Classification by Density
Estimation

T he class predicted for % by the optimal
Bmdes classitier is

ML Ty £y (%),
where 4 is the set of clacses, my s the.
prior prob. tor class g, and fﬂ js +he
o(emify for class g- In most casés, the
prior probabilities and the densities are
unknown. One fypica”g guesses Fhe
values of the prior proba bilities or estimates
them in a relatively straightforward

mannér (6,9‘, Using samp/e proportions
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From the ,earm'ng Sample), Asmmmﬂ
that good values can be obtained for
the prior prababi)h‘iesj one could closely
approximate the performance of the Bayes
classifrer provided that the densities
Cahn be well estimated. The actucocy
of density estimators depends on the
sample size, the dimension (number of
predictor variables ) and the nature of the
density be:‘nﬂ estimated. Often Some
other method of clascification works
better than attemptin g To ectimate the.
densities direcflg and appraxz'mmLe,f‘;’?& Bayes

CIaSJhCier, but In Some IDW“J/'mens:'onaf



Ve,

Settings the simple density estimation
method can work well if the sampfe size

isn’t too sma/l.

There are many methods for density
estimation. Kernel density estimation is
7} Simple and widelg*wed method.
For the one-dimensional version with a
Gaussian kernel we have

£ = 204 (- x),
where &, denotes the pdf of Gaussian
distn haw’ng mean O and standacd
deviation A. [f the density Eefng

estimated isn't too different from o normal
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dist'n density, then setting A egual to

1.06 Sx
Un

Is a goao{ choice. But this value may

be far from opfima/ for o lot of nonnocmal

disths, and i+ may be gooo/ o use a hon-

pammeﬁic method o determine the value
4o yse for A. (Note: One may alro use

another kernel, such as the popular

Epanech nikov kernel.  But typically the

C}ﬂoice O’F kerne{ dOESVﬁ make an apprecz"

able difference. )

In r*egl'oﬂr where H’le dafa J S Hw/n Iy

cpread, the density estmater may be



rather poor, and the decision rule con

have. odd characterictics. (See Fig. 6.1% i HTF)

Kernel density estimation can be done in
dimensions greater than 1, bat begyond 2
or 3 dimensions, very [arge, sample sizes
may be necded o 3e+ decent performancc.
In Mmany smaller samp/e size settings,
one m;‘g)of be better off #:‘H/‘nﬂ a
normal mixtuce /noo(el, usIng the oata
fo estimate the parameters associated
with Gaussian mixturce distri butions jnstead
of trying to esfimate the densitres directly.
Such a scheme for clacsification ic jn a

Séense a generalfza"'ion af LDA
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The naive Bagex classifier alse makes
ure of density estimation. Instead of
trying to accurately esttmate a multi-
dimemr’ona[ joint densifg with oo [itle data )
an o ssumption of independence s made.
It is assumed that the Components of
X = (X, Xe, ., %)

are ind. Vs, So that the jomt pdf
of X is Just eg,ua[ to the product of the
marﬂinal pdfs. That is, one ascumes

£ (%) = T £ (),
Then the sample of size n can be used
to estimate univariate densities jnstesd of o

Joint density. It the asfumption jc Frue,



thew the method can work very well
— much better than LDA and (DA
for Séx/erdy nonnormal disths. Even
when the assumption is not true, which
J usua“3 the case, the method can
Sometimes be competive with other

somewhat g)'mple methods.

A spec:‘al case cnc the naive Bage.f
C/ass)‘ﬁser is Somefimer used, but L don?
recommend IT. One. can assume that all of the
densities ace Gausiian and just use the odafa to
ectimate the means and variances, /V'g guess
is that QDA, which assumes norma/n'}y/ but not

independence, will typically do better



