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Whereas knowledge of a crystalline material’s unit cell is fundamental to understanding the mate-
rial’s properties and behavior, there are not obvious analogues to unit cells for disordered materials
despite the frequent existence of considerable medium-range order. This article views a material’s
structure as a collection of local atomic environments that are sampled from some underlying prob-
ability distribution of such environments, with the advantage of offering a unified description of
both ordered and disordered materials. Crystalline materials can then be regarded as special cases
where the underlying probability distribution is highly concentrated around the traditional unit cell.
Four descriptors of local atomic environments suitable for disordered bond networks are proposed
and applied to molecular dynamics simulations of silica glasses. Each of them reliably distinguishes
the structure of glasses produced at different cooling rates, with the H1 barcode and coordination
profile providing the best separation.

I. INTRODUCTION

A bond network is one in which atoms connected by
covalent bonds form a network that extends throughout
the material. The nature of covalent bonding is such
that every atom of a given species generally forms the
same number of covalent bonds (referred to below as the
valence), though Fig. 1 shows that this does not signifi-
cantly restrict the overall network connectivity. The pur-
pose of this article is to characterize this connectivity,
and to enable quantitative comparison of the connectiv-
ity of different bond networks. Since the connectivity is
entirely defined by knowledge of the existence of atoms
and the bonds connecting them, the resulting analysis
does not depend on variations in bond energies or the
precise geometries of local atomic environments. That
is, a bond network is considered as a graph (in the sense
used in discrete mathematics) where the atoms constitute
the vertices (possibly labelled by atomic species) and the
covalent bonds the edges.

Let the distance between two atoms be defined as the
number of edges along the shortest path between the
corresponding vertices. A local atomic environment of
radius r centered at an atom v is then defined as the
subgraph consisting of all atoms within distance r of v
and all covalent bonds between atoms in this set, as in
Fig. 2. The atom v, with a distinguished position at
the center of the local atomic environment, is called the
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FIG. 1: Ordered (a) and disordered (b) bond networks con-
taining 2-valent red atoms and 3-valent blue atoms.

root. A perfect crystalline solid, by definition, contains a
small number of topological types of local atomic environ-
ments; considering the polymorphs of silica (SiO2) as ex-
amples, there is just one environment in cristobalite and
two in coesite if the roots are restricted to silicon atoms.
By contrast, a disordered solid contains many topological
types, though these do not all necessarily have the same
probability of occurrence. This suggests that every ma-
terial with a given chemical composition and processing
history has a characteristic probability distribution of lo-
cal atomic environments, with crystalline solids as special
cases where the probability distribution is highly concen-
trated. Knowledge of this probability distribution would
then subsume that of the unit cell, and apply to ordered
and disordered bond networks alike. This approach has
the further advantage of being sensitive to both contin-
uous and discontinuous variations in the rates of occur-
rence of local atomic environments, and could therefore
be used for, e.g., phase detection, identification of crys-
tal nuclei, or verification that computationally-generated
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FIG. 2: A local atomic environment of radius 5 inside a larger
bond network. The root atom is marked by a blue star.

structures correspond to experimental ones.

A central concern that has yet to be addressed is pre-
cisely which local atomic environments should be con-
sidered equivalent and which distinct. We propose that
there is no single notion of equivalence that is preferable
in all situations. Four possibilities are discussed below in
the context of molecular dynamics simulations of silica
glasses produced at different cooling rates. For this ap-
plication, the equivalence relation that allows the atomic
networks to be most easily distinguished on the basis of
local structural differences is preferred. If instead the
relative nucleation rates of competing crystalline phases
was the subject of study, then perhaps the one that could
most easily distinguish the characteristic probability dis-
tributions of different crystalline phases would be more
preferable.

In previous work [1, 2], two local environments were
considered to be equivalent up to graph isomorphism,
effectively employing all of the available topological in-
formation to compare local atomic environments. While
theoretically satisfying, this can cause the number of
equivalence classes (distinct types of local environments)
to grow very quickly with the radius of the neighbor-
hood. For example, using this equivalence relation gives
9 × 104 distinct equivalence classes in a sample of 105

environments in silica glass at a radius sufficient to dif-
ferentiate the crystalline forms of SiO2. This is not a use-
ful summary of the local structure; the true probability
distribution of local atomic environments would require
an infeasibly large sample population to estimate, and
even if known would consider nearly every environment
as unique.

This proliferation of equivalence classes is addressed
by considering three further equivalence relations which
are coarser (encode less information) than graph isomor-
phism, and effectively assign a summary of topological
properties to a local atomic environment. Two are based
on classical descriptors, namely, the coordination pro-
file which records the coordination numbers of atoms at
each distance from the root, and the primitive ring pro-
file which records the number and length of primitive
rings containing the root. The third equivalence relation
is the H1 barcode, a novel ring-based descriptor that is
defined in terms of the first homology group. The H1

barcode is better at distinguishing local atomic environ-

ments in crystalline and glassy silica than the primitive
ring profile, particularly when every atom in the network
is required to have the standard valence.

There is an extensive literature on local structural de-
scriptors for bond networks (the introduction of Ref. [2]
gives a brief survey). Specifically for covalent glasses, our
approach is most similar to the local clusters of Hobbs
et al. [3]. The local cluster of an atom is the union of
all primitive rings (defined below) containing that atom,
and the equivalence relation on local clusters is graph
isomorphism. This approach is, however, found to suf-
fer from the same proliferation of equivalence classes de-
scribed above for the graph isomorphism equivalence re-
lation. Ring statistics are perhaps the most commonly
used local structural descriptor for silica networks [4],
with a survey of several different classes of distinguished
rings given in Ref. [5]. Recently, persistent homology was
applied to the study silica networks [6]; while the H1 bar-
code introduced here can be defined in terms of persistent
homology, the approach followed below is quite different.

Previous studies have identified various structural
properties of silica glasses that depend on, e.g., the cool-
ing rate from the liquid [7–11]. Our methodology is ap-
plied to simulations of silica glasses quenched from the
liquid at three different rates. Overall, glasses that form
with faster cooling rates are found to exhibit more disor-
der, have a higher frequency of rings with 6 or 8 atoms (3
or 4 silicon atoms), and have more coordination defects.

II. CLASSIFICATION OF LOCAL ATOMIC
ENVIRONMENTS

Let V be the set of atoms comprising a bond network.
A structural descriptor of a bond network is defined as a
function X that assigns to the atom v a summary X(v)
of the properties of the local atomic environment around
v. Given a descriptor X, atoms v1 and v2 are considered
to be equivalent (v1 ∼ v2) if their descriptions are the
same (X(v1) = X(v2)); that is, X induces an equivalence
relation on atoms v ∈ V . Given two descriptors X and
Y, X is said to be coarser than Y if equivalence under
Y implies equivalence under X for all pairs of atoms v1
and v2. Each of the descriptors considered here depends
on the radius r of the local environment, and each has
the property that Xr is coarser than Xr+1 for all r > 0
(higher values of the radius provide more information).

Let the equivalence class x denote the set of all local
atomic environments such that X(v) = x for the root
atom v. Since the underlying probability distribution
on equivalence classes is not usually known for a given
descriptor X and atom set V , our approach instead uses
empirical probability distributions. The empirical proba-
bility distribution of X on V assigns to every equivalence
class x the probability that X(v) = x for a randomly cho-
sen atom v ∈ V , or

PX(x) = (#v ∈ V : X(v) = x)/ |V | .
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A descriptor X and two bond networks with atom sets
V1 and V2 then result in two discrete probability distri-
butions PX(x) and QX(x), and a measure of the simi-
larity of these discrete probability distributions could be
used to define the similarity of the bond networks (e.g.,
a metric on discrete probability distributions induces a
pseudometric on bond networks). While the symmetrized
Kullback–Leibler divergence [12] is used for this purpose
below, other possibilities include the standard L1 or L2

metrics, or a Wasserstein distance that incorporates in-
formation about the geometric similarity of equivalence
classes [2].

Three of the four descriptors below encode intuitive
topological information about a local atomic environ-
ment, though the technical descriptions of the descrip-
tors can be deceptively involved. It is useful to frequently
consult examples of local atomic environments and the
corresponding descriptors while reading the descriptions
below to develop the above-mentioned intuition. One ex-
ample is provided in Fig. 3, and many more of relevance
to silica glasses are given in Appendix D.

A. Graph Isomorphism

The most detailed of the descriptors uses graph iso-
morphism to construct equivalence classes of local atomic
environments. This requires that two local atomic envi-
ronments U1 and U2 be considered equivalent if there is a
function φ that matches every atom in U1 with an atom
in U2 such that (1) v and φ(v) have the same atomic
type for all v ∈ U1, and (2) v, w ∈ U1 are bonded if and
only if φ(v) and φ(w) are as well. The resulting equiva-
lence class specifies all topological information about the
local atomic environment. From the standpoint of ring
statistics, graph isomorphism controls the number and
length of rings as well as their adjacency and distance
from the root. The methodology described in [2] was
used to calculate the corresponding descriptor; that is, a
local environment was represented by an adjacency ma-
trix written in canonical form using the software package
Nauty [13].

B. The Coordination Profile

The coordination profile is the simplest descriptor con-
sidered here. At radius r this is a vector of r unordered
lists where the ith list gives the coordinations (valences)
of all atoms at distance ith from the root. An example
of a local atomic environment and its coordination pro-
file is shown in Fig. 3; the root has valence four, each of
the atoms in the first neighbor shell has valence two, and
the valences alternate with neighbor shell number. Ob-
serve that the coordination profile at radius r implicitly
includes information about the bonds between atoms in
the rth and (r + 1)th shells; this means that the coordi-
nation profile at radius r provides a coarser classification

FIG. 3: An example local atomic environment and its H1

barcode, primitive ring profile, and coordination profile.

(a) (b)

FIG. 4: Two configurations with three primitive rings of
length four. Whereas (a) has three algebraically independent
rings, (b) has only two.

than graph isomorphism at radius r+1, but not at radius
r.

For a perfectly coordinated silica network—one where
every oxygen is adjacent to two silicons and every sili-
con is adjacent to four oxygens—the coordination profile
contains equivalent information to the number of atoms
in each neighbor shell around the root. This is known
as the shell count of the local atomic environment. For
example, the radius 5 shell count of the configuration in
Fig. 3 is (1, 4, 4, 12, 12, 33).

C. The Primitive Ring Profile

A primitive ring [14, 15] is defined as a ring of bonded
atoms (v1, v2, . . . , vk, v1) such that the shortest path con-
necting any pair of atoms in the ring is contained within
the ring. That is, the shortest path between vi and
vj for all 1 ≤ i < j ≤ k is either vi, vi+1, . . . , vj or
vj , vj+1, . . . , vk, v1, v2, . . . , vi. For example, the config-
urations in Fig. 4 both have three primitive rings. Note
that if v is an atom in a bond network, a primitive ring
containing v is primitive with respect to the local atomic
environment rooted at v if and only if it is primitive in
the entire network as well; this is not necessarily true if
a ring does not contain v. The primitive ring profile of
radius r of an atom v gives the lengths of all primitive
rings which contain v and at most 2r total atoms, as in
the example in Fig. 3. Unlike the coordination profile, the
primitive ring profile stabilizes at a relatively small value
of the radius r (there are often alternate paths connect-
ing distant parts of large rings). The algorithm of Yuan
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and Cormack [16] is used to compute primitive rings.
The ring lengths given here are twice the usual values

in the silica literature where only silicon atoms are re-
ported [4]. For example, a 12-ring in this article contains
6 silicon and 6 oxygen atoms.

D. The H1 Barcode

The H1 barcode is proposed here as a set of intervals
corresponding to algebraically independent rings in a lo-
cal atomic environment, and is defined in terms of the
first homology group. An interval of the form (j, k) with
0 ≤ j < k corresponds to a ring of unknown length whose
atoms are all between distance j and k of the root. An
interval (0, k) more specifically corresponds to a ring con-
taining the root atom and either 2k−1 or 2k total atoms.
If there are fewer intervals of the form (0, k) than prim-
itive rings passing through the root, then there is an in-
terval of the form (j, k) which encodes information about
the relationships between the primitive rings; Fig. 3 gives
an example.

1. Definition of Homology

The definition of homology as it relates to the H1 bar-
code is more involved than the definitions of the other
descriptors considered here; this arises from the require-
ment that the rings be algebraically independent. As
motivation for the discussion below, consider that while
there is no unique basis for the Euclidean plane, every
basis contains precisely two vectors. That is, the space
is clearly two-dimensional despite the ambiguity of this
choice. The situation is (perhaps surprisingly) similar
for rings in a bond network. Consider the three rings in
Fig. 4(b); in a sense that is made precise below, any two
of these rings can be composed to generate the third in
the same way that any two linearly independent vectors
in the plane can be regarded as a basis. While the iden-
tity of the rings is not well-defined, the number of such
algebraically independent rings certainly is well-defined,
and the H1 barcode indicates the changes to this number
as a function of r.

The first homology group is a vector space whose di-
mension equals the number of algebraically independent
rings in a bond network (refer to Ref. [17] for an intro-
duction to general homology theory). If G is a bond net-
work, then the chain group C0(G) is defined as the vector

space of all formal sums
∑k

i=1 aivi where ai ∈ R and vi
is an atom of G; this effectively attaches a real number
to each atom. Similarly C1(G) is the vector space of all

formal sums
∑k

i=1 ai(vi, wi), where ai ∈ R and (vi, wi) is
a pair of atoms of G connected by a bond, with the re-
lation (vi, wi) = −(wi, vi); this effectively attaches a real
number to each oriented bond. If an element of C1(G)
is regarded as defining the rate of fluid flow along each

bond of the network, it is natural to ask the correspond-
ing rate of fluid accumulation around each atom. The
linear function ∂ : C1(G)→ C0(G) is defined by

∂

[ k∑
i=1

ai(vi, wi)

]
=

k∑
i=1

aivi − aiwi

and effectively calculates this quantity for every atom of
the network simultaneously. The first dimensional ho-
mology of G is then the kernel of ∂, or the set of all
balanced fluid flows:

H1(G) = {σ ∈ C1(G) : ∂(σ) = 0} .

H1(G) is generated by oriented rings of G, or equiva-
lently every balanced fluid flow can be constructed as
a superposition of linearly independent flows around a
well-defined number of closed circuits (though the set of
closed circuits is not uniquely defined). For example,
in Fig. 4(b), (a, b) + (b, c) + (c, d) + (d, a) ∈ H1(G) but
(a, b) + (b, c) + (c, d) + (a, d) /∈ H1(G). Also, note that if
σ1, σ2, and σ3 are the three primitive rings

σ1 =(a, b) + (b, c) + (c, d) + (d, a)

σ2 =(a, b) + (b, e) + (e, d) + (d, a)

σ3 =(b, c) + (c, d) + (d, e) + (e, b)

then there exists the relation

σ1 = σ2 + σ3.

That is, as claimed in the opening of this section, only
two of the three rings are algebraically independent.

The rank of the vector space H1(G) gives the num-
ber of algebraically independent rings of G. For example,
the ranks of the first homology groups of the configura-
tions in Figures 4(a) and 4(b) are 3 and 2, respectively.
Practically speaking, the rank of H1(G) can be efficiently
computed using only information about the Euler charac-
teristic and number of connected components of G (two
atoms are in the same connected component if there is a
path connecting them):

χ(G) = #atoms−#bonds

= #components− rank [H1(G)] .

Solving for the rank of H1(G) gives the concise equation

rank [H1(G)] = #components−#atoms + #bonds. (1)

Finally, we emphasize that the vector space H1(G) does
not have a distinguished basis of “shortest” rings; each
pair of primitive rings in Fig. 4(b) is a viable basis.

2. Definition of the H1 Barcode

If v is a root atom in a bond network G and i ≤ j,
the i, j-shell annulus S(i, j) at v is the subgraph com-
posed of all atoms between distances i and j from v and
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FIG. 5: Two shell annuli of a local atomic configuration, and
the corresponding H1 barcode.

the included bonds. F (i, j) is defined as the number of
algebraically independent rings of S(i, j), or

F (i, j) = rank{H1[S(i, j)]} . (2)

For example, the local atomic environment in Fig. 5 has
F (0, 5) = 3, F (0, 4) = 2 and F (2, 5) = 1. If (i, j) ⊆ (k, l),
then rings that are algebraically independent in S(i, j) re-
main algebraically independent in S(k, l), implying that
F (i, j) ≤ F (k, l). It follows that there is a unique set of
intervals BC (the H1 barcode) such that

F (i, j) = # {I ∈ BC : I ⊆ (i, j)} .

The information in BC for a root v is displayed in a bar-
code, as in Fig. 5 for which BC = {(0, 4), (0, 4), (2, 5)}.

The H1 barcode could alternatively be defined in terms
of the zigzag persistent homology [18] or extended per-
sistent homology [19] of the distance function to the root
vertex. Those concepts could also be used to define other
descriptors that contain different information about the
local atomic environment. Here the H1 barcode was
computed using Möbius inversion, as described in Ap-
pendix A, and (perhaps surprisingly) was faster than an
algorithm based on extended persistent homology.

E. Speed of Computation

The local atomic environments of a bond network are
classified by iterating through a list of all possible root
atoms, and computing the selected descriptor for the lo-
cal atomic environment around each one. The numbers of
occurrences of every observed equivalence class are stored
in a hash table, with an overall runtime that is linear in
the number of root atoms. While the majority of the run-
time is spent on computing the descriptors, the asymp-
totic runtime of these algorithms is not particularly rel-
evant as the local atomic environments contain a small

Method Time (s)

H1 barcode 12.6

Primitive ring 23.6

Coordination 1.8

TABLE I: Seconds required to classify 105 atomic environ-
ments at radius 6. The data is from a molecular dynamics
simulation of glasses cooled at 5×1011 K/s, which is described
in the next section.

number of atoms. Computations were performed on a
2.3 GHz AMD Opteron processor with 64 GB of RAM,
and the code was compiled with g++ version 7.3.1 using
the -O2 flag.

Table I shows the time required to classify 105 atomic
environments at radius r = 6. The coordination profile
was the fastest, requiring only 1.8 seconds to compute as
this descriptor involved no additional computations once
the local atomic environment was known. The H1 bar-
code required 12.6 seconds by comparison. The primitive
ring profile was the slowest of the three, requiring 23.5
seconds in the best case. Our implementation used the
Yuan and Cormack [16] primitive ring algorithm where
the global structure of the bond network is used to ac-
celerate the computation of individual profiles. Without
this optimization the runtime for the primitive ring pro-
file was 127.1 seconds, still substantially faster than the
algorithm of Hobbs et al. [3] which required 476.7 sec-
onds.

III. APPLICATIONS TO SILICA

Silicon dioxide, otherwise known as silica, exists in a
variety of crystalline and glassy forms at ambient condi-
tions. Silicon atoms are generally bonded to four oxygen
atoms, and oxygen atoms are generally bonded to two sil-
icon atoms, though this is not universally true in poorly
relaxed systems, and the coordination of Si atoms can be
as high as 6 when under compression [20]. The four struc-
tural descriptors of local atomic environments described
in Sec. II were applied to three crystalline forms of silica
and to silica glasses generated by molecular dynamics
simulations, quenched from the liquid at 5 × 1011 K/s,
5× 1012 K/s, and 5× 1013 K/s. An informative descrip-
tor of local structure would ideally distinguish all of these
cases. All local atomic environments are rooted at silicon
atoms in the following.

The details of the molecular dynamics simulations are
described in Appendix C. For each quench rate, 100 con-
figurations of 3, 000 atoms (1, 000 Si atoms and 2, 000 O
atoms) were generated, resulting in data sets of 105 lo-
cal atomic environments rooted at silicon atoms. The
Si–O bonds are defined as pairs of Si and O atoms closer
than 2.2 Å, the first minimum of the radial distribution
function of the silica glasses. This produces environments
that are relatively stable to perturbations of the cutoff; if
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H1 Barcode P. Rings Shell Count

Q 3 × (0, 6), 3 × (2, 6) 6 12-rings (1, 4, 4, 12, 12, 36, 30)

C 4 × (0, 6), 5 × (2, 6), 12 12-rings (1, 4, 4, 12, 12, 36, 24)

4 × (4, 6)

T 3 × (0, 6), 7 × (2, 6), 12 12-rings (1, 4, 4, 12, 12, 36, 25)

1 × (4, 6)

TABLE II: The H1 barcode, primitive ring profile, and shell
count for three crystalline forms of silica: α-quartz (Q), cristo-
balite (C), and tridymite (T).

the cutoff is changed by ±0.2 Å, 98.3% of the radius 6 en-
vironments in glass quenched at a rate of 5×1011 K/s are
unchanged. The corresponding percentages for glasses
quenched at rates of 5 × 1012 K/s and 5 × 1013 K/s are
97.0% and 95.0%, respectively. As such, a different choice
of cutoff within that range would not significantly affect
the analysis below.

Coordination defects are present at low rates in all the
quenched silica glasses. As expected [9], they occur most
often at the highest cooling rate for which 1.47% of sil-
icons are 5-valent, 0.96% of oxygens are 3-valent, and
0.22% of oxygens are 1-valent. Although rare from the
standpoint of individual atoms, the percentage of radius
6 environments that contain at least one coordination
defect is 24.2%, 41.5%, and 64.1% for glasses cooled at
5× 1011 K/s, 5× 1012 K/s and 5× 1013 K/s, respectively.
Some of the descriptors considered here are more sen-
sitive to these coordination defects than others. To il-
lustrate this and to give a different perspective on the
relative merits of the descriptors, our methodology is ap-
plied both to the full samples of 105 atomic environments
at each quench rate and to the sub-samples of perfectly
coordinated environments.

Crystalline forms of silica are considered in Sec. III A
before proceeding to the glassy structures. The Shannon
entropies of the empirical probability distributions are
computed in Sec. III B, indicating the extent to which the
various descriptors provide informative descriptions of
the local structure as a function of radius. Based on this
preliminary analysis and on that of the crystalline struc-
tures, further analysis is restricted to the H1 barcode,
primitive ring profile, and coordination profile at radius
6, and graph isomorphism at radius 5. Section III C uses
the mutual information to compare the information pro-
vided by the different descriptors. Finally, we compare
the local structure of silica glasses produced by different
cooling rates in Sec. III D.

A. Crystal Structures

Table II shows the H1 barcode, primitive ring pro-
file, and coordination profiles of local atomic environ-
ments rooted at the silicon atoms of three different crys-
talline forms of silica, namely, α-quartz, cristobalite, and
tridymite (the absence of coordination defects makes the

shell count equivalent to the coordination profile here).
None of the descriptors is able to differentiate between
the crystal structures for radii r ≤ 5. The H1 barcodes
and coordination profiles of cristobalite and tridymite be-
gin to differ at radius r = 6, but the primitive ring profile
is unable to distinguish these structures at any radius.
This indicates that any descriptor of local atomic envi-
ronments in silica should be computed at radius 6 or
above to be substantially informative.

B. Shannon Entropy

An ideally informative descriptor of local atomic en-
vironments would retain enough information to differen-
tiate environments, but not so much as to regard each
one as unique. Whether a descriptor is too informative
can be evaluated by computing the Shannon entropy [21]
of the corresponding empirical probability distribution.
Recall from Section II that, given a bond network with
atoms V , a descriptor X allows the definition of an em-
pirical probability distribution PX on equivalence classes
x. The Shannon entropy associated with the descriptor
X is defined as

H(X) = −
∑
x

PX(x) log[PX(x)].

H(X) is minimized by a descriptor that places all atoms
in a single equivalence class, resulting in an entropy of 0.
On the other hand, H(X) is maximized if each atom is
in an equivalence class unto itself, resulting in an entropy
of

H(X) = −
∑
v∈V

1

|V |
log(|V |−1) = log(|V |).

Normalizing H(X) by 1/ log(|V |) gives scaled entropies
between 0 and 1, with the property that X is an uninfor-
mative descriptor of local structure if the scaled entropy
is close to either bound (though for different reasons).

Table III gives the scaled Shannon entropies for the
sample of 105 local atomic environments in silica glasses
cooled at a rate of 5×1011 K/s. In addition to graph iso-
morphism, the H1 barcode, the primitive ring profile, and
the coordination profile, the primitive cluster of Hobbs
et al. [3] is also calculated (truncated by the radius). Re-
call from the introduction that the primitive cluster is
the union of the primitive rings containing the root ver-
tex, and that equivalence classes of primitive clusters are
defined using graph isomorphism.

The scaled entropies for graph isomorphism and prim-
itive clusters are already close to 1.0 for r = 6, indicat-
ing that they do not provide an informative classification
at this radius because the empirical probability distribu-
tion cannot be constructed. This is a consequence of the
fact that the number of distinct equivalence classes ob-
served approaches the total number of environments in
the sample (9.8×104 different graph isomorphism classes
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r Graph Iso. P. Cluster H1 P. Rings Coordination

4 0.136 0.101 0.099 0.094 0.142

5 0.445 0.358 0.270 0.226 0.299

6 0.983 0.861 0.471 0.381 0.473

7 1.000 0.999 0.704 0.550 0.678

8 1.000 − 0.902 0.706 0.846

9 1.000 − 0.986 0.821 0.965

TABLE III: Scaled Shannon entropies of the empirical proba-
bility distributions for various descriptors for 4 ≤ r ≤ 9. Data
is computed for a sample of 105 local atomic environments in
silica glasses cooled at 5 × 1011 K/s.

and 8.6× 104 different primitive cluster classes). On the
other hand, the primitive ring profile, H1 barcode, and
coordination profile have scaled entropies ranging from
0.381 to 0.473 at r = 6, and provide informative clas-
sifications at this radius. The primitive ring profile can
even be used for larger radii since the number of possi-
ble equivalence classes grows more slowly as a function
of radius for this descriptor. Since the Shannon entropy
is relatively insensitive to the tail of the probability dis-
tribution (by design), analogous data for the sub-sample
of perfectly coordinated environments is nearly identical.

C. Mutual Information

A natural question to ask is whether different descrip-
tors encode similar information about local atomic en-
vironments. This is measured by means of the uncer-
tainty coefficient U(X|Y ) between the empirical proba-
bility distributions induced by descriptors X and Y ; the
uncertainty coefficient effectively indicates the amount of
information about PX that can be deduced given prior
knowledge of PY [22]. The precise definition involves the
empirical joint distribution

PX,Y (x, y) = (#v ∈ V : X(v) = x, Y (v) = y)/ |V | .

The mutual information [21] of PX and PY can then be
defined as

I(X;Y ) =
∑
x,y

PX,Y (x, y) log

[
PX,Y (x, y)

PX(x)PY (y)

]
.

Finally, the uncertainty coefficient between PX and PY

is the ratio of the mutual information to the Shannon
entropy of PX , or

U(X|Y ) = I(X;Y )/H(X).

U(X|Y ) = 0 if and only if PX and PY are independent
(i.e., none of the information encoded by X is given by
Y ). Conversely, U(X|Y ) = 1 if and only if Y (v1) = Y (v2)
implies that X(v1) = X(v2) for all v1, v2 ∈ V (i.e., all of
the information encoded by X is given by Y ). Observe
that this definition is inherently asymmetric. Table IV

H1, 6 P. Rings, 6 Coord., 6 Graph Iso., 5

H1, 6 1.00 0.52 0.83 0.62

P. Rings, 6 0.65 1.00 0.62 0.63

Coordination, 6 0.83 0.50 1.00 0.61

Graph Iso., 5 0.66 0.54 0.65 1.00

TABLE IV: The uncertainty coefficients of three classifiers at
r = 6 and graph isomorphism at r = 5 applied to a data set
of 105 local atomic environments in silica glasses cooled at
5 × 1011 K/s.

H1, 6 P. Rings, 6 Coord., 6 Graph Iso., 5

H1, 6 1.00 0.53 0.82 0.58

P. Rings, 6 0.63 1.00 0.59 0.60

Coordination, 6 1.00 0.60 1.00 0.60

Graph Iso., 5 0.68 0.59 0.57 1.00

TABLE V: The same data as in Table IV but for the sub-
sample of perfectly coordinated environments.

gives the uncertainty coefficients between the H1 barcode
(B6), primitive ring profile (P6), and coordination profile
(V6) at radius r = 6, and graph isomorphism at radius
r = 5, for the data set of 105 local atomic environments in
silica glasses cooled at 5× 1011 K/s. The uncertainty co-
efficients U(B6|V6) = 0.83 and U(V6|B6) = 0.83 are quite
high, and substantially higher than U(B6|P6) = 0.52 and
U(V6|P6) = 0.50. This can be explained by observing
that the H1 barcode and coordination profile consider all
atoms in the local atomic environment of radius 6 rather
than just those in the local cluster. What is perhaps
surprising is that U(P6|B6) = 0.65 is not higher. This
indicates that the number and length of primitive rings
at the root encodes different information than the num-
ber and length of algebraically independent rings in the
local atomic environment. That the values in the fourth
column are all around 0.6 indicates that a large amount
of information is gained by considering atoms in the 6th

neighbor shell. If the H1 barcode and primitive ring pro-
file were instead constructed for r = 5 they would be fully
explained by graph isomorphism at that radius, resulting
in uncertainty coefficients of 1.00.

Table V shows the uncertainty coefficient computa-
tions for the sub-sample of 75, 849 perfectly coordi-
nated local atomic environments in glasses cooled at 5×
1011 K/s. The most dramatic change is that U(V6|B6) =
1.00, indicating that the shell count provides a strictly
coarser classification (or strictly less information) than
the H1 barcode for perfectly coordinated environments.
In fact, the shell count provides the same information as
the endpoints of the H1 barcode intervals in this case, as
shown in Appendix B.
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(a) (b) (c)

FIG. 6: Empirical probability distributions of equivalence classes in silica glasses produced at different cooling rates. The
equivalence classes are ranked by frequency for the glass with the slowest cooling rate, with the frequency of the class on the
y-axis. The descriptors corresponding to the first ten equivalence classes in each figure are given in Appendix D (the first
column of each of the three tables). The dashed lines indicate the standard error of the frequency estimates.

D. Different Cooling Rates

The initial analysis of silica glasses prepared at differ-
ent cooling rates involves comparing the shapes of the
empirical probability distributions for three different de-
scriptors in Fig. 6. The rank of an equivalence class in the
glass produced with the slowest quench rate is given on
the x-axis, and the frequency for each of the three cool-
ing rates on the y-axis. The blue curve corresponding to
the slowest quench rate 5×1011 K/s is monotonically de-
creasing, but the green and red curves corresponding to
quench rates of 5×1012 K/s and 5×1013 K/s are jagged;
this is because the ranking of the most common equiv-
alence classes is different in the three cases. While the
rank may change, common equivalence classes for one
cooling rate tend to be common in the others as well.

In all three figures, the blue curve is highest followed
by the green and then the red. That is, the empirical
probability distributions for glasses cooled at faster rates
are broader, the most common classes are relatively less
common, and more probability mass is in the tail of the
distribution. In other words, glasses cooled at faster rates
exhibit more disorder in their local structure. The corre-
sponding plots for the perfectly coordinated sub-samples
(not shown) are similar for the H1 barcode and primitive
ring profile, with slightly higher frequencies and slightly
less separation between the cooling rates. The coordina-
tion profile provides substantially less separation for the
sub-sample; this change is quantified below.

1. KL Divergence

The ability of the descriptors to differentiate glasses
produced at different quench rates is quantified by the
symmetrized Kullback–Leibler (KL) divergence [12] be-
tween the corresponding empirical probability distribu-
tions. The KL divergence DKL(PX‖QX) effectively mea-
sures the relative entropy of the probability distribution

PX with respect to QX , and is perhaps the most natural
extension of the Shannon entropy to this context. While
the KL divergence is asymmetric, the symmetrized ver-
sion conforms more to our intuitive notions of a distance
(it is a semimetric on probability densities, but a pseu-
dosemimetric on bond networks).

Given a descriptor X, two bond networks V1 and V2
give the two empirical probability distributions PX and
QX over a single set of equivalence classes x. The KL
divergence between PX and QX is defined as

DKL(PX‖QX) =
∑
x

PX(x) log

[
PX(x)

QX(x)

]
.

This is symmetrized by adding the relative entropy of PX

with respect to QX to that of QX with respect to PX , or

DKL(PX , QX) = DKL(PX‖QX) +DKL(QX‖PX).

Practical calculation of DKL(PX , QX) requires the sub-
stitution q log(q/p) = 0 if either q or p is zero, and is
justified under two reasonable assumptions: (1) the fre-
quency of an equivalence class in the underlying proba-
bility distributions is non-zero in one preparation if and
only if it is non-zero in the other, and (2) if an equivalence
class is so rare in one preparation so as to not appear in
the sample, it is also rare in the other.

Table VI shows the symmetrized KL divergences be-
tween the empirical probability densities, effectively mea-
suring the separation between the curves in Fig. 6. Lower
values indicate that larger sample sizes are required to re-
liably differentiate glasses produced at different cooling
rates. The coordination profile provides the best differ-
entiation between different cooling rates, followed by the
H1 barcode and finally the primitive ring profile. The
coordination profile’s advantage is, however, attributed
to its sensitivity to coordination defects; consider Ta-
ble VII, which shows the corresponding data for the sub-
samples of perfectly coordinated environments. In this
case, the H1 barcode provides the best discrimination
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Comparison H1 barcode P. Rings Coord.

5 × 1011, 5 × 1012 0.065 0.026 0.162

5 × 1011, 5 × 1013 0.288 0.146 0.655

5 × 1012, 5 × 1013 0.149 0.066 0.279

TABLE VI: The symmetrized Kullback–Leibler divergence for
three different descriptors with r = 6 between empirical prob-
ability distributions at different cooling rates.

Comparison H1 barcode P. Rings Coord.

5 × 1011, 5 × 1012 0.044 0.019 0.021

5 × 1011, 5 × 1013 0.198 0.121 0.140

5 × 1012, 5 × 1013 0.112 0.062 0.069

TABLE VII: The same data as in Table VII, but for the sub-
samples of perfectly coordinated environments (for which the
coordination profile gives equivalent information to the shell
count).

between quench rates, followed by the coordination pro-
file and finally the primitive ring profile.

Symmetrized KL divergences were also computed be-
tween the empirical probability densities for the full sam-
ple of 105 local atomic environments in glasses cooled at
5 × 1013 K/s and the sub-sample of 3.6 × 104 perfectly
coordinated environments. The divergence for the co-
ordination profile is very large (0.657), and much larger
than those given by the H1 barcode (0.086) or the primi-
tive ring profile (0.050). That is, the coordination profile
is quite sensitive to coordination defects, but the other
two descriptors are not. Divergences for glasses cooled
at slower rates were smaller since perfectly coordinated
environments made up a larger proportion of the total
sample.

2. Ranked Examples

We consider examples of the most common equivalence
classes, and the ones that are relatively over-represented
in glasses produced with a faster cooling rate. At radius
5, Figure 7 shows the six most common graph isomor-
phism classes in glasses produced at a cooling rate of
5 × 1011 K/s, with the corresponding barcode, primitive
ring profile, and shell count (there were no coordination
errors in these examples). f1 and r1 are the frequency
and rank of the isomorphism class at a cooling rate of
5× 1011 K/s, and f2 and r2 are the corresponding quan-
tities for a cooling rate of 5 × 1013 K/s. The ranking
is very similar for both conditions, reinforcing that the
set of most frequent classes is relatively insensitive to
cooling rate. As expected, environments with 10-rings
are well-represented, but (c) and (d) have 8-rings. More
interestingly, several of the most common environments
include adjacent rings, i.e., an Si–O–Si bond which is
shared by 2 or 3 10-rings as in (b) and (d), or by a 10-
and an 8-ring as in (c). The adjacency of these rings

cannot be detected by ring statistics alone.
Fig. 8 shows the six graph isomorphism types that

maximize f2 − f1, i.e., the types most over-represented
in glasses produced with the fastest cooling rate. The
data reveals that glasses produced with a faster cooling
rate have relatively more short rings with 6 or 8 atoms,
and configurations with adjacent short rings are espe-
cially favored. This is consistent with the fact that, at
lower quench rates, the number of 12-rings (with 6 Si
atoms) increases while that of other rings decreases [9].

Tables VIII-X in Appendix D show similar data for
the H1 barcode, primitive ring profile, and coordination
profile at radius r = 6. For each descriptor, the top ten
classes ranked by f1, f1−f2, and f2−f1 are listed, using
the same notation as in the previous paragraph. The de-
scriptors that maximize f2 − f1 correspond to the peaks
in Fig. 6 where the red curve is above the blue one. Ex-
amining Table VIII or IX reveals that local environments
in glasses produced at 5× 1011 K/s have more rings with
10 or 12 atoms (5 or 6 Si atoms), while a cooling rate of
5×1013 K/s yields more 6- and 8-rings (3 or 4 Si atoms).
For example, the early peak in Fig. 6(b) corresponds to a
primitive ring profile with 1 primitive 8-ring, 2 primitive
10-rings and 2 primitive 12-rings. Moreover, glasses pro-
duced by faster cooling rates exhibit more coordination
errors. In Table X, all of the top ten coordination pro-
files ranked by f2 − f1 include a silicon in neighbor shell
6 that is adjacent to 5 oxygen atoms, and one contains
an oxygen adjacent to 3 silicon atoms.

IV. CONCLUSION

The connectivity of the bonds in a network solid is be-
lieved to be involved in a variety of physical quantities,
e.g., the viscosity and configurational entropy of cova-
lent glass forming materials. The authors suggest that
part of the reason that the dependence of the configu-
rational entropy on composition cannot yet be reliably
predicted is the lack of a standard approach to quantify
the change to the network connectivity with a change
in atomic valence. Defining a probability distribution of
local atomic environments that is (by hypothesis) charac-
teristic of identically-prepared bond networks establishes
a base that can be used to address this issue, and has the
further advantage of unifying the treatment of crystalline
and amorphous materials.

A closely-related question, and one that is the main
subject of this article, is precisely which type of informa-
tion should be used to classify local atomic environments.
Strictly ascribing to the principle that more information
is always preferable leads to the situation that all geomet-
ric and topological information about the local atomic
environments is retained, rendering the approximation
of the underlying probability distribution by any finite
sampling untenable. Retaining only a subset of the infor-
mation is therefore a practical necessity, and depending
on precisely what information is retained could actually
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(a) (b) (c)

(d) (e) (f)

FIG. 7: The six most frequent graph isomorphism classes at radius 5 in glasses cooled at a rate of 5 × 1011 K/s. Graph
embeddings where generated using a force-directed layout [23].

(a) (b) (c)

(d) (e) (f)

FIG. 8: The six graph isomorphism classes at radius 5 that maximize f2 − f1.

serve to clarify the relationship of the material’s structure
and properties. For example, the vibrational entropy of
a network solid is certainly more closely related to the
number of covalent bonds and the constraints they im-
pose than to the precise geometric arrangement of the
atoms.

Given this background, four descriptors of local atomic
environments were described and applied to silica net-
works. An appropriately informative descriptor should
not only be able to distinguish the different crystalline
forms of silica, but should also be able to differentiate
silica glasses produced at different cooling rates on the
basis of variations in the bond network connectivity. Of
the descriptors considered here, the coordination profile
and H1 barcode at radius 6 performed best at these tasks,
and were also faster to compute than the primitive ring
profile at the same radius. The efficacy of the coordi-
nation profile could be attributed to its sensitivity to

coordination defects though; when the subset of local
atomic environments without these defects was consid-
ered, the H1 barcode outperformed all the other descrip-
tors. Moreover, the H1 barcode and the primitive ring
profile could be more readily interpreted than the coor-
dination profile in terms of ring statistics. Overall, the
H1 barcode appears to be an efficient, informative, and
interpretable descriptor for local atomic environments in
silica, and could be invaluable to further advances in our
understanding of the structure of amorphous materials.
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APPENDIX A: COMPUTATION OF THE H1

BARCODE

The H1 barcode is computed using Möbius inver-
sion [24], which is a generalized version of the inclusion–
exclusion principal for partially ordered sets (Ref. [25]
gives an introduction).

Let S be the set of all sub-intervals (a, b) of (0, r), and
let (a, b) ≤ (c, d) if (a, b) ⊆ (c, d). The Möbius function
of S is defined recursively for all (a, b) ≤ (c, d) by

µ[(a, b) , (a, b)] = 1

µ[(a, b) , (c, d)] = −
∑

(a,b)≤(e,f)≤(c,d)

µ[(a, b) , (e, f)].

It is a mathematical theorem [24] that if F is a function
of the form

F [(c, d)] =
∑

(a,b)≤(c,d)

G[(a, b)]

then G can be recovered by the formula

G[(c, d)] =
∑

(a,b)≤(c,d)

F [(a, b)]µ[(a, b) , (c, d)].

In particular, if F [(a, b)] is given as in Eq. 2, then G[(a, b)]
is the number of intervals of the form (a, b) in the H1 bar-
code. Practically, F [(a, b)] is computed using the Euler
characteristic as in Eq. 1 before applying the previous
formula to compute the number of intervals.

APPENDIX B: THE H1 BARCODE OF
PERFECTLY COORDINATED ENVIRONMENTS

We show that the information in the shell count is
equivalent to that of the endpoints of the H1 barcode in-
tervals for perfectly coordinated environments, where a
perfectly coordinated environment is a bipartite rooted
graph so vertices in even shells have degree d0 and ver-
tices in odd shells have degree d1. For the perfectly coor-
dinated silica environments considered in the text, d0 = 4
and d1 = 2.

Proposition 1. Let G be a perfectly coordinated local
atomic environment of radius r. The endpoints of the H1

barcode intervals of G can be computed in terms of the
shell count, and visa versa.

Proof. First, note that the number of H1 barcode in-
tervals whose endpoints are ≤ r0 equals (by definition)
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F (0, r0), the rank of the first homology group of the local
atomic environment of radius r0. As such, knowledge of
the endpoints is equivalent to knowledge of F (0, r0) for
all r0 ≤ r. Assume that we know F (0, r0) for all r0 ≤ r
and suppose by induction that we have computed the
shell count at radius r0 (#atoms(r0)) as well as the num-
ber of bonds between the atoms in shells r0 and r0 − 1
(#bonds(r0, r0 − 1)) for all r0 < r. The environment is
bipartite, so atoms in shell r − 1 can share bonds with
atoms in shells r or r− 2 but not atoms in shell r− 1. It
follows that

#bonds(r, r−1) = d#atoms(r−1)−#bonds(r−1, r−2)

where d = d0 if r − 1 is even and d = d1 otherwise.

#bonds(G) =
∑
r0≤r

#bonds(r0, r0 − 1)

and we can use Eqn. 1 to find

#atoms(G) = 1 + #bonds(G)− F (0, r0) .

The shell count at radius r is then

#atoms(r) = #atoms(G)−
∑
r0<r

#atoms(r0) .

A similar argument shows that we can compute F (0, r0)
for all r0 ≤ r given knowledge of the shell counts.

APPENDIX C: MOLECULAR DYNAMICS
METHODOLOGY

Molecular dynamics simulations of silica glasses were
performed using the classical two-body potential devel-
oped by van Beest, Kramer and van Santen (BKS) [26],
modified by Carreé et al. [27] to replace the long-range
Coulombic interaction by a Wolf truncation. The pa-
rameters of the potential are given in Ref. [28]. The
glasses considered here contained 3, 000 atoms (1, 000 Si
and 2, 000 O atoms) in cubic simulation cells with pe-
riodic boundary conditions and a density of 2.2 g/cm3.
They were produced from melts equilibrated at 5200 K
and quenched at constant volume to 10 K at rates be-
tween 5 × 1011 K/s and 5 × 1013 K/s. The simulations
used a timestep of 1 fs and an Andersen thermostat [29]
which re-assigned atomic velocities with a probability of
0.001 per timestep. The quenches were followed by en-
ergy minimizations to obtain inherent structures before
further analyses.
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APPENDIX D: RANKED EXAMPLES

Sorted by f1 f1 − f2 f2 − f1

1 2 × (0, 5), (0, 6), 4 × (2, 6) 2 × (0, 5), (0, 6), 4 × (2, 6) (0, 4), (0, 5), (0, 6), (2, 5), 4 × (2, 6)

f1 = 0.033, f2 = 0.017 f1 = 0.033, f2 = 0.017 f1 = 0.004, f2 = 0.006

r1 = 1, r2 = 2 r1 = 1, r2 = 2 r1 = 58, r2 = 31

2 2 × (0, 5), (0, 6), 3 × (2, 6) 2 × (0, 5), (0, 6), 3 × (2, 6) 2 × (0, 4), (0, 5), (2, 5), 2 × (2, 6)

f1 = 0.031, f2 = 0.015 f1 = 0.031, f2 = 0.015 f1 = 0.003, f2 = 0.005

r1 = 2, r2 = 3 r1 = 2, r2 = 3 r1 = 66, r2 = 43

3 (0, 4), (0, 5), (0, 6), 3 × (2, 6) (0, 5), 2 × (0, 6), 4 × (2, 6) 2 × (0, 4), (0, 5), (2, 5), 3 × (2, 6)

f1 = 0.027, f2 = 0.018 f1 = 0.021, f2 = 0.010 f1 = 0.002, f2 = 0.003

r1 = 3, r2 = 1 r1 = 5, r2 = 15 r1 = 103, r2 = 61

4 2 × (0, 5), (0, 6), 5 × (2, 6) (0, 5), 2 × (0, 6), 3 × (2, 6) (0, 4), (0, 5), (0, 6), 4 × (2, 6), (4, 6)

f1 = 0.022, f2 = 0.012 f1 = 0.019, f2 = 0.009 f1 = 0.003, f2 = 0.004

r1 = 4, r2 = 7 r1 = 8, r2 = 17 r1 = 78, r2 = 50

5 (0, 5), 2 × (0, 6), 4 × (2, 6) 2 × (0, 5), (0, 6), 5 × (2, 6) (0, 4), 2 × (0, 5), 2 × (2, 5), 3 × (2, 6)

f1 = 0.021, f2 = 0.010 f1 = 0.022, f2 = 0.012 f1 = 0.002, f2 = 0.003

r1 = 5, r2 = 15 r1 = 4, r2 = 7 r1 = 118, r2 = 76

6 (0, 4), (0, 5), (0, 6), 2 × (2, 6) 2 × (0, 5), (0, 6), 2 × (2, 6) (0, 4), 2 × (0, 5), (2, 5), 3 × (2, 6), (4, 6)

f1 = 0.020, f2 = 0.012 f1 = 0.017, f2 = 0.008 f1 = 0.001, f2 = 0.002

r1 = 6, r2 = 6 r1 = 11, r2 = 22 r1 = 151, r2 = 93

7 (0, 4), (0, 5), (0, 6), 4 × (2, 6) (0, 4), (0, 5), (0, 6), 3 × (2, 6) (0, 4), 2 × (0, 5), (2, 5), 4 × (2, 6), (4, 6)

f1 = 0.020, f2 = 0.014 f1 = 0.027, f2 = 0.018 f1 = 0.001, f2 = 0.002

r1 = 7, r2 = 4 r1 = 3, r2 = 1 r1 = 224, r2 = 117

8 (0, 5), 2 × (0, 6), 3 × (2, 6) 3 × (0, 5), 4 × (2, 6) (0, 4), 2 × (0, 5), (2, 5), 2 × (2, 6), (4, 6)

f1 = 0.019, f2 = 0.009 f1 = 0.019, f2 = 0.010 f1 = 0.001, f2 = 0.002

r1 = 8, r2 = 17 r1 = 9, r2 = 12 r1 = 145, r2 = 94

9 3 × (0, 5), 4 × (2, 6) 3 × (0, 5), 3 × (2, 6) (0, 3), (0, 5), (0, 6), 3 × (2, 6)

f1 = 0.019, f2 = 0.010 f1 = 0.017, f2 = 0.008 f1 = 0.002, f2 = 0.004

r1 = 9, r2 = 12 r1 = 12, r2 = 21 r1 = 83, r2 = 56

10 (0, 4), 2 × (0, 5), 3 × (2, 6) (0, 4), (0, 5), (0, 6), 2 × (2, 6) 2 × (0, 4), (0, 5), 2 × (2, 5), 2 × (2, 6)

f1 = 0.018, f2 = 0.013 f1 = 0.020, f2 = 0.012 f1 = 0.001, f2 = 0.002

r1 = 10, r2 = 5 r1 = 6, r2 = 6 r1 = 237, r2 = 143

TABLE VIII: The H1 barcodes at radius 6 that maximize f1, f1 − f2, and f2 − f1. f1 and r1 are the frequency and rank of
the isomorphism class at a cooling rate of 5 × 1011 K/s, and f2 and r2 are the corresponding quantities for a cooling rate of
5 × 1013 K/s. See Section III D 2 for details and analysis.
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Sorted by f1 f1 − f2 f2 − f1

1 2 10-rings, 3 12-rings 2 10-rings, 3 12-rings 1 6-ring, 1 10-ring, 2 12-rings

f1 = 0.049, f2 = 0.035 f1 = 0.049, f2 = 0.035 f1 = 0.004, f2 = 0.008

r1 = 1, r2 = 1 r1 = 1, r2 = 1 r1 = 61, r2 = 33

2 2 10-rings, 4 12-rings 2 10-rings, 4 12-rings 2 8-rings, 1 10-ring, 1 12-ring

f1 = 0.042, f2 = 0.029 f1 = 0.042, f2 = 0.029 f1 = 0.005, f2 = 0.008

r1 = 2, r2 = 3 r1 = 2, r2 = 3 r1 = 46, r2 = 38

3 3 10-rings, 2 12-rings 3 10-rings, 3 12-rings 1 6-ring, 1 10-ring, 1 12-ring

f1 = 0.039, f2 = 0.030 f1 = 0.037, f2 = 0.027 f1 = 0.003, f2 = 0.006

r1 = 3, r2 = 2 r1 = 4, r2 = 5 r1 = 67, r2 = 48

4 3 10-rings, 3 12-rings 2 10-rings, 5 12-rings 1 6-ring, 1 10-ring, 3 12-rings

f1 = 0.037, f2 = 0.027 f1 = 0.028, f2 = 0.018 f1 = 0.003, f2 = 0.005

r1 = 4, r2 = 5 r1 = 8, r2 = 14 r1 = 68, r2 = 53

5 2 10-rings, 2 12-rings 1 10-ring, 5 12-rings 2 8-rings, 1 10-ring, 2 12-rings

f1 = 0.033, f2 = 0.027 f1 = 0.026, f2 = 0.017 f1 = 0.006, f2 = 0.008

r1 = 5, r2 = 6 r1 = 10, r2 = 16 r1 = 44, r2 = 35

6 1 8-ring, 1 10-ring, 3 12-rings 3 10-rings, 2 12-rings 1 6-ring, 2 10-rings, 2 12-rings

f1 = 0.028, f2 = 0.027 f1 = 0.039, f2 = 0.030 f1 = 0.002, f2 = 0.005

r1 = 6, r2 = 7 r1 = 3, r2 = 2 r1 = 75, r2 = 59

7 1 8-ring, 2 10-rings, 2 12-rings 1 10-ring, 6 12-rings 1 6-ring, 2 10-rings, 1 12-ring

f1 = 0.028, f2 = 0.028 f1 = 0.018, f2 = 0.011 f1 = 0.003, f2 = 0.005

r1 = 7, r2 = 4 r1 = 19, r2 = 26 r1 = 69, r2 = 55

8 2 10-rings, 5 12-rings 1 10-ring, 4 12-rings 2 8-rings, 2 10-rings, 2 12-rings

f1 = 0.028, f2 = 0.018 f1 = 0.027, f2 = 0.020 f1 = 0.003, f2 = 0.005

r1 = 8, r2 = 14 r1 = 9, r2 = 12 r1 = 66, r2 = 54

9 1 10-ring, 4 12-rings 2 10-rings, 2 12-rings 1 6-ring, 1 8-ring, 1 10-ring, 1 12-ring

f1 = 0.027, f2 = 0.020 f1 = 0.033, f2 = 0.027 f1 = 0.001, f2 = 0.003

r1 = 9, r2 = 12 r1 = 5, r2 = 6 r1 = 97, r2 = 73

10 1 10-ring, 5 12-rings 3 10-rings, 4 12-rings 1 6-ring, 1 8-ring, 1 10-ring, 2 12-rings

f1 = 0.026, f2 = 0.017 f1 = 0.022, f2 = 0.017 f1 = 0.001, f2 = 0.003

r1 = 10, r2 = 16 r1 = 15, r2 = 15 r1 = 117, r2 = 93

TABLE IX: The primitive ring profiles at radius 6 that maximize f1, f1 − f2, and f2 − f1.
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Sorted by f1 f1 − f2 f2 − f1

1 (1, 4, 4, 12, 12, 34, 27) (1, 4, 4, 12, 12, 34, 27) (1, 4, 4, 12, 11, 30, 24∗)

f1 = 0.038, f2 = 0.014 f1 = 0.038, f2 = 0.014 f1 = 0.002, f2 = 0.003

r1 = 1, r2 = 1 r1 = 1, r2 = 1 r1 = 91, r2 = 38

2 (1, 4, 4, 12, 12, 34, 28) (1, 4, 4, 12, 12, 34, 28) (1, 4, 4, 12, 11, 30, 25∗)

f1 = 0.034, f2 = 0.012 f1 = 0.034, f2 = 0.012 f1 = 0.002, f2 = 0.004

r1 = 2, r2 = 5 r1 = 2, r2 = 5 r1 = 84, r2 = 34

3 (1, 4, 4, 12, 12, 33, 26) (1, 4, 4, 12, 12, 33, 26) (1, 4, 4, 12, 11, 31, 26∗)

f1 = 0.032, f2 = 0.012 f1 = 0.032, f2 = 0.012 f1 = 0.002, f2 = 0.004

r1 = 3, r2 = 3 r1 = 3, r2 = 3 r1 = 82, r2 = 37

4 (1, 4, 4, 12, 11, 31, 26) (1, 4, 4, 12, 12, 33, 27) (1, 4, 4, 12, 11, 30, 26∗)

f1 = 0.028, f2 = 0.012 f1 = 0.027, f2 = 0.010 f1 = 0.001, f2 = 0.003

r1 = 4, r2 = 4 r1 = 6, r2 = 10 r1 = 101, r2 = 47

5 (1, 4, 4, 12, 12, 34, 26) (1, 4, 4, 12, 12, 34, 26) (1, 4, 4, 12, 12, 33, 25∗)

f1 = 0.027, f2 = 0.010 f1 = 0.027, f2 = 0.010 f1 = 0.001, f2 = 0.003

r1 = 5, r2 = 7 r1 = 5, r2 = 7 r1 = 96, r2 = 45

6 (1, 4, 4, 12, 12, 33, 27) (1, 4, 4, 12, 11, 31, 26) (1, 4, 4, 12, 12, 34, 27∗)

f1 = 0.027, f2 = 0.010 f1 = 0.028, f2 = 0.012 f1 = 0.003, f2 = 0.004

r1 = 6, r2 = 10 r1 = 4, r2 = 4 r1 = 56, r2 = 27

7 (1, 4, 4, 12, 11, 30, 25) (1, 4, 4, 12, 12, 35, 28) (1, 4, 4, 12, 12, 33, 26∗)

f1 = 0.026, f2 = 0.013 f1 = 0.022, f2 = 0.007 f1 = 0.003, f2 = 0.004

r1 = 7, r2 = 2 r1 = 9, r2 = 13 r1 = 66, r2 = 32

8 (1, 4, 4, 12, 12, 33, 25) (1, 4, 4, 12, 12, 35, 29) (1, 4, 4, 12, 11, 29, 24∗)

f1 = 0.024, f2 = 0.010 f1 = 0.020, f2 = 0.006 f1 = 0.001, f2 = 0.002

r1 = 8, r2 = 8 r1 = 13, r2 = 19 r1 = 167, r2 = 73

9 (1, 4, 4, 12, 12, 35, 28) (1, 4, 4, 12, 12, 33, 25) (1, 4, 4, 12, 12, 34, 28∗)

f1 = 0.022, f2 = 0.007 f1 = 0.024, f2 = 0.010 f1 = 0.003, f2 = 0.004

r1 = 9, r2 = 13 r1 = 8, r2 = 8 r1 = 64, r2 = 31

10 (1, 4, 4, 12, 11, 31, 27) (1, 4, 4, 12, 12, 34, 29) (1, 4, 4, 12, 11, 31, 25∗)

f1 = 0.021, f2 = 0.009 f1 = 0.019, f2 = 0.006 f1 = 0.002, f2 = 0.003

r1 = 10, r2 = 11 r1 = 14, r2 = 18 r1 = 92, r2 = 49

TABLE X: The coordination profiles at radius 6 that maximize f1, f1 − f2, and f2 − f1. The shell count is shown, and ∗
indicates the presence of one atom of valence 5.


