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Topology and Geometry of Complex Systems

I study the topology and geometry of complex geometric objects.
This falls under the purview of topological and geometric data
analysis. I’m interested in both theory and applications, especially
to materials science. Themes include local structure and
randomness (stochastic topology).
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Fractal Dimension

Fractal dimension measures how the properties of a shape
depend on scale.

The first notion of a fractional dimension was proposed by
Hausdorff in 1918. Since then, several other definitions have
been proposed, including the box-counting, packing, and
correlation dimensions.

These dimensions agree on a wide class of “regular” sets.



Fractal Applications

Fractal dimension has applications in a wide variety of fields
including medicine, ecology, materials science, and the analysis of
large data sets. In some of these applications, it is important to
estimate fractal dimension from random point samples.
1Riscovič and Pavlovič, Scanning (2013), 2Kagan, Geophysical Journal International (2007), 3Lorthois and Cassot,
Journal of Theoretical Biology (2010)



Persistent Homology

The Persistent Homology (PH) of a point cloud tracks the
topological changes that occur as balls are grown around the
points. Since its introduction by Edelsbrunner et al. in 2002, there
has been a surge of interest in the theory and applications of PH.



Minimum Spanning Trees

Definition (Minimum Spanning Tree)

Let x be a finite metric space. The minimum spanning tree on x,
denoted T (x) is the connected graph with vertex set x that
minimizes the sum of the length of the edges.

In fact, for any α > 0, T (x) minimizes the weighted sum

Σe∈T (x) |e|α .



Minimum Spanning Trees and Persistent Homology (PH0)

If x is a finite point set in Euclidean space, PH0(x) is a set of
intervals that track how components merge as balls are ground
around x. The PH0 intervals are matched with the MST edges,
with an interval corresponding to an edge of twice its length.



Minimum Spanning Trees and Persistent Homology (PH0)

We can see the correspondence between PH0(x) and T (x) by
using Kruskal’s algorithm.



Minimum Spanning Trees and PH0

To find the first MST edge, grow balls around the point set until a
component dies.



Minimum Spanning Trees and PH0

Continue until an edge connects vertices in separate components
to find the next MST edge.



Minimum Spanning Trees and PH0

Let’s skip to the end.



Minimum Spanning Trees and PH0

When we are down to one component, the MST has been
computed.



Minimum Spanning Trees and PH0

If we expand the balls a little more, a different topological change
occurs.



One-dimensional Persistent Homology (PH1)

PH1(x) tracks the holes that form and disappear as balls are
thickened around a set of points.



Persistent Homology

More generally, i-dimensional persistent homology (PH i ) tracks
how the i-dimensional homology changes as balls are thickened
around a set of points. PH i is a set of intervals corresponding to
homology generators that are born and die in this process.



Persistent Homology

More generally, i-dimensional persistent homology (PH i ) tracks
how the i-dimensional homology changes as balls are thickened
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Persistent Homology

The information in PH is often summarized by a persistence
diagram: a scatter plot of (birth, death) for each interval.



Persistent Homology

PH1(Sε) is a set of intervals, one for each component of the
complement that disappears as ε increases (by Alexander duality).



Persistent Homology

PH1(Sε) is a set of intervals, one for each component of the
complement that disappears as ε increases (by Alexander duality).



Persistent Homology

PH1(Sε) has one interval for each bounded component of the
complement of S (by Alexander duality).



Persistent Homology of a Sample



Persistent Homology of a Sample

If we take the persistent homology of larger and larger samples, the
diagram begins to approach that of the support.



Persistent Homology of a Sample

We also have a cluster of small intervals that are usually written off
as “noise.” We can use this noise to estimate fractal dimension!



Main Questions

Question

Can the fractal dimension of a metric measure space be estimated
from the persistent homology of random point samples?

“Fractal Dimension and the Persistent Homology of Random
Geometric Complexes,” S. (2019).

Question

How does the practical performance of the PH i -dimension compare
to classical methods such as box-counting or the correlation
algorithm?

“Fractal Dimension Estimation with Persistent Homology: A
Comparative Study,” S. and J. Jaquette (2019).



Previous Work on Fractal Dimension and PH

Several authors have defined fractal dimensions based on PH, and
compared computational estimates with known dimensions:

Robins (PhD thesis, 2000): Persistent Betti numbers of
fractals, proved results for H0 of disconnected sets.

MacPherson and S. (“Measuring Shape with Topology,”
2012): PH complexity of shapes, studied probability
distributions of polymers.

Adams et. al. (“A Fractal Dimension for Measures via PH,”
2019): PH of random point samples; definition very similar to
the one here. Computational experiments that motivated the
current work.

S. (“PH and the Upper Box Dimension,” 2018): PH of
extremal point sets. First rigorous results relating PH to a
classically defined fractal dimension.



Weighted Lifetime Sums

Definition (α-Weighted Lifetime Sum)

If X is a bounded metric space, define

E i
α (X ) =

∑
(b,d)∈PHi (X )

(d − b)α .

When i = 0 and X is finite the sum can be taken over the edges of
the minimum spanning tree on X :

E 0
α (X ) =

1

2α

∑
e∈T (X )

|e|α .



Steele’s Theorem

Theorem (Steele, 1988)

Let µ be a compactly supported probability measure on Rm,
m ≥ 2, and let {xn}n∈N be i.i.d. samples from µ. If 0 < α < m,

lim
n→∞

n−
m−α
m E 0

α(x1, . . . , xn)→ c(α,m)

∫
Rm

f (x)(m−α)/m dx

with probability one, where f (x) is the probability density of the
absolutely continuous part of µ, and c(α,m) is a positive constant
that depends only on α and m.



Persistent Homology Dimension

Let µ be a probability measure on a metric space, {xi}i∈N be i.i.d.
samples from µ, and α ∈ R+. Idea: if the support of µ is

d-dimensional, then E i
α(x1, . . . , xn) should scale as n

d−α
d .

Definition

dimPHα
i

(µ) =
α

1− β
where

β = lim sup
n→∞

log(E(E i
α(x1, . . . , xn)))

log(n)
.



Steele’s Theorem

Corollary (Steele, 1988)

If µ is a nonsingular, compactly supported probability distribution
on Rm and 0 < α < m

dimPHα
0

(µ) = m .



Steele’s Theorem and Fractal Dimension

Quote (Steele, 1988)

One feature of the previous theorem that should be noted is that if
µ has bounded support and µ is singular with respect to Lebesgue
measure, then we have with probability one that
E 0
α(x1, . . . , xn) = o(n(m−α)/m). Part of the appeal of this

observation is the indication that the length of the minimum
spanning tree is a measure of the dimension of the support of the
distribution. This suggests that the asymptotic behavior of the
minimum spanning tree might be a useful adjunct to the concept
of dimension in the modeling applications and analysis of fractals.



Minimum Spanning Trees on Fractals

However, despite many subsequent stronger results for
absolutely continuous measures, very little was known about
random minimum spanning trees from singular measures.

Only previous rigorous result: Kozma, Lotker, and Stupp
(2011) on the length of the longest edge of a random
minimum spanning tree drawn from a Ahlfors regular measure
with connected support.

Computational experiments: Weygaert, Jones, and Martinez
(1992).



Ahlfors Regularity

Definition (Ahlfors Regularity)

A probability measure µ supported on a metric space X is d-Ahlfors
regular if there exist positive real numbers c and r0 so that

1

c
rd ≤ µ(Br (x)) ≤ c rd

r for all x ∈ X and r < r0.

Ahlfors regularity is a standard hypothesis that implies that the
fractal dimension of a measure is well defined. That is, the various
classical notions of dimension coincide and equal d .



Ahlfors Regular Examples

The natural measures on the Cantor set, Sierpinski triangle, as
well as any self-similar fractal defined by an iterated function
system whose correct-dimensional Hausdorff measure is
positive (this is weaker than the usual open-set condition).

A natural measure on the boundaries certain hyperbolic
groups, such as the fundamental group of a compact,
negatively curved manifold.

Bounded probability densities on a compact Riemannian
manifolds.



Main Theorem for Minimum Spanning Trees

Theorem (S., 2018)

Let µ be a d-Ahlfors regular measure on a metric space, and let
{xi}i∈N be i.i.d. samples from µ. If 0 < α < d ,

C0 ≤ n−
d−α
d E 0

α(x1, . . . , xn) ≤ C1

with high probability as n→∞, where C0 and C1 are positive
constants that do not depend on n. In particular,

dimPHα
0

(µ) = d .



Sharpness of Our Result

Theorem (S., 2019)

There is a d-Ahlfors regular measure so that n−
d−α
d E 0

α(x1, . . . , xn)
oscillates between two constants with high probability.

The idea is to “interleave” the Cantor set with the Cantor set
rescaled by 5/7.



Higher Dimensional Persistent Homology

Higher dimensional results are more difficult because of extremal
questions about the number of PH i intervals of a set of n points.
See “Persistent Homology and the Upper Box Dimension” in DCG
(S., 2018). Our cleanest result is for R2:

Theorem (S., 2018)

Let µ be a d-Ahlfors regular measure on R2 with d > 1.5, and let
{xi}i∈N be i.i.d. samples from µ. If 0 < α < d , there are constants
0 < C0 ≤ C1 so that

C0 ≤ n−
d−α
d E 1

α(x1, . . . , xn) ≤ C1

with high probability as n→∞. In particular,

dimPHα
1

(µ) = d .



Computational Results

Question

How does the practical performance of the PH i -dimension compare
to classical methods such as box-counting or the correlation
algorithm?

“Fractal Dimension Estimation with Persistent Homology: A
Comparative Study,” with J. Jaquette (CNSNS, 2019).



Computational Results

We compare the performance of algorithms to estimate the PH i ,
box-counting, and correlation dimensions, for three classes of
examples: self-similar fractals, chaotic attractors, and empirical
earthquake data.



Sierpinski Triangle

In general, the PH0 and correlation dimensions perform
comparably well. In cases where the true dimension is known, they
approach it at about the same rate. In most cases, the
box-counting and higher PH i dimensions perform worse.



Sierpinski Triangle

We found one simple rule for fitting a power law to estimate the
PH0 which worked well for all examples, in contrast to the
correlation dimension and (especially) the box-counting dimension.



Ikeda attractor

Different notions of dimension may disagree for non-regular sets.



Earthquake Data

We applied the dimension estimation algorithms to the
Hauksson–Shearer Southern California earthquake catalog, and
found a PH0 dimension estimate of 1.76 and a correlation
dimension estimate of 1.66. This is in line with previous studies.



Future Directions

If µ has connected support, do sharper asymptotics hold for
E i
α(x1, . . . , xn), as in Steele’s theorem (a

Beardwood-Halton-Hammersley type result)?

Sharper results for i > 0?

Is there a relationship between the difficulty of dimension
estimation, and the complexity of the persistent homology of
the support?
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Oxide Glasses

Oxide glasses are present in our daily lives, but the relationship
between the local structure and global physical properties
of these materials is poorly understood. This is due in part to the
lack of an appropriate language to describe that local structure.

B. Schweinhart, D. Rodney, and J.K. Mason, Statistical Topology
of Bond Networks with Applications to Silica (2019).



Silica

The bond network of silicon dioxide (silica) is a bipartite graph,
where silicon atoms are (usually) adjacent to four oxygen atoms,
and oxygen atoms are (usually) adjacent to two silicon atoms.



Idea

Current goal: develop a rigorous methodology to describe the
local structure of oxide glasses. It should differentiate various
silica glasses, and as well as different crystalline forms of SiO2.

Future goal: relate global physical properties of glasses to
local structure. One possible application: what local
environments are associated with crystal nucleation?

Our methodology is also applicable to other systems that can
be represented by a sparse graph. Examples: zeolites, metallic
glasses/sphere packings, quasicrystals, circulatory networks, ...

Software package on GitHub (link on my website).



Local Environments

If G is a graph, and v is a vertex of G the local environment of
radius r centered at v is the ball of radius r in the graph distance.1

1B. Schweinhart, J.K. Mason, and R.D. MacPherson, Topological Similarity
of Random Cell Complexes and Applications, Physical Review E 93 (2016).



(In)equivalent Environments

Two environments are equivalent if they are isomorphic as rooted,
colored graphs.



The Empirical Distribution

Given a graph G and a radius r , the counting measure on the
vertices of G induces an empirical probability distribution of graph
isomorphism classes of radius r . This family of probability
distributions is called the empirical distribution of G . It
characterizes the local topology of G .



Crystal Distribution

For many crystalline materials, the empirical distribution is
supported on one or two topological types.



Disordered Distribution

For disordered materials, the notion of a single “unit cell” is
replaced by a probability distribution of local environments.



Application: Different Cooling Rates

Silica glasses produced at different cooling rates exhibit subtle
differences in their physical properties. We apply our methodology
to find differences in the local structure.

Data set: molecular dynamics simulations of silica glasses produced
at three different cooling rates, with 105 silicon atoms for each
cooling rate.



Application: Different Cooling Rates

Our methodology distinguishes molecular dynamics simulations of
glasses produced at different cooling rates.



Application: Different Cooling Rates

The most common types are the same in all preparations, but are
less common for faster cooling rates and there is more probability
mass in the tail. Interpretation: glasses produced at faster cooling
rates are more disordered.



Application: Different Cooling Rates

Topological types that are over-represented in glasses produced at
a faster cooling rate tend to have multiple relatively short rings.



Crystalline SiO2 and Radius 6

Proposed application: detect local environments related to crystal
nucleation.

Crystalline forms of SiO2 such as quartz and cristobalite are
indistinguishable below radius r = 6.



The Combinatorial Explosion

R # of Classes per Atom

4 0.01
5 0.07
6 0.90
7 1.00

The number of graph isomorphism classes detected in a sample of
105 radius 6 environments approaches 105! A different approach is
needed.



Coarser Equivalence Classes

In Statistical Topology of Bond Networks with Applications to
Silica, we study several notions of equivalence for local
environments that are coarser than graph isomorphism. Of these,
H1 barcode equivalence is perhaps the most promising.



New Approach: H1 Barcode

The shell annulus Gi ,j is induced subgraph on vertices at distances
between i and j from the root.



New Approach: H1 Barcode

The H1 barcode is a set of intervals so that

rank H1(Gi ,j) = # of intervals contained in (i , j).



New Approach: H1 Barcode

The H1 barcode is a set of intervals so that

rank H1(Gi ,j) = # of intervals contained in (i , j).



Application: Different Cooling Rates

At radius 6, the H1 barcode differentiates glasses produced at
differing cooling rates as well as various crystalline forms of silica.
In Statistical Topology of Bond Networks with Applications to
Silica, we compare its performance to other coarser notions of
equivalence using tools from information theory.



Future Directions

More applications to glasses: finding correlations between
frequencies of local environments and physical properties,
phase transitions (glass transition, crystallization), optical
properties.

Applications to other systems: zeolites, metallic
glasses/sphere packings, quasicrystals, circulatory networks, ...

Physical interpretation of the H1 barcode? (Degrees of
freedom per atom.)

Generalization of the H1 barcode to higher dimensional
homology.

Thank you for your attention!



PH complexity

Definition (MacPherson–S.,2012)

compi
PH(X ) = inf

{
α : E i

α(X ) <∞
}
.

Measures the complexity of a shape, rather then the dimension.



PH complexity

Example True Dim. compPH0
(X ) compPH1

(X )

S log(3)
log(2) 0 log(3)

log(2)

C × I 1 + log(2)
log(3)

log(2)
log(3) 0

C × C 2 log(2)
log(3)

2 log(2)
log(3)

2 log(2)
log(3)



An Indicator of Difficulty?

comp0
PH(S) < comp0

PH(C × I ) < comp0
PH(C × C )



Ikeda attractor

comp1
PH ≈ .95?



Dependence on α

For self-similar fractals, lower values of α produced better
convergence for dimi

PH when compi
PH 6= 0, but there wasn’t much

difference otherwise.



Dependence on α

For non-regular sets, different values of α may give different values
for dimi

PH .



Classical Approach: Ring Statistics

Ring statistics are perhaps the most commonly used structural
descriptor in the oxide glass literature (i.e. how many rings of a
given length?). There is considerable disagreement over which
rings are important. Here, we count the number of “primitive
rings” containing the root and call this the primitive ring profile.
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