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Abstract
NLP-inspired deep learning for binary code analysis demon-
strates notable performance. Considering the diverse Instruc-
tion Set Architectures (ISAs) on the market, it is important
to be able to analyze code of various ISAs. However, train-
ing a deep learning model usually requires a large amount
of data, which poses a challenge for certain ISAs such as
PowerPC that suffer from the “data scarcity” issue. For in-
stance, acquiring a large dataset of PowerPC malware proves
to be challenging. Moreover, given a binary analysis task
and multiple ISAs, it takes much time and effort (e.g., for
data collection, labeling and cleaning, and parameter tuning)
to train one model per ISA. We propose a new direction,
retargeted-architecture binary code analysis, to handle the
data scarcity issue and alleviate the per-ISA effort. Our idea
is to transfer knowledge from one ISA to others—that is, a
model, trained with rich data and much time and effort for
one ISA, can perform prediction for others without any modi-
fication. We showcase the idea through two important tasks:
malware detection and function similarity detection. An ex-
tensive evaluation involving four ISAs (x86, ARM, MIPS,
and PowerPC) demonstrates the effectiveness of the approach
and the high performance is interpreted.

1 Introduction

Given a closed-source program, such as most proprietary
software and malware, binary code analysis is indispensable
for a variety of tasks, for example, code plagiarism detec-
tion [32,45], malware classification [66,79], and vulnerability
discovery [22, 61]. Traditional binary code analysis often
suffers from being inaccurate or unscalable. For instance,
symbolic execution of binary code, such as BitBlaze [9] and
BAP [7], is accurate in extracting code semantics, but is slow
and does not scale well [45]. As another example, code analy-
sis based on system calls is scalable [72], but it ignores large
chunks of other semantic information.

In 2018, InnerEye [80] proposed to adapt deep learning
techniques developed for natural language processing (NLP)

to binary analysis. Since then we have witnessed a surge of
NLP-inspired binary analysis [20, 21, 40, 52, 60, 64]. This di-
rection shows noticeably better performances over traditional
methods in accuracy and scalability. However, two notable
challenges hinder its wide applications to various ISAs.
Challenge 1: Data Scarcity for Some Binary Analysis Tasks
with Certain ISAs. Training a deep learning model usually
requires a large amount of data. As a result, for some binary
analysis tasks (e.g., malware detection), the rich datasets (e.g.,
malware) of certain ISAs, such as x86, lead to a dispropor-
tionate focus on them and a negligence of other ISAs, such as
PowerPC, where few or even no labeled datasets exist (which
we call low-resource ISAs). Moreover, it is labor-intensive
and time-consuming to collect data samples and manually
label them to build datasets for low-resource ISAs. Dealing
with the data scarcity issue in low-resource ISAs for certain
binary analysis tasks is an unresolved challenge.
Challenge 2: Massive Effort to Cover Multiple ISAs. Soft-
ware is often compiled for various ISAs. For instance, a library
is compiled into IoT firmware for different ISAs, which causes
a single vulnerability at source-code level to spread across bi-
naries of different ISAs. Thus, it is important to extend binary
analysis capacity to multiples ISAs [22, 25, 61, 75, 80].

There are over one hundred different ISAs [15, 23]. Given
a binary analysis task and multiple ISAs, however, it takes
massive time and effort (due to data collection, cleaning and
labelling) and computing resources (such as parameter tuning)
to train a model for every individual ISA.
Our Goal. We consider a new direction, named retargeted-
architecture binary analysis, to cope with the data scarcity
problem and alleviate the per-ISA effort. Our goal is to train a
model on one ISA (e.g., x86) and reuse it for other ISAs (e.g.,
PowerPC and MIPS), without any modification. Through this,
we can greatly save the computing resources for training a
large number of models and the effort in collecting datasets
for each ISA, especially for low-resource ISAs.
Our Approach. A binary, after being disassembled, is
expressed in an assembly language. Given this insight,
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InnerEye approaches binary code analysis by adopting deep
learning techniques for NLP [80]. Our work focuses on such
NLP-inspired binary analysis, which has gained much atten-
tion because of their exceptional performance. We aim at
developing techniques that enable the reuse of an NLP-based
model for multiple ISAs. In NLP-based models [20, 21, 80],
instructions are considered as words and represented as em-
beddings to facilitate further processing.

To enable retargeted-architecture binary analysis, we pro-
pose multi-architecture instruction embeddings (MAIE),
where similar instructions, regardless of their ISAs, have close
embeddings in a shared vector space. Equipped with such a
shared space, we can transfer knowledge from one ISA to
other ISAs. As a result, a model trained only using data of
one ISA (e.g., x86) simultaneously obtains the capability to
perform prediction for others (such as PowerPC and MIPS).
The reason this is feasible is that MAIE bridges divergences
of different ISAs, as illustrated in the evaluation.

We design an unsupervised method for learning MAIE,
which contains two main steps. First, we train instruction
embeddings for each ISA separately, which we call mono-
architecture instruction embeddings (OAIE). Then, we map
OAIE of different ISAs to a shared space via a transformation
to learn MAIE. The key question is thus how to compute
the transformation. Our insight is that, given the similarity
matrices (detailed in Section 5.2) of OAIE, two semantically
similar instructions of different ISAs tend to (no need to al-
ways) have similar distributions of similarity values. Based
on this, we can induce an initial instruction mapping and
iteratively improve it until convergence.
Results. We have implemented the novel unsupervised
method for learning MAIE, named UNIMAP, and evaluated
it on four ISAs: x86, ARM, MIPS, and PowerPC (PPC).1
As we aim to reuse a model trained on a data-rich ISA for
other ISAs, we transfer knowledge from x86 to the other three
ISAs. The effectiveness of knowledge transfer in a different
direction requires further investigation. (1) In the intrinsic
evaluation, we conduct the instruction similarity task to eval-
uate the quality of MAIE—whether they capture the semantic
information of instructions across ISAs. (2) In the extrinsic
evaluation, we conduct two critical downstream tasks to eval-
uate the transferability of MAIE. For the malware detection
task, when a model trained on x86 is then reused for ARM,
MIPS, and PPC, the accuracy only decreases by 2%, 4%, and
5%, respectively, compared to that for x86. For the function
similarity detection task, the accuracy only decreases by 3%,
4%, and 3%. The results show that UNIMAP can effectively
generate high-quality MAIE with good transferability. Below
are our contributions:

• We propose the direction of retargeted-architecture bi-
nary code analysis to alleviate the per-ISA effort and

1We are aware that ARM does not have the data scarcity issue. Given the
importance of ARM, our evaluation involves it.

cope with the data scarcity issue. Given a task, one model
of a data-rich ISA is trained and then reused for others.

• To enable retargeted-architecture binary code analysis,
we propose multi-architecture instruction embeddings
(MAIE), such that semantically similar instructions, re-
gardless of their ISAs, have close embeddings. We design
an unsupervised method for learning MAIE. The learn-
ing of MAIE is a one-time effort: once learned, MAIE
can be reused in various binary analysis tasks.

• We have implemented the system2 and conducted ex-
tensive evaluations on four ISAs: x86, ARM, MIPS and
PPC. The results demonstrate the effectiveness of the
approach and the high performance is interpreted.

2 Related Work

2.1 Traditional Code Analysis
Mono-architecture. Most traditional approaches work on a
single ISA. Some are source code based [34, 37, 41, 43, 70].
Others analyze binary code [44, 76–78], e.g., using symbolic
execution [46], but are quite expensive [13, 48–50]. Dynamic
approaches include API birthmark [11], system call birth-
mark [71], and core-value birthmark [33]. Extending them to
other ISAs would be hard; code coverage is another challenge.
Cross-architecture. Recent works have applied traditional ap-
proaches to the cross-architecture scenario [12, 17, 18, 22, 61].
Multi-MH and Multi-k-MH [61] are the first two for compar-
ing functions in different ISAs, but the fuzzing-based basic-
block similarity comparison is expensive. discovRE [22] uses
pre-filtering to boost the matching process. Esh [17] com-
pares blocks using a SMT solver and is unscalable. GitZ [18]
lifts binaries to IR to create function signatures.

2.2 Machine/Deep Learning-based Analysis
Mono-architecture. Recent research has applied ma-
chine/deep learning to code analysis [14, 20, 30, 39, 40, 47, 59,
68]. Asm2Vec [20] uses the Paragraph Vector model [38] to
generate a vector for each function. Transformer-based mod-
els have been applied to analyze binary code. As an example,
PalmTree [40] trains the BERT model [19] to generate em-
beddings for each token of an instruction. However, these
works only focus on a single ISA.
Cross-architecture. Existing works explore pairwise-
architecture binary analysis [12, 25, 75, 80], where a pair of
ISAs is studied. InnerEye [80] is the first that proposes to
use deep learning techniques developed for NLP to binary
analysis. It considers instructions as words and basic blocks
as sentences, and gets inspired by neural machine translation
to compare code across ISAs. Also for cross-ISA code com-
parison, TREX [60] uses execution traces of functions from

2https://github.com/lannan/UniMap

7340    32nd USENIX Security Symposium USENIX Association

https://github.com/lannan/UniMap


different ISAs to pretrain a transformer model, and then fine-
tunes the pretrained model using the semantically similar
function pairs. The fine tuning step is impeded by the data
scarcity issue. Moreover, model reuse is not their goal. In
contrast, our retargeted-architecture binary analysis focuses
on reusing a model trained on one ISA for other ISAs.

The prior work [64] is the most related one. There are three
major differences. (1) We aim to learn multi-architecture in-
struction embeddings (MAIE), which work for multiple ISAs,
while the prior work learns pairwise-architecture instruction
embeddings, which only work for a pair of ISAs. (2) The prior
work is based on supervised learning and needs equivalent in-
struction sequences for training; ours is based on unsupervised
learning. (3) More importantly, our goal is to demonstrate,
given a binary analysis task, how a model trained for one ISA
can be used for others, which is not studied in the prior work.

2.3 Statistics of Targeted ISAs
We analyzed the machine/deep learning-based binary analysis
works published between 2010 and December 2022. We only
consider those targeting compiled languages (i.e., C/C++),
but exclude that on (i) interpreted languages (like JavaScript,
PHP, and Python) and (ii) Java, where the bytecode compiled
from the same source code is identical, regardless of ISAs.
There are 234 papers, where 197 focus on a single architecture
and 37 on cross-architecture. Plus, 83% of mono-architecture
approaches target x86, and cross-architecture ones are mostly
limited to x86 and ARM. This calls for research to cover more
ISAs, including less-discussed ones. Powered by MAIE, our
work covers four ISAs (x86, ARM, MIPS, and PPC) without
tedious effort and the prediction accuracies keep high.

3 Background

3.1 Word Embeddings
Many NLP tasks use word embeddings, which capture the
contextual semantic meaning of words. The Skip-gram
model [55] is a popular model to learn word embeddings
that are good at predicting the surrounding words of a current
word. The training is unsupervised. Once trained, semanti-
cally similar words have close embeddings.

3.2 Multi/Cross-lingual Word Embeddings
A wide variety of multi/cross-lingual NLP tasks [8,10,27,65]
have motivated recent work in training multi/cross-lingual
word embeddings, where similar words in different human
languages have close embeddings in a shared space.

Existing methods can be classified into two categories. (1)
Joint methods simultaneously learn cross-lingual word embed-
dings in different languages using parallel corpora [26,36,53].
The prior work [64] is based on jointly learning. (2) Mapping

methods first independently train word embeddings in each
language, and then map them to a shared space through trans-
formations [6, 16, 56]. Mapping methods have the advantage
of requiring little or no cross-lingual supervision. Inspired by
advances made by the second category, we seek the possibility
of obtaining a shared space for instructions of different ISAs.

4 Overview

4.1 Types of Datasets and ISAs
We first define two types of datasets as below.

• General Datasets can be obtained via cross-compilation.
Specifically, we collect opensource programs, and com-
pile them for different ISAs using cross compilers. Given
the wide availability of opensource code, this requires
little effort. General datasets are used for training MAIE.

• Task-Specific Datasets are related to binary analysis
tasks, such as malware for the classification task, and
IoT firmware for the vulnerability discovery task. Given
a binary analysis task, there may exist rich task-specific
datasets for certain ISAs, which we call high-resource

ISAs, while for other ISAs, there may be few or no task-
specific datasets, which we call low-resource ISAs.

Clarifications. We clarify that (1) data scarcity is an issue
regarding task-specific datasets, rather than general datasets
used to train MAIE, and (2) some (but not all) binary analysis
tasks are affected by the data scarcity issue. As an example,
for the task of malware detection, gathering sufficient data
(e.g., malware) poses challenges for certain ISAs (like Pow-
erPC). Moreover, as the source code of malware is usually
unavailable, the cross-compilation method that generates bi-
naries across ISAs from source code does not work. Thus,
such tasks suffer from the data scarcity issue.

4.2 Motivation
As there are diverse ISAs on the market and software is of-
ten compiled for various ISAs, it is critical to extend binary
analysis capacity to multiples ISAs. Given a binary analy-
sis task and multiple ISAs, however, it takes massive effort
and computing resources to train a model per ISA. Not to
mention sometimes it is difficult to collect sufficient data in
low-resource ISAs for certain binary analysis tasks.

We propose a new direction, named retargeted-architecture
binary code analysis, to alleviate the per-ISA effort and cope
with the data scarcity issue. Figure 1 compares our approach
with mono-architecture and pairwise-architecture approaches.

(I) Mono-architecture approach: Given a binary analysis
task, as shown Figure 1(a), the mono-architecture approach
trains a model using task-specific data for one ISA and also
tests on that ISA. As a result, for n ISAs, it needs to col-
lect n task-specific datasets and train n models. Moreover,
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Figure 1: Comparison between mono-, pairwise- and retargeted-architecture approaches. (a) Mono-architecture approach trains a
model for each ISA. (b) Pairwise-architecture approach trains a model for each pair of ISAs. (c) Our retargeted-architecture
approach only trains a model on one ISA and reuses it for other ISAs.

for certain binary analysis tasks, such as malware detection,
collecting annotated malware samples is not easy for low-
resource ISAs, causing the difficulty in training a model that
can detect malware of low-resource ISAs.

(II) Pairwise-architecture approach: As shown in Fig-
ure 1(b), the pairwise-arch approach [12, 25, 75, 80] studies
the relation of the code of a pair of ISAs. They need task-
specific data of each pair of ISAs for training. Plus, to cover
n ISAs, it still needs to train many models.

(III) Retargeted-architecture approach: In contrast, as il-
lustrated in Figure 1(c), our retargeted-architecture approach
only needs to train one model on one ISA (e.g., x86), and
reuses it for other ISAs (e.g., PowerPC), greatly saving the
effort in collecting task-specific data for each ISA (especially
for low-resource ISAs) and training many models.

4.3 Observations and Interpretations
Our work aim at developing techniques that enable the reuse
of NLP-based models for multiple ISAs. These models regard
instructions as words and represent instructions as embed-
dings. We first seek to understand why a model trained using
the mono-architecture approach cannot test on other ISAs. We
thus trained instruction embeddings for four ISAs, x86, ARM,
MIPS, and PPC, separately, which we call mono-architecture
instruction embeddings (OAIE), and visualized them in 3D
spaces, as shown in Figure 2(a). We can observe that OAIE of
different ISAs are separated in different clusters, which can
be attributed to syntactic variations among ISAs. As a result,
for a binary analysis model whose input layer encodes each
instruction as an instruction embedding, if trained on one ISA,
it cannot be directly used to test on other ISAs.

4.3.1 Why Not IR?

Intermediate representation (IR) can be used to represent code
of different ISAs. For example, VEX IR [4] is an architecture-

agnostic and side-effect-free representation that can represent
instruction sets of different ISAs in a uniform style. Thus,
this raises a question whether we can achieve retargeted-
architecture binary analysis by lifting binaries to IR.

Based on our investigation and experiments, we find that:
given two binaries of different ISAs, compiled from the same
piece of source code, after we lift them in a common IR, the
resulting IR code looks very different—e.g., the lengths of
their IR statements and the types of IR statements differ from
each other (see Figure 1 and Figure 3 of [61]; more detailed
examples are discussed in Appendix A.1).

Therefore, existing works that leverage IR for analyzing bi-
naries across ISAs have to perform further advanced analysis
on the IR code [18,51,52,61]. For example, (1) Multi-MH [61]
uses fuzzing to detect whether two pieces of VEX IR code are
similar. (2) GitZ [18] conducts complex re-optimization on IR
code to compare function similarity. (3) GeneDiff [51] applies
deep learning analysis to VEX IR code for cross-architecture
binary clone detection. Thus, IR is not magic and a “bridge”
(MAIE in our work) is needed for enabling a model trained
for one ISA to be reused for other ISAs.

4.3.2 Our Solution

We propose to learn multi-architecture instruction embed-
dings (MAIE), where similar instructions, regardless of their
ISAs, have close embeddings in a shared space. Such a shared
space can enable the transfer of knowledge from one ISA to
others. Fig. 3(a) shows the visualization of MAIE for four
ISAs. A quick inspection shows that MAIE cluster together
(unlike OAIE which appear in separated clusters in Fig. 2(a)).

To learn MAIE, our main idea is to first independently
train OAIE for each ISA (which is a resolved problem [20,
80] and can be trained using general data), and then map
them to a shared space via a linear transformation. For this
to work, embedding spaces of different ISAs should have
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Figure 2: Visualization of all OAIE. Similar instructions have
similar geometric arrangements, suggesting that it is possible
to learn a linear transformation from one space to another.
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Figure 3: Visualization of MAIE. After transformation, similar
instructions, regardless of their ISAs, have close embeddings
in a shared space. (Section 7 presents an in-depth evaluation
and more examples.)

approximately the same structure (i.e., isomorphic; otherwise,
it would be hopeless to find a linear transformation). Although
this is found true for word embeddings in NLP [56], it is
unclear whether this also holds for instruction embeddings.

Visualization Based Interpretations. To answer this ques-
tion, we zoom into Figure 2(a), and randomly select three x86
instructions and their semantically-similar counterparts from
the other three ISAs, which are plot in Figure 2(b). Instruc-
tions appear nearby when the Euclidean distances between
their embeddings are small. In Figure 2(a), instructions from
the same ISAs have the same color (e.g., the instructions
with blue are from x86). As we visualize OAIE, we notice
that similar instructions across different ISAs exhibit similar
geometric arrangements (e.g., distances to other instructions).

We seek to understand the reason. The datasets used to train
OAIE of different ISAs stem from the same source code, and
thus share the same semantics. As a result, the context of an
x86 instruction tends to be similar to that of its counterparts
in other ISAs. As we adopted the Skip-gram model to train
OAIE, which takes each word as input and predicts the context
for the word, it causes a strong similarity between the vector
spaces for different ISAs. Thus, it is promising to learn a
linear transformation (e.g., rotation and scaling) to capture the
relation between vector spaces representing different ISAs.

Figure 3(b) visualizes the three sets of similar instruction
after linear transformation (how to conduct the transformation
is one of the research questions of this work). We can observe
that after transformation, similar instructions, regardless of
their ISAs, are close. E.g., the set of instructions related to the
ADD operation (from different ISAs) are close to each other.

5 Model Design

This section presents our model design, including two steps:
(1) learning OAIE of a single ISA, and (2) mapping OAIE of
different ISAs to a shared space for learning MAIE.

5.1 Learning OAIE
To learn OAIE of a given ISA, we first build the training
dataset (i.e., general data; see Section 4.1). As a basic block
is a straight-line of instructions, we regard basic blocks as sen-
tences and build a dataset containing a large number of basic
blocks. To mitigate the OOV (Out-Of-Vocabulary) problem,
we normalize the instructions by applying two types of rules.
Common Rules for All ISAs. The first type includes common
rules that are applied to all ISAs.

• (R1) Number constants are replaced with 0, and minus
signs are preserved.

• (R2) String literals are replaced with <STR>.
• (R3) Function names are replaced with <FOO>.
• (R4) Stack variables (with prefix var_) are replaced with
<VAR>, and arguments (with prefix arg_) with <ARG>.

• (R6) We use IDA Pro [67] to disassemble binaries, which
generates dummy names [31]. A dummy name consists
of a type-dependent prefix and a suffix which is usually
address-dependent. E.g., i) locret_ represents a return
instruction; ii) word_, dword_, and qword_ represent
data with different lengths; iii) flt_ represents floating
point data. We replace each dummy name with its prefix.

• (R7) Other symbols are replaced with <TAG>.

ISA-specific Rules. As the assembly languages of different
ISAs have varying grammar peculiarities, we also apply some
ISA-specific rules.

• (S1) ARM uses curly braces to indicate the operand is
a list of registers [1]. E.g., PUSH {R4, R5, R6} means
to push registers in the order of R6, R5 and R4 to the
stack. As curly braces are unique to ARM and other
ISAs do not use it, we expand an ARM instruction con-
taining a curly brace to a sequence of instructions. For
the example, PUSH {R4, R5, R6} is expanded to three
instructions: PUSH R6, PUSH R5, and PUSH R4.
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Table 1: Vocabulary (i.e., set of unique instructions) sizes.

ISA Before normalization After normalization
x86 3,330,240 39,311

ARM 3,436,450 44,903
MIPS 3,406,282 40,467
PPC 3,513,131 49,486

• (S2) Some registers in ARM are aliases of others [2].
E.g., SP is an alias of R13 (stack pointer); LR is an alias
of R14 (link register); PC is an alias of R15 (program
counter). We remove all aliases and replace SP, LR, and
PC with R13, R14, and R15, respectively.

• (S3) Some registers in MIPS are aliases of others [3].
For example, GP is an alias of R28 (global pointer), SP
is an alias of R29 (stack pointer), FP is an alias of R30
(frame pointer), and RA is an alias of R31 (return address).
Similarly, we also remove all alias names.

• (S4) MIPS uses the $zero register to hold the constant
0. We replace it with 0.

Table 1 shows the vocabulary sizes for each ISA before and
after normalization. There are two observations. (1) First, after
normalization, the vocabulary sizes decrease dramatically
(e.g., the vocabulary size for x86 decreases from 3,330,240
to 39,311). (2) More importantly, before normalization, there
is a big gap of the vocabulary sizes among the four ISAs. E.g.,
the gap between x86 and ARM is 106,210 (= 3,436,450−
3,330,240). After normalization, the gap is reduced: e.g., the
gap between x86 and ARM is reduced to 5,592.

Reducing the gap of vocabulary sizes is an important step
that makes learning MAIE possible. In order to learn a lin-
ear transformation that maps OAIE of different ISAs into a
shared space, these OAIE need to have approximately the
same geometric structure (see Section 4.3), which naturally
requires they have relatively similar sizes. Therefore, the in-
struction normalization not only resolves the OOV problem,
but is also essential for our approach to work. We acknowl-
edge that determining the maximum gap between vocabulary
sizes of different ISAs that allows this approach to work is an
interesting question. We leave it for future work.

We adopt Skip-gram in fastText [24] to learn OAIE. The
result is an embedding matrix X ∈RV×d for each ISA, where
V is the number of unique instructions in the vocabulary, and
d the dimensionality of the instruction embedding.

5.2 Learning MAIE
Given N ISAs, one is chosen as the target (e.g. x86), and
others as the sources. We learn N−1 transformations (one for
each of the N−1 ISAs) to map the corresponding OAIE to the
space of the target ISA. Below, we use two ISAs to present
our approach, which can be easily extended to multiple ones.

Let X and Y be the matrices storing OAIE of two ISAs, re-
spectively, where X is the source and Y the target. The ith row
Xi∗ and Yi∗ are the embeddings of the ith instruction in their
respective vocabularies. As X and Y are not aligned accord-
ing to the vocabularies (i.e., the instructions corresponding to
Xi∗ and Yi∗ are not similar), we build a dictionary, denoted
as a sparse matrix D, where Di j = 1 if the ith instruction in
the source vocabulary is similar to the jth instruction in the
target vocabulary. Our goal is to find a transformation matrix
T such that the sum of squared Euclidean distances between
the mapped embeddings Xi∗T and the target embeddings Y j∗
for the dictionary entries Di j is minimized, as shown below:

T = arg min
T

�
i
�

j
Di j ��Xi∗T−Y j∗��2 (1)

To solve the objective function, we use D to learn T, and
in turn, use T to induce a new D iteratively until convergence.
Figure 4 shows the workflow. The instructions colored in red
and green are from two ISAs and projected in two spaces.
We first obtain the initial dictionary D, and learn T using D
and rotate X accordingly so that XT and Y are in the same
space. We then induce a better D using nearest neighbors.
This process is iterated until convergence, resulting in close
embeddings between XT and Y. The outputs are MAIE, con-
taining both XT and Y. Below we present three steps: 1)
normalizing OAIE, 2) learning an initial dictionary D, and 3)
iteratively improving D and learning T.

5.2.1 Embedding Normalization

We first normalize OAIE to be unit vectors and mean center
each dimension, such that training instances contribute equally
to the optimization goal. Then, Equation 1 is equivalent to
maximizing the sum of cosine similarities for Xi∗T and Y j∗:

T = arg max
T

�
i
�

j
Di jcos(Xi∗T,Y j∗) (2)

5.2.2 Learning Initial Dictionary

As X and Y are not aligned (i.e., the instructions correspond-
ing to the ith row Xi and Yi are not similar), we need to build
a reasonable initial dictionary D, rather than using a random
one which may result in poor local optima.
Observation. We notice that two similar instructions in differ-
ent ISAs tend to have similar distributions of similarity values.
Assume X and Y store OAIE of two ISAs, respectively. We
calculate their similarity matrices: SX =XXT and SY =YYT .
The i-th row SX

i∗ (or SY
i∗) contains the similarity values of the

ith instruction with all instructions in its respective vocabulary
(note that OAIE have been normalized to be unit vectors). As
an example, Figure 5 shows the distributions of similarity val-
ues of two x86 instructions, ADD RSP,0 and CALL FOO, and
one ARM instruction, ADD SP,SP,0. We can see that a pair
of similar x86 and ARM instructions, ADD RSP,0 and ADD
SP,SP,0, have more similar distributions than a dissimilar
pair, ADD SP,SP,0 and CALL FOO.
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Figure 4: Workflow of UNIMAP. It uses the dictionary D to learn the transformation matrix T, and in turn, uses the transformation
matrix T to learn the dictionary D until convergence.

(a) x86: ADD RSP,0 (b) ARM: ADD SP,SP,0 (c) x86: CALL FOO

Figure 5: Distributions of similarity values of three prepro-
cessed instructions. Semantically similar x86 and ARM in-
structions (ADD RSP,0 and ADD SP,SP,0) have more sim-
ilar distributions than dissimilar ones (CALL FOO and ADD
SP,SP,0).

Solution. Based on the observation, we can induce the ini-
tial dictionary D. Specifically, for a given instruction, we can
find its initially-mapped counterpart in another ISA based on
whether their distributions of similarity values are most simi-
lar. We first sort the values in each row of SX and SY indepen-
dently, resulting in matrices sorted(SX) and sorted(SY ).
Then, for each instruction in sorted(SX), we apply nearest
neighbor retrieval over all rows of sorted(SY ) to find its sim-
ilar one. Finally, we assign Di j = 1 if the ith instruction of X
is similar to the jth instruction of Y. The top 10% frequent
instructions are selected to build the initial dictionary.

5.2.3 Learning D and T

We use the initial dictionary D to learn T, and in turn, use T
to induce a new D. The process is repeated until convergence.

Learning T. Given the dictionary D, we learn T by solving
Equation 2 using stochastic gradient descent [35].

Learning D. Given T, we first compute the similarity matrix
S between XT and Y using Cross-domain Similarity Local
Scaling (CSLS) [16]. CSLS resolves the hubness problem
of nearest neighbors (i.e., a few points, known as hubs, are
nearest neighbors of many others). Given two vectors x and y,
CSLS first computes kY (x) and kX(y), which are the average
cosine similarities of x and y for their k nearest neighbors in an-
other ISA, respectively. Then, the similarity value between x
and y is calculated as CSLS(x,y) = 2cos(x,y)−kY (x)−kX(y).

We set k = 10. We keep some similarity values in S with the
probability p and set others to 0. The smaller the p is, the
more the induced dictionary varies from iteration to iteration,
thus enabling to escape poor local optima. The modified S is
used to induce D: for each instruction in Y (resp. X), we find
its most similar one in X (resp. Y) using CSLS and set the
corresponding element in D to 1.
Convergence Criterion. For each iteration i, we compute
the distance di between XT and Y using Equation 2. In the
first iteration, we set the distance as the best one dbest . If the
current distance di is lower than dbest over a threshold, we
set di as dbest and store the current iteration number i. If the
distance is not reduced over 50 iterations, the probability p is
increased to 2p. This process is repeated until p reaches 1. As
we keep tracking the best objective (i.e., the smallest distance)
when increasing p, we obtain the highest one when p reaches
1 (i.e., the procedure is converged), and the resulting T makes
XT and Y most similar.

6 Retargeted-Architecture Binary Analysis

To achieve retargeted-architecture binary analysis, our idea
is to enable knowledge transfer from one ISA to others,
such that a model trained with rich data of one ISA can per-
form prediction on multiple ISAs, which we call a multi-
architecture model. Our work targets NLP-based binary anal-
ysis approaches and aims at developing techniques that facili-
tate obtaining multi-architecture models for such approaches.

Figure 6 shows how to achieve retargeted-architecture bi-
nary analysis by applying MAIE. A critical step is to integrate
our MAIE into the input layer of a mono-architecture model
(trained and tested on the same ISA), in order to derive a
multi-architecture model (trained on one ISA and reused for
other ISAs), as illustrated in Figure 6(a) and (b). This en-
ables the input layer to represent each instruction as its MAIE.
Through this, we can transform the mono-architecture model
into a multi-architecture model. As a result, the model can
be trained only using data in one ISA (e.g., x86), and reused,
without any modification, to perform prediction on data in
other ISAs, as shown in Figure 6(c).

This is viable because the input layer of the multi-
architecture model represents each instruction as its MAIE,
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Figure 6: Making use of MAIE to achieve retargeted-architecture binary analysis.

which captures semantic relationships of instructions across
ISAs, such that similar instructions, regardless of their ISAs,
have close embedding (as illustrated in our evaluation).

7 Evaluation

We first describe the evaluation methodology (Section 7.1)
and experimental settings (Section 7.2). We then examine
the quality of MAIE by conducting the intrinsic evaluation
(Section 7.3). Next, we evaluate the transferability of MAIE
by conducting the extrinsic evaluation, including the mal-
ware detection (Section 7.4) and function similarity detection
task (Section 7.5). For both evaluations, we also compare our
approach with prior work. Finally, we evaluate the model effi-
ciency (Section 7.6) and study hyperparameters (Section 7.7).

7.1 Evaluation Methodology
Intrinsic Evaluation. We conduct the instruction similar-
ity task (Section 7.3). The goal is to evaluate the qualify of
MAIE—whether they tolerate the architecture differences and
capture semantic information of instructions across ISAs.
Extrinsic Evaluation. We conduct two downstream tasks: the
malware detection (Section 7.4) and function similarity detec-
tion task (Section 7.5). We aim to evaluate the transferability

of MAIE—whether the knowledge learned from one ISA can
be transferred to other ISAs. Specifically, for each task, we
train a model on x86, and compute how much the model’s
accuracy is decreased when tested on ARM, MIPS, and PPC,
respectively. If the decrease is small, we consider MAIE has
good transferability. However, we clarify that it needs fur-
ther studies and testing to understand the effectiveness of the
approach in other binary analysis tasks.

7.2 Experimental Settings
We implemented UNIMAP in Python using NumPy and CuPy.
We set the embedding dimension as 200. The starting probabil-
ity is set to 0.1 and the threshold to 0.000001 (Section 5.2.3).
All the experiments were conducted on a computer with a
64-bit 2.50 GHz Intel® Core(TM) i7 CPU, a Nvidia GeForce
RTX 3080, 64 GB RAM, and 2 TB HD.

General Datasets for Learning MAIE. We consider four
ISAs: x86-64, ARM, MIPS, and PPC. We first build a general
dataset for each ISA via cross-compilation (Section 4.2). We
collect a set of programs, including OpenSSL-1.1.1p, Binutils-
2.35.2, Findutils-4.6.0, and Libgpg-error-1.45, and compiled
each one with different optimization levels (O0-O3). We use
IDA Pro [67] to disassemble them to get the assembly code.

The general dataset of each ISA contains a set of ba-
sic blocks in this ISA. In total, we obtain 5,154,010 x86
blocks, 4,641,452 ARM blocks, 5,509,818 MIPS blocks,
and 5,094,218 PPC blocks. Our vocabulary contains 39,311
distinct x86 instructions, 44,903 ARM instructions, 40,467
MIPS instructions, and 49,486 PPC instructions (see Table 1).

In NLP, it is widely recognized that a comprehensive
dataset, which ensures that the vocabulary covers a wide range
of words, is essential for training effective word embeddings.
We also access the adequacy of our general datasets. Specif-
ically, we study the vocabulary growth as we incrementally
include programs. We find that including OpenSSL-1.1.1p
results in a vocabulary size of 29,222 for x86. The size in-
creases to 37,235 (a growth of 27%) when Binutils-2.35.2
is added, and then increases to 39,218 (a growth of 5%) and
39,311 (a growth of 0.2%) when Findutils-4.6.0 and Libgpg-
error-1.45 are included, respectively. The growth trend is
similar for other ISAs. It shows that the vocabulary barely
grows in the end when more programs are added. According
to the vocabulary growth trend as well as the high perfor-
mance achieved, our general datasets are adequate to cover
instructions and enable effective learning of MAIE.

It is worth noting that, in our evaluation, the general datasets
used for training MAIE have no overlap with the testing
datasets in the downstream tasks, the details of which are
introduced in Sections 7.4 and 7.5.

We consider x86 as the target ISA, which is arguably the
most high-resource ISA, and three other ISAs (ARM, MIPS,
and PPC) as the source ISAs. We clarify that it needs care-
ful testing before ascertaining the generalizability of this ap-
proach to other target and source ISAs. We first learn OAIE
of each ISA separately, and then train a model to map each
OAIE to the x86 space for learning MAIE. Note that learning
MAIE is a one-time effort: once MAIE are learned, they can
be reused in different downstream tasks.
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Table 2: Nearest neighbor instructions cross-architecturally as measured by cosine similarity of instruction embeddings. The
top-two similar ARM, MIPS, and PPC instructions are shown for each of nine high-frequency x86 instructions.

ADD R8D,[RSI+RDX*0] Score SUB R13,RBP Score CMP R12W,AX Score

ARM ADDCC R3,R6,R2 0.32821 SUBS R5,R6,0 0.52357 CMP R8,R0 0.39722
ADDCC R1,R2,R3 0.32304 SUBS R5,R6,R5 0.46674 CMP R8,R2 0.36116

MIPS ADD R14,R10,R22 0.39065 SUB R2,R4,R3 0.43441 SLT R3,R2,R15 0.45835
ADD R14,R10,R23 0.36297 SUB R3,R4,R3 0.42120 SLT R3,R2,R12 0.44797

PPC ADD R16,R31,R0 0.38367 ADDI R10,R28,0 0.51422 CMPW CR7,R19,R24 0.34893
ADD R17,R17,R0 0.38328 ADDIC R10,R28,0 0.46657 CMPW CR7,R19,R27 0.32845
AND BPL,AL Score XOR R11D,EDI Score MOV R12,[R14-0] Score

ARM AND.W R7,R7,R0 0.31910 ORR.W R4,R1,R7,LSL0 0.48886 MOVCS R5,0 0.40010
AND.W R3,R7,R0 0.28989 ORR.W R1,R1,R7,LSR0 0.483976 MOVCS R11,R7 0.37647

MIPS AND R7,R22,R4 0.40560 OR R22,R23,R22 0.40146 MOV R2,R3,R9 0.41806
SUB R4,R22,R4 0.38260 OR R22,R14 0.38174 MOV R5,R3,R9 0.40347

PPC AND R18,R10,R7 0.30094 OR R6,R8,R10 0.30091 MR R4,R26 0.35644
ADD R7,R14,R11 0.30094 ANDI. R0,R7,0 0.30634 MR R7,R26 0.29521
JBE LOC_<TAG> Score PUSH RBP Score LEA R8,[RSP+0+<VAR>+0] Score

ARM CBZ R7,LOC_<TAG> 0.40610 PUSH R6 0.55333 STRD.W R6,R7,[R3] 0.62602
CBZ R7,LOCRET_<TAG> 0.39407 PUSH LR 0.55142 STRD.W R6,R7,[R2] 0.60275

MIPS BNE R19,R22,LOC_<TAG> 0.28085 SW R28,0 0.45103 LW R19,<OFF>R17 0.56656
BEQ R19,R22,LOC_<TAG> 0.27817 SW R31,0 0.42857 LH R19,<OFF>R17 0.55023

PPC BEQ CR4,DEF_<TAG> 0.37506 STW R0,0 0.42499 STB R19,<OFF>R29 0.56327
BL DEF_<TAG> 0.35735 STWU R1,<OFF>R1 0.40904 LWZ R18,<OFF>R29 0.51616

JBE  LOC_<TAG>

BNE  R19,R22,LOC_<TAG> SUBS  R5,R6,0

SLT  R3,R2,R15CMP  R12W,AX

MR  R25,R28
MOV  R12,[R14-0]

MOV  R2,R3,R9

FLD  <DWORD_PTR>  [RSP+0+<VAR>]

LH  R5,<OFF>R12STB  R19,<OFF>R9

LDR.W  R4,[R3,R8,LSL0]

AND  R7,R22,R4

AND.W  R7,R7,R0

ADD  R16,R31,R0

ORR.W  R4,R1,R7,LSL0 ADD  R14,R10,R22
ADDCC  R3,R6,R2BLE  LOCRET_<TAG>

LEA  R8,[RSP+0+<VAR>+0] STRD.W  R6,R7,[R3]
LW  R19,<OFF>R17

AND  BPL,AL
ADD  R8D,[RSI+RDX*0]

CBZ  R7,LOC_<TAG>

BEQ  CR4,DEF_<TAG>

OR  R22,R23,R22

XOR  R11D,EDIOR  R6,R8,R10

AND  R18,R10,R7

MOVCS  R5,0

SUB  R13,RBP

STB  R18,<OFF>R9

BEQ  R7,R6,LOC_<TAG>

SUB  R2,R4,R3
LWZ  R29,0

CMPWI  CR4,R29,0
SLT  R3,R2,R20

CMPW  CR7,R19,R24
CMP  R6,R0

CMP  R12D,EAX

CMP  R8,R0

PUSH  RBP
PUSH  R6

STW  R0,0

JMP  <FOO>

SW  R28,0

ADDI  R10,R28,0

LSLS  R0,R3,0
SHR  AX,0

SLWI  R9,R19,0
SLL  R4,R25X86
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ARM
PPC

Figure 7: Visualization of MAIE for thirteen high-frequency x86 instructions and their top-one most similar instructions in the
other three ISAs (ARM, MIPS and PPC), based on the cosine similarity of their MAIE.

7.3 Instruction Similarity Task
This task measures whether two semantically similar instruc-
tions, regardless of their ISAs, have close embeddings. Unlike
word embeddings, which have many existing word-aligned
corpora to evaluate their quality, we do not have such data.
We thus create the datasets ourselves, which contain a set of
manually-labeled instruction pairs. We rely on the assembly
language references [5, 57, 62, 73] to create our datasets.

Specifically, we first categorize the x86 instructions into 6
categories (including data transfer, arithmetic, logical, shift
and rotate, bit and byte, and control transfer). We then ran-
domly select 20 x86 instructions from each category. For each
selected x86 instruction, we find their corresponding similar
instructions from the other three ISAs based on whether their
opcodes share similar semantics (i.e., perform the same opera-
tion). E.g., MOVQ from x86 and STR from ARM can be used to
store data in registers; thus, it is reasonable to consider them

as similar. BL from ARM represents a branch with link; we
thus consider MOVQ and BL as dissimilar. All the authors who
are familiar with the assembly languages worked together to
determine the instruction pairs. If there was any disagreement,
we skipped this one and selected another x86 instruction with
the same category to replace this one. Finally, we create three
datasets: D1 contains 120 similar and 120 dissimilar pairs of
x86 and ARM instructions; D2 contains the same number of
pairs of x86 and MIPS instructions; and D3 contains the same
number of pairs of x86 and PPC instructions.

Our Results. Given each pair of cross-ISA instructions in the
datasets, we calculate the cosine similarity of their MAIE to
measure their similarity. For D1, D2, and D3, we achieve an
accuracy of 0.7625, 0.6625, and 0.6791, respectively. Note
that in NLP, the accuracy of the cross-lingual word embedding
similarity testing is around 0.68∼0.73 [74].

Comparison with Prior Work. The prior work [64] is the
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AND  R7,R22,R4

AND.W  R7,R7,R0
AND  BPL,AL

OR  R22,R23,R22
OR  R6,R8,R10

AND  R18,R10,R7

VORR  D7,D7,D26

XOR  EBX,[R9+RAX*0]

PXOR XMM0,[RSP+0+<VAR>]

XOR CL,[RAX-0]

XOR   [RSP+0+<VAR>],EBX
AND EBP,ESI

AND  DIL,R11B

XOR  EDI,[R8+0]

RORX  R15,R8,0

PXOR  XMM1,XMM2

POR~XMM1,XMM3

AND  R9,R9,0

AND  R9,R9,R8

EORS  R7,R6

ANDS  R3,R3,R4,ASR0
EOR  LR,R6,0

AND  R0,R5,0

ANDNE  R5,R1,0

XOR  R0,R0,R25

NOR  R5,R31,R5 ORC  R10,R8,R10

ANDC  R10,R20,R5
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XOR  R2,R3,R17

XOR  R2,R3,R17

NOR  R6,R0,R21

AND  R11,R12,0

XOR  R25,R23,R7

XOR R17,R15

AND  R22,R26,R22

OR  R8,R6,R8

NAND  R4,R4,R4

Logical Instructions

MR  R25,R28
FLD  <DWORD_PTR>  [RSP+0+<VAR>]

LH  R5,<OFF>R12

STB  R19,<OFF>R9
LDR.W  R4,[R3,R8,LSL0]

LEA  R8,[RSP+0+<VAR>+0]

STRD.W  R6,R7,[R3]

LW  R19,<OFF>R17

MOVCS  R5,0

STB  R18,<OFF>R9

PUSH  RBP

PUSH  R6

STW  R0,0

SW  R28,0
PUSH  R8

LEA  ECX,DS:<ADDR>

LEA  EBP,[RBP+RBX+0]

POP~R13

MOV  RBX,R10

MOV  R12,[RBP-0]

MOVSX  R13,R13B

MOV  R9D,[RBP-0]MOV  R11D,[RBP+<VAR>]

MOV  R12,[RAX+RSI]

MOV  RBX,FS:<ADDR>

LEA  EAX,DS:<ADDR>

MOV  LR,R10

LW  R12,<OFF>R8

MOV  R19,R6

SW  R0,0LW  R2,0

SW  R31,0
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SW  R17,<ARG>
SW  R7,<OFF>R18

MOV  PC,LR

MOV  R0,ASC_<STR>

LDRB  R0,[R1]
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BNE  R19,R22,LOC_<TAG> CMP  R12W,AX

BLE  LOCRET_<TAG>
BEQ  CR4,DEF_<TAG>

BEQ  R7,R6,LOC_<TAG>
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JR  R5
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BAL  <FOO>
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CMP  RSP+<ARG>],0

CMP~[RSI],CL

BL  <FOO>BNE  <FOO>
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SUB  EAX,[RSP+0+<VAR>]

DEC  EAX
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ADC  R7,R8,R7,LSR0

ADCS  R3,R0
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ADC  R1,R5,R7
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ADDI  R8,R7,<OFF>

ADDI  R18,R27,0
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Figure 8: Visualization of all MAIE in four ISAs. Four categories of instructions are demonstrated: data movement, control flow,
logical, and arithmetic, which show that similar instructions, regardless of their ISAs, have close embeddings.

most related to ours. As discussed in Section 2, there are
three main differences between the prior work and ours. As
the prior work is based on supervised learning, we cannot
use our dataset to train its model. Hence, we use its open-
sourced trained model [64] for comparison. We use the same
testing dataset created by [64], which contains 25 similar and
25 dissimilar pairs of x86 and ARM instructions (the prior
work only focuses on x86 and ARM). We achieve a higher
AUC = 0.78, while the prior work 0.72. Thus, although ours is
unsupervised learning, the learned MAIE have better quality
in capturing instruction semantics across ISAs.

Nearest Neighbor Instructions. We next examine, for a given
x86 instruction, its top-K similar instructions in other ISAs.
Specifically, we select nine (9) high-frequency x86 instruc-
tions containing different opcodes. For each selected x86
instruction, we search for the top-two similar instructions in
ARM, MIPS, and PPC, respectively, based on the cosine sim-
ilarity of their MAIE. The results are shown in Table 2. We
can see that for a given x86 instruction, its top-two similar
instructions in the other ISAs share similar semantics, as pre-
dicted. E.g., for the x86 instruction ADD R8D,[RSI+RDX*0],
we find the relevant ARM instructions ADDCC R3,R6,R2 and
ADDCC R1,R2,R3, MIPS instructions ADD R14,R10,R22 and
ADD R14,R10,R23, and PPC instruction ADD R16,R31,R0
and ADD R17,R17,R0, where all them add the values in two
operands and store the result in the destination operand.

Visualization. We plot thirteen (13) high-frequency x86 in-
structions (including the previous nine instructions) and their
corresponding top-one most similar instructions in the other
ISAs (ARM, MIPS and PPC) in Figure 7 using t-SNE [54].

We can see that the instructions with similar seman-

tics, regardless of their ISAs, have close embeddings (and
thus appear nearby in the figure). For example, the four
instructions, AND BPL,AL (x86), AND.W R7,R7,R0 (ARM),
AND R7,R22,R4 (MIPS), and AND R18,R10,R7 (PPC), re-
lated to the bitwise AND operation, appear nearby. As another
example, the eight instructions related to the comparison op-
eration from the four ISAs appear nearby, as shown in the
top-left of the figure. Similarly, the twelve instructions related
to the data movement operation from the four ISAs are also
close together, as shown in the left-bottom of this figure.

We also visualize all MAIE in the four ISAs using t-SNE, as
shown in Figure 8. Four categories of instructions are selected
for demonstration: data movement, control flow, logical, and
arithmetic. We can see that the data movement instructions
across the four ISAs are close together. This is similar to the
other categories. Therefore, our learned MAIE can success-
fully capture semantic relationships of instructions within the
same ISA as well as across ISAs.

7.4 Malware Detection Task
To evaluate the transferability of MAIE, we conduct two
downstream tasks, malware detection and function similarity
detection. This section presents the result of the first task.

To evaluate the transferability of MAIE, we integrate MAIE
into a mono-architecture model, and reuse the trained model
for other ISAs (see Section 6). We do not claim the design
of mono-architecture models as our contribution. Instead our
contribution is the learning of MAIE that support knowledge
transfer to achieve retargeted-architecture binary analysis.
Model. In this experiment, we use the Long Short Term Mem-
ory (LSTM) model proposed in [29] to detect malware. In
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Figure 9: Integrating MAIE into the LSTM model for retargeted-
architecture analysis.

Figure 10: ROC for retargeted-architecture mal-
ware detection task.

Table 3: Comparing results between our approach and the
first baseline method for the malware detection task.

Train Test AUC

Train and test x86 x86 0.9735

on the same ISA ARM ARM 0.9938

(baseline) MIPS MIPS 0.9525
PPC PPC 0.9021

Train on x86 and
x86

ARM 0.9473
test on other ISAs MIPS 0.9318

(ours) PPC 0.9228

Table 4: Performance changes as the training dataset size varies.
The testing dataset remains the same. (Legend: M and B stands
for malware and benign, respectively.)

Train Training Size Test Testing Size AUC
PPC 304(M) + 304(B) PPC 203(M) + 203(B) 0.9021

x86

304(M) + 304(B)

PPC 203(M) + 203(B)

0.7837
630(M) + 630(B) 0.8772
960(M) + 960(B) 0.9112

1294(M) + 1294(B) 0.9228

the original design, the LSTM model analyzes the opcode
sequence of a program to detect whether it is malware or not.

We design the LSTM model as two layers. Figure 9 shows
how we integrate the learned MAIE into the LSTM model
to derive a multi-architecture model. Specifically, the fea-
ture extraction layer (highlighted in blue) is replaced with
our multi-architecture instruction embedding (MAIE) layer,
which represents each instruction using its MAIE.
Baseline Methods. We consider two baseline methods. (1)
The first one is the LSTM model trained and tested on the
same ISA. That is, we train and test LSTM using OAIE, rather
than MAIE. (2) The second baseline is the prior work [64].
As the prior work only focuses on x86 and ARM, in the
comparison, we also focus on this pair of ISAs.
Task-Specific Datasets. We first collect malware samples. We
totally collect 2156, 1159, 1004, and 507 malware samples in
x86, ARM, MIPS, and PPC from VirusShare.com [69].

Since the first baseline method trains and tests a malware
detection model on the same ISA, it requires task-specific data
in each ISA. We spend a lot of efforts in collecting malware
samples, especially for MIPS and PPC. It is worth noting that
our retargeted-architecture approach only needs malware in a
high-resource ISAs for training a model, and thus can greatly
save the efforts in data collection, especially for low-resource
ISAs. That means, in an extreme case, if only one PPC binary
is available, we can still detect whether it is malware using
the model trained on x86.

For each ISA, we build its training and testing dataset. We
divide the malware samples in each ISA into two parts: 60%

are used for training and 40% for testing. In each training and
testing dataset, we also include the same number of benign
programs. In the training dataset, the benign programs are
randomly selected from the four packages used to build the
general dataset for training MAIE (Section 7.2), while the
testing dataset contains benign programs randomly selected
from completely different packages, including Coreutils-9.0
and Diffutils-3.7, which are not used to build the general
dataset. Through this, we can assess the adequacy of the
general dataset in handling real-world scenarios, where the
testing samples have never been seen during training.
Our Results. We first train LSTM on x86, and test it on
x86, ARM, MIPS, and PPC, respectively. Through this, we
can learn how much the model’s accuracy decreases when
reused for other ISAs. The less it decreases, the better the
transferability of MAIE. Figure 10 shows the ROC curves.

We can see that (1) when the model is trained and tested
on x86, it can achieve AUC = 0.97, and (2) when the model
trained on x86 is reused for ARM, PPC, and MIPS, it can
achieve AUC = 0.95 (with only 2% decreases), AUC = 0.93
(with 4% decreases), and AUC = 0.92 (with 5% decreases), re-
spectively. The results show the good transferability of MAIE
that can support transfer knowledge from one ISA to others.
Comparison with Baseline Methods. For the first baseline,
we train and test LSTM on the same ISA using OAIE. The
results are shown in Table 3: when a model is trained and
tested on ARM, MIPS, and PPC, it achieves AUC = 0.99,
AUC = 0.95, and AUC = 0.90, respectively.

By comparing the first baseline and our approach, we can
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see that our model’s performance is slightly lower for ARM
and MIPS, but still competitive (e.g., the baseline model
trained and tested on MIPS achieves AUC = 0.95, while ours
trained on x86 and tested on MIPS achieves AUC = 0.93).

For PPC, it is surprising that our model—trained on x86 and
thus has not seen any PPC malware during training—achieves
a higher AUC than the baseline model (trained on PPC). One
reason may be that the PPC malware used to train the baseline
model is not sufficient. While increasing the training dataset
size can improve the baseline model performance, it can be
challenging to collect data in certain tasks.

Next, we seek to understand how performance changes as
the training dataset size varies. Specifically, we conduct exper-
iments starting from the same size of the x86 and PPC training
datasets, gradually increasing the x86 dataset size until reach-
ing the maximum size. The results are shown in Table 4. We
can see that when the model is trained on an x86 training
dataset containing more than 960 malware samples and then
reused for PPC, it outperforms the baseline model trained and
tested on PPC with less available data. This demonstrates the
critical role of a sufficiently large training dataset in order to
achieve desirable performance.

These results demonstrate the great significance of our
retargeted-architecture approach. (1) It only needs the training
data in a high-resource ISA, which can greatly save the effort
in data collection. (2) It trains one single model and reuses
it for other ISAs, which can save computing resources and
alleviate the per-ISA tuning effort. More importantly, the
model predication accuracies keep high on other ISAs.

The second baseline is the prior work [64]. As it is based
on supervised learning, we use its open-sourced trained model
for comparison. It learns cross-architecture instruction em-
beddings (CAIE) for a pair of ISAs: x86 and ARM.

In Figure 9(b), we first replace the MAIE module with
CAIE, so that the instructions are encoded using CAIE. We
then train LSTM on x86 and test it on ARM. It achieves AUC
= 0.8654. When MAIE are applied, a model trained on x86
and tested on ARM achieves AUC = 0.9473 (Figure 10). It
shows that MAIE have much better transferability.

7.5 Function Similarity Detection Task
Model. funcGNN is a graph neural network-based model that
analyzes CFGs to measure function similarity [58]. Fig. 11
shows how we integrate MAIE into funcGNN for retargeted-
architecture binary analysis. The one-hot embedding layer
(highlighted in blue) is replaced with multi-architecture in-
struction embedding layer, which represents each instruction
as its MAIE. Each node is a basic block. We use the sum of
MAIE of all instructions in a block to represent this block.
Baseline Methods. We also consider two baseline methods.
(1) The first one is the funcGNN model trained and tested on
the same ISA using OAIE. (2) The second baseline is the
prior work [64] that only focuses on x86 and ARM.

Task-Specific Datasets. For this task, it is easy to collect task-
specific datasets for different ISAs using cross-compilation.
The significance of our retargeted-architecture approach is
that we only need to train one model on one ISA and reuse
it for all other ISAs. (1) We first build the training dataset
for each ISA, where each contains 50,000 similar and 50,000
dissimilar function pairs in the corresponding ISA. (2) We
then build the testing dataset for each ISA, containing 5,000
similar and 5,000 dissimilar functions pairs.

To make sure there is no overlap between training and test-
ing datasets, we select completely different programs to build
them. Specifically, the functions in the training datasets are
randomly selected from the four packages used to build the
general dataset for training MAIE (Section 7.2), while the
functions in the testing dataset are randomly selected from
completely different packages, including Coreutils-9.0 and
Diffutils-3.7, which are not used to build the general dataset.
Following the dataset building method in InnerEye [80], we
consider two functions similar if they are compiled from the
same piece of source code, and dissimilar if their source code
is rather different. Each program is compiled using four differ-
ent optimization levels. Thus, given two similar or dissimilar
functions, by applying different optimization levels to the two
functions, we build 6 (= 4*3÷2) pairs in the datasets.
Our Results. We first train funcGNN on x86 and then test the
trained model on x86. After that, we reuse the trained model
for the other three ISAs. The results in Figure 12 demonstrate
the good transferability of MAIE. The model (trained on x86)
tested on x86 achieves AUC = 0.98. When the model is reused
for ARM, MIPS, and PPC, it achieves AUC = 0.95 (with only
3% decreases), AUC = 0.94 (with only 4% decreases), and
AUC = 0.95 (with only 3% decreases), respectively.

We next investigate the impact of optimization levels on
the transferability of MAIE. Instead of using the assembly
code generated at all optimization levels (O0-O3) to train
MAIE (Section 7.2), we build four separate general datasets
using code generated at each optimization level to train four
sets of MAIE, referred to as MAIEO0, MAIEO1, MAIEO2, and
MAIEO3. We then integrate each set of MAIE into funcGNN
and follow the aforementioned procedure to evaluate the trans-
ferability. The task-specific training and testing datasets re-
main the same when each set of MAIE is integrated. Table 5
shows the results, while the results based on MAIE trained
using code generated at all optimization levels (referred to
as MAIEall) are shown in Figure 12. We have the following
observations. (1) MAIEOi (i = 0∼3) all demonstrate relatively
high transferability, in the sense that funcGNN achieves ac-
ceptable or good performance when reused for other ISAs.
(2) The transferability of MAIE at a higher optimization level
does not necessarily outperform that at a lower level. This
highlights the drawback of training MAIE using code gener-
ated at individual optimization levels. (3) When MAIEall are
used, funcGNN has the highest AUC values, indicating that
MAIEall has the best transferability. This can be attributed to
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Table 5: Impact of optimization levels on the transferability of MAIE.
MAIEOi are learned using code generated at optimization level Oi. The
results when MAIE are learned using code generated at all optimization
levels are also shown in Figure 12 and Table 6.

MAIE Train Test AUC MAIE Train Test AUC

MAIEO0 x86
ARM 0.8726

MAIEO1 x86
ARM 0.9049

MIPS 0.8434 MIPS 0.9249
PPC 0.7309 PPC 0.9287

MAIEO2 x86
ARM 0.8433

MAIEO3 x86
ARM 0.9484

MIPS 0.8838 MIPS 0.8419
PPC 0.9334 PPC 0.9172

Table 6: Comparing results of our approach and the
first baseline for function similarity detection. The
results of our approach are also shown in Figure 12.

Train Test AUC

Train and test x86 x86 0.9809

on the same ISA ARM ARM 0.9896

(baseline) MIPS MIPS 0.9718
PPC PPC 0.9847

Train on x86 and
x86

ARM 0.9528
test on other ISAs MIPS 0.9389

(ours) PPC 0.9518

the fact that MAIEall are trained using a larger and more com-
prehensive dataset that covers a wider range of instructions,
supporting more effective learning of embeddings.

Comparison with Baseline Methods. For the first baseline,
we train and test funcGNN on the same ISA using OAIE: it
can achieve AUC = 0.98, 0.97, and 0.98, for ARM, MIPS, and
PPC, respectively. The results are shown in Table 6.

Comparing the baseline and our approach, we can see that
although the AUC values of our model are slightly lower but
still keep high, considering that we do not need to spend a lot
of efforts in data collection for each ISA as well as computing
resources in training a large number of models which involves
complicated parameter tuning, our approach is of great use.

The second baseline is the prior work [64]. As it focuses on
x86 and ARM, we focus on this pair. We use its trained cross-
architecture instruction embeddings (CAIE) for comparison.
In Fig. 11(b), we first replace the MAIE layer (highlighted in
blue) with the CAIE layer. We then train funcGNN on x86 and
test it on ARM. It achieves AUC = 0.8832. When our MAIE is
applied, a model trained on x86 and tested on ARM achieves
AUC = 0.9528. Thus, our MAIE have better transferability.

7.6 Efficiency

We evaluate the training time of UNIMAP, which first learns
OAIE of each ISAs using fastText (Part I) and then maps
OAIE of the source ISAs (i.e., ARM, MIPS and PPC) to the

Table 7: Training time (minute) of UNIMAP with respect to
different embedding dimensions.

Embedding Dimension 100 200 300

Learning OAIE x86 4 7 10

using CPU ARM 3 6 9

(Part I) MIPS 5 8 11
PPC 4 6 8

Mapping OAIE to ARM→ x86 13 21 26
the vector space of x86 MIPS→ x86 12 14 18

using GPU (Part II) PPC→ x86 12 15 20

vector space of x86 to learn MAIE (Part II). The training
time of Part I and II is linear to the corpus size, and the total
training time is the sum of the two parts.

The results are shown in Table 7. Part I is performed using
CPU, and Part II is performed using GPU. We can see that
UNIMAP is very efficient. For example, if the embedding
dimension is 200, the total training time for generating MAIE
for x86 and ARM is 34(= 7+6+21)minutes. Note that MAIE
once trained can be reused in various downstream tasks:
e.g., we use the same MAIE for both malware detection and
function similarity detection tasks.

7.7 Hyperparameter Study
We vary the instruction embedding dimension and evaluate
its impacts on the training time and model performance. We
observe that increasing the dimensions yields better perfor-
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mance. For example, (1) with 100 dimensions, the LSTM
model achieves AUC = 95%, 90%, 90%, and 89%, when
tested on x86, ARM, MIPS, and PPC, respectively. Thus, it
has 5%, 5%, and 6% decreases when the model (trained on
86) is reused for ARM, MIPS and PPC, respectively. (2) With
300 dimensions, the model achieves AUC = 97%, 95%, 94%,
and 92%, when tested on x86, ARM, MIPS, and PPC, respec-
tively, with less than 2%, 3%, and 5% decreases when reused
for ARM, MIPS and PPC, respectively.

However, a higher embedding dimension leads to higher
computational costs (requiring longer training time, as shown
in Table 7). Thus, a moderate dimension of 200 is a good
trade-off between accuracy and efficiency.

8 Discussion

Vocabulary Sizes. Our approach learns a linear transforma-
tion that maps the instruction embeddings of the source ISA
to the vector space of the target. For it to work, different ISAs
need to have relatively similar vocabulary sizes. Through our
instruction normalization, the gap of the vocabulary sizes are
significantly reduced (see Section 5.1), and our evaluation
demonstrate that MAIE lead to good performance. However,
there may exist an ISA whose vocabulary size is much larger
(or smaller) than that of another. In this case, we may select a
subset of instructions in this (or another) ISA for learning the
transformation. Moreover, finding the maximum gap of vocab-
ulary sizes that allows our approach to work is an interesting
question. We leave it for future work.

Alternative Solutions. It would be intriguing to explore ap-
proaches alternative to a linear transformation for learning
MAIE. For example, one can train a transformer [60] using
the general data from multiple ISAs to learn MAIE. How-
ever, to achieve retargeted-architecture binary analysis, there
is a crucial requirement for MAIE—i.e., semantically-similar
instructions across ISAs should have close embeddings in a
shared space. Whether this approach satisfies this requirement
remains unclear and needs investigation. Plus, the fine-tuning
step in [60] is impeded by the data scarcity issue. How to
avoid or mitigate the issue also needs dedicated work.

In this work, we consider instructions as words, which is
a natural choice and works well according to our evaluation.
However, there exist other choices. For example, we may also
consider raw bytes [28,42,63] or opcode/operands [20,40,60]
as words. An interesting research is to study which choice
works the best and whether it depends on ISAs and down-
stream tasks. We use the mature Skip-gram model to generate
OAIE (and then map OAIE to a shared vector space for learn-
ing MAIE). There exist other models for learning OAIE, such
as BERT [40] and transformer-based models [60]. It is worth
highlighting that our retargeted-architecture analysis does not
depend a particular word embedding approach; however, its
performance may benefit from progress in this topic.

Generalizability. Considering that x86 is the most data-rich
ISA, we have developed techniques to transfer knowledge
from x86 to other ISAs. To validate the effectiveness of the
techniques, we conducted an evaluation that tested the trans-
ferability from x86 to three other ISAs for two critical down-
stream tasks. In theory, the techniques could apply generally.
However it is important to note that our results are specific to
the evaluated scenarios. In order to ascertain the effectiveness
of this approach across other downstream tasks and different
source/target ISAs, further investigation and comprehensive
testing are needed.

9 Conclusion

We have proposed a new direction, retargeted-architecture
binary code analysis, where a deep learning model trained
for one ISA can be reused for others. It has great signifi-
cance for coping with the data scarcity issue and saving the
dataset building effort and computing resources, compared to
training per-ISA models. For NLP-based binary analysis ap-
proaches, our approach enables the reuse of their models for
various ISAs. To that end, an unsupervised learning method,
UNIMAP, has been developed to learn multi-architecture in-
struction embeddings (MAIE), where semantically similar
instructions, regardless of their ISAs, have close embeddings.
We evaluated the quality and transferability of MAIE through
two important binary analysis tasks: malware detection and
function similarity measurement. Our approach significantly
outperforms prior work. We thus advocate that retargeted-
architecture binary analysis is a promising direction for multi-
ISA binary analysis.
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for (i = 0; i < sizeof line_format / sizeof line_format[0]; ++i)

409a52 mov eax, [rbp-0xa0]
409a58 cmp eax, 0x2
409a5b jbe 0x409a09

1548a ldr r3, [r7,#0x54]
1548c cmp r3, #0x2
1548e bls #0x1545c

409e08 lw $v0, 0x40($fp)
409e0c sltiu $v0, $v0, 0x3
409e10 bnez $v0, 0x409dc4

100068a4 lwz r9, 0x54(r31)
100068a8 cmplwi cr7, r9, 0x2
100068ac ble cr7, 0x10006858

---- IMark(0x409a52, 6, 0) ----
t12 = Add64(t9,0xffffffffffffff60)
t15 = LDle:I32(t12)
t27 = 32Uto64(t15)
t14 = t27
PUT(rax) = t14
---- IMark(0x409a58, 3, 0) ----
t28 = 64to32(t14)
t16 = t28
PUT(cc_op) = 0x07
t29 = 32Uto64(t16)
t18 = t29
PUT(cc_dep1) = t18
PUT(cc_dep2) = 0x02
PUT(rip) = 0x409a5b
---- IMark(0x409a5b, 2, 0) ----
t32 = 64to32(0x02)
t33 = 64to32(t18)
t31 = CmpLE32U(t33,t32)
t30 = 1Uto64(t31)
t25 = t30
t34 = 64to1(t25)
t20 = t34
if (t20) { PUT(rip) = 0x409a09; 
ljk_Boring }

---- IMark(0x409e08, 4, 0) ----
t15 = Add32(t8,0x40)
t17 = LDbe:I32(t15)
---- IMark(0x409e0c, 4, 0) ----
t19 = CmpLT32U(t17,0x03)
t18 = 1Uto32(t19)
PUT(v0) = t18
---- IMark(0x409e10, 4, 0) ----
PUT(pc) = 0x00409e14
if (t19) { PUT(pc) = 0x409dc4; 
Ijk_Boring }

--- IMark(0x100068a4, 4, 0) ---
t20 = Add32(t16,0x00000054)
t22 = LDbe:I32(t20)
PUT(gpr9) = t22
--- IMark(0x100068a8, 4, 0) ---
t24 = CmpORD32U(t22,0x02)
t23 = 32to8(t24)
PUT(cr7_321) = t23
t26 = GET:I8(xer_so)
PUT(cr7_0) = t26
PUT(cia) = 0x100068ac
--- IMark(0x100068ac, 4, 0) ---
t28 = 8Uto32(t23)
t27 = And32(t28,0x04)
t13 = Xor32(t27,0x04)
t30 = CmpNE32(t13,0x00)
if (t30) { PUT(cia) = 0x10006858; 
Ijk_Boring }

---- IMark(0x1548a, 2, 1) ----
t43 = t23
t65 = LDle:I32(t43)
PUT(r3) = t65
---- IMark(0x1548c, 2, 1) ----
PUT(cc_op) = 0x02
PUT(cc_dep1) = t65
PUT(cc_dep2) = 0x02
PUT(cc_ndep) = 0x00
PUT(pc) = 0x0001548f
---- IMark(0x1548e, 2, 1) ----
PUT(itstate) = 0x00
t67 = CmpLE32U(t65,0x02)
t66 = 1Uto32(t67)
t68 = 32to1(t66)
if (t68) { PUT(pc) = 0x1545d; 
Ijk_Boring }

x86 ARM MIPS PPC

Assembly Code

VEX IR

Figure 13: A example of C source code and the corresponding assembly code and VEX IR code in four different ISAs.

A Appendix

A.1 IR Code
Figure 13 shows the source code and the corresponding assem-
bly code and VEX IR in four different ISAs, x86, ARM, MIPS
and PPC. The source code we consider here is: i < sizeof
line_format / sizeof line_format[0], which is high-
lighted in blue at the top. Its corresponding assembly code
and IR code are shown below. In VEX IR, the IMark is an
IR statement that does not represent actual code. Instead it
indicates the address and length of the corresponding assem-
bly instruction. For example, in x86, the address of the first
assembly instruction mov eax, [rbp-0xa0] is 0x409a52,
and it is translated to five IR statements belonging to the first
IMark statement, IMark(0x409a52, 6, 0).

From the example, we can see that given the same piece
of source code, the assembly code in different ISAs is quite
different. More importantly, even if we lift the binaries into
a common IR (e.g., VEX IR), their IR code is also quite
different (e.g., the lengths and types of IR statements vary).

Therefore, existing works that leverage IR for analyzing bi-
naries across ISAs have to perform further advanced analysis
on the IR code. For example, (1) Multi-MH [61] uses fuzzing
to detect whether two pieces of VEX IR code (after lifting)
are semantically similar. (2) GitZ [18] conducts complex re-
optimization on IR code for function similarity comparison.
(3) GeneDiff [51] trains a deep learning model using VEX IR
code for cross-architecture binary clone detection. Thus, IR
is not magic and a “bridge” (MAIE in our work) is needed
for a model trained for one ISA to be reused for other ISAs.
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