keep in mind that the drone-side microphone
is closely attached to the drone, so there is little attenuation
when it records drone noises. The victim drone sound level
measured by the sound level meter attached to DJI Mavic Mini
is 99.3± 1.8 dB. Thus, the attacker needs to play very loud
malicious sounds to fool H2AUTH. (If music or news, instead of

3One may propose to not play any malicious sounds on the drone side, but
simply record the victim drone noises and replay live on the victim smartphone
side. Note that it is verifier-side audio relay attacks.

recorded drone noises, is used as malicious sounds, the attack
success rates keep low. This is because music and news have
less energy in the frequencies used for similarity determination.
Thus, a smart attacker should use drone noises as the malicious
sounds for launching dominant sound attacks.)

Effectiveness of Sound Level Checking: We then investigate
whether we can exploit the observation above to distinguish at-
tacks from environmental sounds. According to the information
provided by CDC [41], a human may feel very annoyed when
the sound level is between 80 dB and 85 dB, and sounds of
95 dB are considered damaging to hearing. On the other hand,
an attacker needs to impose “environmental sounds” > 100 dB
to fool H2AUTH. Thus, by checking whether the environmental
sounds are louder than 100 dB, we can detect all the dominant
sound attacks that are otherwise successful, and do not cause
false rejections because of environmental sounds (unless they
are extremely loud).

We have the following observations. First, the experiment
above uses the DJI Mavic Mini drone, which generates the
smallest noises. According to our experiments with other drones,
the malicious sounds have to be even louder in order to distort
the drone noises and fool the audio similarity comparison of
H2AUTH, which makes it even easier for the sound level meter
to distinguish the even louder malicious sounds from everyday
environmental sounds.

Second, one may propose to further enhance the method by
adding content detection. When the content is detected as music
or news, it can allow environmental sounds up to 110 dB without
worrying about successful attacks (Fig. 14(a)). However, most
benign environmental sounds are less than 95 dB. We thus
consider this enhancement non-critical.

Finally, dominant sound attacks need an attacker to impose
malicious sounds to both the victim drone and the victim
smartphone. Since the microphone of the victim smartphone is
multiple meters away from the loud hovering drone, its recording
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Fig. 15. Effectiveness of drone sound liveness checking and loudspeaker content detection. The EER keeps very low. (When the malicious sound level is low,
e.g., 60 dB, the EER is slightly higher, which is because the loudspeaker’s characteristics are less intensive with lower sounds and thus more difficult to detect. But
a low malicious sound level cannot fool our audio similarity and is thus not threatening; see Fig. 14(b).).

is easier to distort. We thus focus on the drone side to design the
attack detection method.

2) Resilience to Verifier-Side Audio Relay Attacks. Attack Suc-
cess Rate Without Attack Detection: Fig. 14(b) shows the success
rate of verifier-side audio relay attacks when only similarity
comparison is conducted for authentication, i.e., without attack
detection. By raising the volume of the loudspeaker, the attacker
increases his success rate quickly. Once the recorded sound
reaches to a certain level and dominates the drone’s sound, the
attacker’s success rate becomes very high. For example, when
the malicious sounds recorded on the verifier side is 70 dB, the
attack success rate is 0.955. This alarming result illustrates the
insecurity of prior work like SoundProof [36] that does not tackle
such attacks.

Effectiveness of Drone Sound Liveness Detection: We extract
features described in Section VI-C and use SVM to train a model
based on the data collected above. To evaluate the general-
izability of the drone sound liveness detection algorithm, we
use the strict Leave-One-Subject-Out (LOSO) method: we train
the model on the data collected with two loudspeakers and test
using the data collected with the third unseen loudspeaker, and
repeat the process to evaluate all the loudspeakers. The result is
shown in Fig. 15(a). The low EER indicates that the loudspeaker
detection algorithm has a high generalizability, which means
the model can be used to distinguish unseen loudspeakers. The
higher the malicious sound level is, the lower the EER, as the
loudspeaker’s characteristics get more intense.

We also use LOSO to evaluate the generalizability of the drone
sound liveness detection algorithm over different smartphones.
For each unseen smartphone, we train a model with data col-
lected by the other smartphones and test the model with data
of the unseen phone. Fig. 15(b) shows the results. The EER is
low and stable over all the sound levels for all the smartphones,
which means the model can be used by different smartphones
under various sound levels.

Effectiveness of Loudspeaker Content Detection: We play
various music and news via a loudspeaker and record the sounds
while having a drone fly nearby. We change the sound level from
55 dB to 75 dB in steps of 5 dB and for each sound level, we
collect 1000 pieces of data for playing music and news each; each
data piece is denoted as positive. The negative data is collected
by having the loudspeaker play recorded sounds produced by
a drone. We also use the strict LOSO method to train and test
the SVM model, in order to evaluate the effectiveness when an

TABLE I
AUTHENTICATION TIME

unseen smartphone is used. Fig. 15(c) shows that our system
can distinguish music and news from replayed drone noises at a
high accuracy, even if an unseen smartphone is used.

3) Resilience to Drone-Side Audio Relay Attacks: Fig. 14(c)
shows the attack success rate when there is no attack detection.
Like the dominant sound attack, when the malicious sound level
is larger than 100 dB, the attack success rate grows quickly.
Given the malicious sounds are loud, the sound level meter can
easily distinguish malicious sounds from everyday environmen-
tal sounds.

4) Summary of Resilience to Attacks: The thorough evalu-
ation demonstrates the following. (1) The attack success rate
would be very high without countermeasures (see Fig. 14), while
prior works that make use of sounds for authentication, such as
Sound-Proof [36], failed to handle these attacks. (2) H2AUTH is
highly resilient to various attacks. (3) H2AUTH is robust under
various environmental sounds.

E. Authentication Time

We evaluate the average authentication time needed for
H2AUTH, measured from the audio recording start time to a
decision made. It mainly contains three parts: (1) time for audio
recordings; (2) time for data transmission; and (3) time for
decision making. Time for each part is shown in Table I. The
total time for authentication is 4.71± 0.19s on average. Thus,
H2AUTH works quickly.

VIII. USABILITY STUDY

The objective of our usability study is to determine user accep-
tance of H2AUTH in comparison to other authentication methods.
Specifically, we are comparing H2AUTH with facial recogni-
tion and fingerprint scanning-based authentication, which are
increasingly being used in mobile devices [51], [52]. Although
facial recognition and fingerprint scanning are not used for drone
authentication, they are widely used authentication methods in
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Fig. 16. Distribution of the answers to the usability study questions.

other scenarios. The comparison focuses on usability rather than
security. We did not inform the participants that H2AUTH is a
mutual authentication mechanism while the other two can only
be used to authenticate one party.

A. Recruitment and Design

We recruited 60 participants using a snowball sampling
method, the majority of whom were not from our department
and did not have a computer security background. To prevent
social desirability bias, we did not disclose that H2AUTH was
developed by us. Instead, participants were instructed to evaluate
the usability of various authentication methods. The usability
study was conducted with an IRB approval, and each participant
was required to sign a consent form.

To introduce the three authentication methods to the partici-
pants, we played a pre-recorded video. For the facial recognition
method, we provided an iPhone 11 equipped with FaceID, while
for the fingerprint scanning method, we used an iPhone 6 s plus
with TouchID to scan and profile the participants’ fingerprints.
Participants were then instructed to set up their FaceID and
TouchID. Following this, each participant performed five au-
thentication attempts for each method to become familiar with
them. These initial attempts were excluded from further analysis.
Next, each subject performed three additional attempts using
each authentication method, with the order of methods used
randomized.

At the conclusion of the study, each participant completed
a questionnaire evaluating the three authentication methods
by answering five questions, adapted from the widely-used
SUS [53]. The five questions were as follows: (1) I found the
authentication method easy to use; (2) I was satisfied with the
amount of time it took to complete the authentication; (3) I found
the authentication method convenient; (4) I believe it is easy to
learn the authentication method; and (5) I felt comfortable using
the authentication method. Scores for each question ranged from
1 to 5, with 1 indicating strong disagreement and 5 indicating
strong agreement. Higher scores indicated better usability.

B. Usability Study Results

Demographics. Out of the 60 participants, 52% were female
and 48% were male. Among them, 5% were between 15 and 20
years old, 55% were between 21 and 30 years old, 28% were
between 31 and 40 years old, and the remaining 12% were above

40 years old. All participants used the fingerprint scanning-based
authentication method, with 78% of them having used TouchID
before. Additionally, 97% of the participants used the facial
recognition-based authentication method, with 43% having used
FaceID before.

Perceived Usability: The questionnaire included five ques-
tions that evaluated usability based on the following aspects:
ease-of-use, speed, convenience, ease-of-learning, and comfort.
The distribution of scores for each authentication method is
shown in Fig. 16. The results indicate that users found H2AUTH

to be easy-to-use, convenient, easy-to-learn, and comfortable.
However, it was not perceived as being as quick as the other two
methods.

The total scores for facial-recognition-based method,
H2AUTH, and fingerprint-scanning-based method are 20.13±
2.28, 20.80± 1.90, 20.45± 2.47, respectively. The scores show
that H2AUTH achieves slightly better perceived usability than
FaceID and TouchID methods. The main difference between
H2AUTH and the other two methods lies in how comfortable the
user feels. The other two methods require users to enroll in the
system by profiling their face or fingerprint while H2AUTH does
not use any biometrics. This is confirmed by some comments left
by the participants, saying that they did not like public devices
collecting their personal information.

The average authentication time for using H2AUTH, FaceID,
and TouchID approach is 4.7± 0.17 s, 1.05± 0.46 s, and
0.95± 0.53 s, respectively. H2AUTH requires more time for
authentication than the other two methods. However, the au-
thentication time of 4.7 seconds is still acceptable for a drone
service, as 37 of the 60 participants thought it was quick to use
H2AUTH for authentication.

IX. RELATED WORK

Authentication based on information correlation is a promis-
ing direction and has inspired many great works [3], [4], [54],
[55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66].
Prior state of the art work on drone authentication, G2Auth [3]
and Smile2Auth [4], follows this direction. G2Auth [3] has a
user hold a smartphone and wave her hand; then it compares the
smartphone’s IMU data and the drone’s video for authentication.
Smile2Auth [4] has a user change facial expressions and com-
pares the face embeddings collected by the user’s smartphone
and the drone. Both G2Auth and Smile2Auth require humans
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(waving or smile), while H2AUTH can be used for non-human
scenarios, such as a dock, smart doorbell, garage, or robot (de-
tailed at the end of Section III-B). Thus, H2AUTH has prominent
advantages in usability, privacy and generalizability.

Compared to prior work, SoundUAV [5] and Acoustic Finger-
print [7], that also makes use of drone noises for authentication,
our work does not rely on any drone noise fingerprints. Thus,
the usability from the perspective of drone service companies
is much improved. Plus, over time because of motor and blade
wear, a drone may need to be fingerprinted once and again.
Moreover, H2AUTH tackles various audio attacks, which are
not considered in prior work. Finally, H2AUTH keeps robust to
various environmental noises, which are not examined in prior
work.

X. DISCUSSION

The arms race between attackers and defenders never ends.
For example, attackers may manipulate recorded drone noises
(e.g., through adversarial deep learning [67]) and replay them
to fool sound liveness checking. First, the method of sound
liveness checking keeps evolving and becomes increasingly
accurate [68], [69], which can benefit our authentication system.
Second, during our authentication, a drone randomly and slightly
moves. Thus, it is impossible for a manipulated record prepared
in advance to match the live noises of a randomly moving drone.
Third, the noise recording by a drone should match the random
and slight movements of the drone. For example, when a drone
speeds up, the noise level goes high and the essential frequency
(Section IV) increases. A drone has the ground truth about
the movements, which can be leveraged to further enhance our
attack detection. We leave this as future work.

H2AUTH requires the verifier to be equipped with a micro-
phone for capturing the sounds of the drone. While this prereq-
uisite may pose deployment limitations in certain real-world
settings, it is worth noting that many contemporary devices,
including smartphones, smartwatches, and increasingly com-
mon smart home devices like doorbells and cameras, come with
built-in microphones. As the prevalence of such smart devices
continues to grow, H2AUTH stands to find application across a
wider range of scenarios.

XI. CONCLUSION

We presented H2AUTH, a highly secure and usable mutual
authentication solution for drone services that does not rely on
any drone noise fingerprints. To cope with the sound disparity
between drones and verifier devices and tolerate various envi-
ronmental noises, we devise a novel audio comparison method
that exploits the characteristics of drone noises, attaining high
accuracy and robustness. This is the first work that defeats vari-
ous attacks against a sound-based mutual authentication system,
which distinguishes our system from prior work. H2AUTH can
be used in non-human scenarios, leading to unique advantages
in usability and user privacy over prior state of the art. The com-
prehensive evaluation shows that it is highly accurate, resilient
to attacks, and robust under environmental sounds. We envision
H2AUTH can greatly foster secure drone services.
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