# library(MASS) library(stats) library(boost) # for adaboost # # First I'll generate the training data. greenx1a <- runif(25, 0, 1) greenx1b <- runif(50, 1, 2) greenx2a <- runif(25, 0, 1) greenx2b <- runif(50, 0, 2) redx1a <- runif(50, 0, 1) redx1b <- runif(25, 1, 2) redx2a <- runif(25, 1, 3) redx2b <- runif(25, 2, 3) greena <- cbind(greenx1a, greenx2a) greenb <- cbind(greenx1b, greenx2b) reda <- cbind(redx1a, redx2a) redb <- cbind(redx1b, redx2b) trainx <- rbind(greena, greenb, reda, redb) greeny <- rep(0, 75) redy <- rep(1, 75) trainy <- c(greeny, redy) plot(trainx[,1], trainx[,2], col=3-trainy) # # Now I'll generate some generalization data # the same way. reenx1a <- runif(25, 0, 1) greenx1b <- runif50, 1, 2) greenx2a <- runif(25, 0, 1) greenx2b <- runif(50, 0, 2) redx1a <- runif(50, 0, 1) redx1b <- runif(25, 1, 2) redx2a <- runif(25, 1, 3) redx2b <- runif(25, 2, 3) greena <- cbind(greenx1a, greenx2a) greenb <- cbind(greenx1b, greenx2b) reda <- cbind(redx1a, redx2a) redb <- cbind(redx1b, redx2b) genx <- rbind(greena, greenb, reda, redb) greeny <- rep(0, 75) redy <- rep(1, 75) geny <- c(greeny, redy) # boostpred <- adaboost(trainx, trainy, genx) summarize(boostpred, geny)