QDA and RDA
Quadratic discriminant analysis (QDA) is similar to LDA. Normal distributions are assumed, but each class can have a different covariance matrix. In such a setting, the optimal decision boundaries need not be linear. The less rigid model underlying QDA may better approximate the situation in a real classification problem (compared to LDA). But the increased flexibility does not come without a cost – there are more unknown parameters to estimate since a pooled estimate of a common 
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 is no longer used. While the allowance of curved decision boundaries can lead to reduced bias in the estimation of the (unknown) optimal decision boundaries, having to estimate  variance and covariance values with less data (since only the class
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cases are used to estimate 
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) can lead to increased variance in the estimation of the optimal boundaries. 

Using the same general strategy as was used for the development of LDA classification, it can be shown that if the assumptions underlying QDA are met, the optimal predicted class for
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should be the value of 
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are called quadratic discriminant functions.) In practice, we use estimated parameters with the 
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 to do classification by QDA. 
In addition to LDA, LDA in an enlarged space (e.g., a “polynomial space”), and QDA, one can also try a method due to Jerry Friedman known as regularized discriminant analysis (RDA). RDA can be thought of as a compromise between LDA and QDA. On the other hand, since RDA can produce a LDA fit, and can produce a QDA fit; RDA can be viewed as being the most general of the three methods. (But it doesn’t necessarily perform best.) 
In RDA, the estimated covariance matrix for the 
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class has the form 
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where
[image: image11.wmf]a

 is a value in [0,1]. Here 
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 is the pooled estimate used in LDA, and 
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 is the estimate used in QDA (which is just based on the class 
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observations). If 
[image: image15.wmf]a

 is close to 1, the RDA fit is close to the QDA fit. If 
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 is close to 0, the RDA fit is close to the LDA fit. The value of 
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 to be used can be based on the performance of a sequence of models (resulting from a sequence of 
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values) on validation data, or cross-validation can be used.          
� This symbol denotes the variance-covariance matrix. 
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