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Although random cell complexes occur throughout the physical sciences, there does not appear
to be a standard way to quantify their statistical similarities and differences. The various proposals
in the literature are usually motivated by the analysis of particular physical systems and do not
necessarily apply to general situations. The central concepts in this paper—the swatch and the
cloth—provide a description of the local topology of a cell complex that is general (any physical
system that can be represented as a cell complex is admissible) and complete (any statistical question
about the local topology can be answered from the cloth). Furthermore, this approach allows a
distance to be defined that measures the similarity of the local topology of two cell complexes.
The distance is used to identify a steady state of a model grain boundary network, to quantify
the approach to this steady state, and to show that the steady state is independent of the initial
conditions. The same distance is then employed to show that the long-term properties in simulations
of a specific model of a dislocation network does not depend on the implementation of dislocation
intersections.

PACS numbers: 02.40.Pc, 61.72.Mm

I. INTRODUCTION

Random cell complexes (defined below) abound at all
length scales in the physical sciences. Specifically with
regard to materials science, examples include the con-
tact graph of atoms in a metallic glass [1] and the co-
valent bonds in an oxide glass [2] at the atomic scale,
dense dislocation networks [3] and the bonding of cross-
linked polymers [4] at the nanometer scale, and the grain
boundary network in a polycrystal [5] and the cells in a
metallic foam [6] at the micrometer scale. One feature of
all of these systems is that they defy characterization by
the usual approach used in crystallography, that is, by
the identification of a periodic unit and the classification
of defects as deviations from periodicity. Nevertheless,
some means of characterization is clearly necessary for
these systems to be classified and eventually engineered.

Using metallic glass as a specific example, the arrange-
ment of atoms appears to be homogenous and isotropic
on average, and from this standpoint is quite simple. Yet,
some recent experimental results [7] indicate that differ-
ences in the preparation of samples with the same com-
position can result in measurably different mechanical
properties. This suggests the presence of small variations
in the atomic arrangements [8], though at present the na-
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ture of these variations and the means to measure them
remain unclear. This paper contends that the situation is
similar to that of the characterization of crystalline ma-
terials before the advent of crystallography; the analysis
of these systems would be vastly simplified by introduc-
ing language and concepts detailed enough to provide an
accurate description, and yet abstract enough to apply
to many different situations.

Numerous attempts have been made to introduce such
a language already. The granocentric model [9, 10] nu-
merically predicts the distributions of local quantities
around a sphere in a polydisperse sphere packing. Shell
distance is the minimum number of faces that must be
crossed to go from the interior of one cell to the inte-
rior of a second cell in a cell structure [11, 12]. Ring
statistics consider the lengths of the shortest closed paths
through the network of bonds in a disordered covalent
glass [13, 14]. Homology theory is a related but more
general approach that characterizes holes of arbitrary di-
mension [15–17]. The Randic̀ index measures the de-
gree of branching in organic molecules by considering the
types of edges in the adjacency graph of the atoms [18].
Percolation theory is concerned with connected clusters
of occupied vertices or edges in a graph, and particularly
with the appearance of a unique infinite cluster [19, 20].
A hyperuniform distribution of points has the property
that infinite-wavelength density fluctuations are absent
[21, 22].

While certainly not exhaustive, this selection from the
available literature is intended to show that existing ap-
proaches generally have two limitations. First, they are



2

often motivated by and formulated for a specific situa-
tion, and cannot be applied generally. Second, to the
extent of our knowledge, none of them offers a complete
characterization of the local topology of a physical sys-
tem. That is, they do not allow the local structure to be
reconstructed exactly up to a geometric deformation.

A cell complex is general in the sense that all of the
physical systems described above (and many others) can
be represented by means of one, and hence is used as
a common point of departure in the following. A cell
complex is composed of cells, where a 0-cell corresponds
to a point, a 1-cell to a line segment, a 2-cell to a disk,
and a 3-cell to a ball. A cell complex is constructed by
placing the necessary 0-cells, attaching the endpoints of
deformed 1-cells to the 0-cells, attaching the boundaries
of deformed 2-cells to the 1-cells, and attaching the sur-
faces of deformed 3-cells to the 2-cells. The cells are at-
tached without any twisting or tearing. This allows the
description of, e.g., fused quartz with the silicon atoms
as 0-cells and the oxygen atoms as 1-cells, soap foams
with junctions as 0-cells, edges as 1-cells, and surfaces as
2-cells, and polycrystals with nodes as 0-cells, triple lines
as 1-cells, boundaries as 2-cells, and grains as 3-cells [48].

The purpose of this paper is to suggest that the swatch
and the cloth serve as useful alternatives for the descrip-
tion of a cell complex [23]. A swatch completely char-
acterizes the local topology of a small region of the cell
complex, and a cloth indicates the frequencies of the var-
ious swatch types occurring in the cell complex. The
advantages of this technique are that the description is
complete (any question about the local topology of the
cell complex can be answered from the cloth), that the de-
scription is general (any physical system that can be rep-
resented as a cell complex is admissible), and that the de-
scription allows the construction of a distance that quan-
tifies the similarity of the statistical topology of two dif-
ferent cell complexes. This distance is useful, e.g., when
considering the convergence of numerical studies, when
comparing simulated cell complexes with experimental
ones, when quantifying the variability of cell complexes
generated in a particular way, or when iteratively modi-
fying some cell complex to reach an intended target. For
instance, this paper uses the distance to define a notion of
convergence to a topological steady state, and to quantify
the approach of our numerical simulations to this steady
state. This should be contrasted with the usual approach
of following several arbitrarily chosen quantities to iden-
tify convergence.

The description of a physical system by a cell complex
is further refined by transforming the cell complex into an
equivalent adjacency graph, where a graph is composed
of a set of vertices connected by edges. Every vertex of
the graph corresponds to a cell of the cell complex, and
every edge in the graph corresponds to two incident cells
in the cell complex whose dimensions differ by one. For
the purpose of illustration, the cell complex of a trian-
gle in Figure 1a is equivalent to the adjacency graph in
Figure 1b. Notice that this requires the introduction of

(a) (b)

FIG. 1: (a) Representation of a triangle as a cell complex by
three 0-cells, three 1-cells, and one 2-cell. (b) Representation
of a triangle as a graph with seven vertices, nine edges, and
three vertex types.

three vertex types; circle, square and triangle vertices in
the graph correspond to cells of dimension 0, 1, and 2 in
the cell complex. We will follow this convention through-
out the paper. More generally, the representation of a
cell complex by a graph allows the mathematical ma-
chinery of graph theory to be used, and the description
of swatches in Section II, of cloths in Section III, and of
cell complex similarity in Section IV to be applied with
relatively few modifications to graphs that appear in a
variety of subjects.

The utility of this approach is illustrated by means of
simulations of two different physical systems. The first
is a two-dimensional grain boundary network that devel-
ops by a process of normal grain growth, as discussed
in Section V. This system is modeled by a set of grain
boundary edges with three boundary edges meeting at
every triple junction, and the same mobility and energy
per unit length for every boundary edge. The Turnbull
relation [24] governs the motion of the boundary edges,
and is equivalent to evolution by curvature flow. The
explicit form of the equations of motion depends on the
properties of the triple junctions. Different formulations
are derived for the cases of finite and infinite triple junc-
tion mobilities. Simulation results in Section VI provide
evidence of a statistical steady state where all statisti-
cal quantities relating to the local topology of the grain
boundary network converge, which is independent of the
initial conditions and is the same for the two sets of equa-
tions. The distance on cell complexes introduced in Sec-
tion IV is instrumental in making meaningful comparison
of the grain boundary networks possible.

The second simulated system is a dislocation network
[25] in a material with no surface tractions during the
process of recovery. This system is modeled as a set
of dislocation edges with three edges meeting at every
edge endpoint, and with a constant energy per disloca-
tion line length; that is, all dislocation interactions are
neglected and only the self-energy of the dislocations is
retained. Evolution occurs by energy minimization with
the same kinetics for dislocation glide and climb, result-
ing in curvature flow and a reduction in total line length.
Our belief is that this severe simplification is justified
by the need to simulate networks containing millions of
edges (where the calculation of the long-range stress fields
would be prohibitively expensive) to reduce the statisti-
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cal error, and by our emphasis on the network topology
rather than on the physics of a specific deformation pro-
cess. This system is also mathematically interesting in-
dependent of the physical interpretation, and is discussed
in more detail in Section VII. As with the grain bound-
ary network, there appears to be a statistical steady state
where all statistical quantities relating to the local topol-
ogy of the dislocation network converge, and where the
steady state is independent of the initial conditions. Re-
markably, the long-term topology of the dislocation net-
work seems to be invariant as to whether dislocations
intersect and leave behind an adjoining edge or merely
pass through one another. This suggests that in situ-
ations where only the steady state configuration is de-
sired, substantial computational savings can be realized
without loss of accuracy by not implementing one of the
allowed topological events.

II. SWATCHES AND LOCAL TOPOLOGY

Given a cell complex, a swatch is the portion of the cell
complex in a region around some specified vertex. This
is motivated by the observation that random cell com-
plexes are often compared using the frequencies of local
configurations of cells. A swatch provides a definition of
local configurations that completely describes the local
topology and is agnostic to the details of the physical
system, and therefore is a suitable basis for the current
approach.

The definition of a swatch begins with the selection
of a central vertex known as the root. For swatches to
be directly comparable, all roots should have the same
vertex type; that is, all swatches should be centered on
cells of the same dimension in the underlying cell com-
plex. The convention followed throughout this paper is
for the roots to be on vertices of the graph corresponding
to 0-cells of the cell complex (indicated by circles in the
figures), though this is not a general requirement.

After selection of a root, an integer known as the ra-
dius of the swatch is chosen to specify the extent of the
local configuration. The radius is measured using the
canonical graph distance; a swatch of radius r includes
all of the vertices that can be reached from the root by
traversing no more than r edges of the adjacency graph.
Notice that this allows the swatch to contain as much in-
formation about the local configuration as is necessary to
measure a given property of interest, provided that the
property depends only on the local topology.

Figure 2 provides several examples of swatches con-
structed from one of the grain boundary networks de-
scribed in Section I. The root is colored dark blue, and
the color of the surrounding vertices indicates distance
from the root. Grain boundaries correspond to square
vertices in the graph, and triple junctions correspond to
circle vertices in the graph. Physical constraints require
square vertices to be of degree two and circle vertices
to be of degree three, where the degree of a vertex is

(a) (b)

FIG. 2: Swatches of radius six in a cell complex containing
only 0- and 1-cells. The vertex color indicates distance from
the root, with the root colored dark blue. (a) A free swatch
where there is a single path from the root to any given vertex.
(b) A swatch that contains a cycle of length four and a cycle
of length two.

the number of connecting edges. The most significant
difference between the swatches in Figures 2a and 2b is
related to the presence of cycles, or to closed paths along
the edges of the graph. The free swatch in Figure 2a is
distinguished by the absence of cycles, while the swatch
in Figure 2b has one cycle of length four and one cycle
of length two.

A distinct advantage of defining a swatch using the
language of graph theory is the compact computational
representation that this affords. Let the vertices of the
swatch be labeled by consecutive integers from 1 to n.
The vertex types can be stored in an integer array of
length n, and the edges of the swatch can be stored in
an n × n adjacency matrix where the entry in the ith
row and jth column is 1 if the ith and jth vertices share
an edge, and is 0 otherwise. While this is already suffi-
cient to reconstruct the swatch, there remains an issue of
uniqueness; rearranging the vertex labels usually results
in a different (but equivalent) adjacency matrix for the
swatch. This complicates the comparison of two swatches
with different roots since the adjacency matrices of the
swatches cannot be directly compared without simulta-
neously considering all permutations of the vertex labels.

This difficulty is resolved by finding a canonical la-
beling for every swatch. When two canonically-labeled
swatches have the same vertex types and adjacency ma-
trices, the swatches describe regions with the same local
topology and are said to belong to the same swatch type.
Conversely, two canonically-labeled swatches with differ-
ent vertex types or adjacency matrices must describe re-
gions with different local topologies, and hence belong
to different swatch types. This reduces the classification
of swatches by swatch type to the problem of finding a
canonical labeling for a graph. While an algorithm that
performs well in all cases is still not known, the program
nauty is able to find canonical labellings quite efficiently
in practice [26].
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III. CLOTHS AND STATISTICAL TOPOLOGY

A swatch provides a complete description of the local
topology around a specific root of an adjacency graph,
but not of the statistical local topology of the cell com-
plex as a whole. This suggests that a swatch of radius
r be constructed around every root, resulting in an en-
semble of swatches. The probability that a randomly
selected swatch of radius r belongs to a given swatch
type is known as the swatch frequency, and the set of all
swatch frequencies for all values of the radius is known as
the cloth. The cloth characterizes the local topology of
the cell complex in the sense of determining the proba-
bility of appearance of any local configuration, as well as
of prescribing all local topological properties of the cell
complex (as defined toward the end of Section IV).

The idea of the cloth is related to that of local isomor-
phism of quasicrystals [27]. Two quasicrystals are consid-
ered to be locally isomorphic when they can be made to
coincide exactly over an arbitrarily large region by a rel-
ative translation, or equivalently, when every atomic ar-
rangement in one occurs somewhere in the other. This is
physically significant since two quasicrystals that are lo-
cally isomorphic have the same diffraction pattern. How-
ever, this description does not allow a meaningful anal-
ysis when two quasicrystals are not locally isomorphic.
By contrast, a cloth provides the information about the
frequencies of every swatch type of every radius. This
allows not only the occurrence but the relative rates of
local bond topologies to be compared, and the extent to
which the quasicrystals fails to be locally isomorphic to
be measured.

The cloth is composed of levels, each containing swatch
frequencies for the corresponding value of the radius. No-
tice that level r of the cloth contains strictly more infor-
mation than all levels s < r of the cloth. This follows
from the observation that a swatch of radius r can be
restricted to a swatch of radius s with the same root
(known as a subswatch) by excluding all vertices further
than distance s from the root. The swatch types com-
prising level r of the cloth therefore contain strictly more
information than the swatch types comprising level s of
the cloth, and the description of the cell complex becomes
progressively more complete as the level increases.

The relationship between different levels of the cloth
can be more clearly expressed by means of a tree of
swatch types, as in Figure 3. Level r of the tree is com-
posed of all swatch types of radius r that are compatible
with the constraints of the physical system. Whenever a
swatch type of radius r − 1 is a subswatch of a swatch
type of radius r, they are connected by an edge. Since
there may be more than one swatch type of radius r that
satisfies this condition, the tree repeatedly branches with
increasing level. Figure 3 is specialized to the case of the
grain boundary network described in Section I where,
apart from the restrictions on the degrees of the vertex
types, the adjacency graph satisfies the further condition
of being 2-connected [49].

FIG. 3: Levels 0 to 3 of the tree of swatch types, subject to
the conditions that circle vertices be of degree three, square
vertices be of degree two, and the graph be 2-connected.

The information in a cloth is equivalent to an assign-
ment of swatch frequencies to each of the swatch types
of the tree, subject to the condition that the frequencies
on any level sum to one. This description helps to clarify
the relationship of swatch frequencies on distinct levels;
supposing that S is a swatch type, the frequency of S is
equal to the sum of the frequencies of all the descendants
of S on any subsequent level. Since a swatch frequency
is directly proportional to the number of root vertices
around which swatches of the given type occur, this is a
direct consequence of S being a subswatch of all of the
descendants of S.

There are several practical concerns that arise when
measuring the swatch frequencies of a finite cell complex.
First, the measured swatch frequencies will converge with
increasing system size only when the cell complex is sta-
tistically homogeneous. That is, any statistical feature
measured within a bounded region converges to a defi-
nite limit as the region’s volume increases, and the lim-
iting value is independent of the region’s position within
the cell complex [23]. Second, experience shows that the
number of swatch types grows exceedingly quickly as a
function of the level number. There may be only a sin-
gle occurrence of many swatch types for radii where there
are more swatch types than roots, introducing substantial
sampling errors. Our efforts to reduce these errors led to
the adoption of the simplified dislocation network model
discussed in Section VII as a means to increase simulation
size, given the available computational resources.
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IV. SIMILARITY AND CONVERGENCE OF
CELL COMPLEXES

Consider a sequence of cell complexes of increasing size
whose cloths become ever more similar. For example, one
could generate a sequence of steady state configurations
of some dynamical process. It is intuitive to think of these
cell complexes as approaching an infinite, universal state.
This section makes that notion rigorous by introducing
a distance on cell complexes and constructing limit ob-
jects corresponding to convergent cell complex sequences.
The existence of these limit objects provides strong the-
oretical backing for the experimental results discussed in
Sections VI. The distance can be used for many pur-
poses, including the comparison of cell complexes arising
from different processes. Note that the mathematical re-
sults in this section require that the cell complexes in the
sequence have adjacency graphs with uniformly bounded
degree.

The distance on cell complexes will make use of a pre-
liminary distance on swatches. Let the largest common
subswatch of two swatches be the swatch of largest ra-
dius that is a subswatch of both. The distance between
two swatches is defined as the reciprocal of the number of
vertices in the largest common subswatch, or zero if the
swatches are the same. For example, the largest radius
for which the swatch in Figure 2b is free is r = 3, and
the distance to the free swatch in Figure 2a is 1/13.

Having introduced a distance on swatches, the earth
mover’s distance is used to define a family of distances
on cell complexes. The earth mover’s distance is equal to
the minimum cost of transforming one probability distri-
bution on swatch types into a different probability dis-
tribution on the same swatch types. The transformation
is performed by transferring probability mass between
swatch types, with the overall cost given by the sum of
the costs of the individual operations. The cost of an
operation is the probability mass transferred times the
distance between the two swatch types [28, 29]. Given
two cell complexes C1 and C2, let dr(C1, C2) equal the
earth mover’s distance between probability distributions
on swatches of radius r induced by the two cell complexes.
Note that dr is uniformly bounded and non-decreasing in
r, and that it stabilizes for some finite r if the cell com-
plexes are finite. The limit distance on cell complexes is
defined as the limit of dr with increasing r, or

d(C1, C2) = lim
r→∞

dr(C1, C2).

Let C1, C2, . . . = {Ci} be a sequence of cell complexes
that it is a Cauchy sequence in the distance d. That
is, the elements of the sequence all become arbitrarily
close above some sufficiently large i. This condition is
equivalent to the convergence of all swatch frequencies,
and implies the convergence of other important proper-
ties as well. A key mathematical result of Benjamini and
Schramm [30, 31] is that the sequence {Ci} may be asso-
ciated with a universal limit object σ. The limit object is

not a cell complex itself, but is instead a probability dis-
tribution on the space C• of countably infinite, connected
cell complexes with a specified root (a root must be spec-
ified because swatches are inherently rooted). Sampling
from σ may be viewed as sampling a random configura-
tion from the universal state that the cell complex se-
quence approaches. Note that swatch frequencies for any
radius r, and therefore the distance d, may be extended to
such distributions: the frequencies are the probabilities
that swatches of radius r appear at the root of a random
cell complex drawn from σ. This allows the distance from
a finite cell complex to σ to be computed, and makes the
notion of a sequence of cell complexes converging to the
probability distribution σ sensible.

The limit distribution σ is constructed by assigning
probabilities to certain subsets of C• defined by swatches.
Suppose that S is a swatch of radius r, and ES is the
set of all cell complexes in C• where S appears at the
root vertex. The probability of ES is then the limiting
value of the swatch frequency of S in the sequence Ci as
i → ∞. It is a mathematical theorem [31] that this is
sufficient to define the probability distribution σ on the
entire space C•. By construction, Ci converges to σ in
the sense that the distance d between Ci and σ becomes
arbitrarily small for sufficiently large i.

The convergence of a cell complex sequence to a limit
implies the convergence of all local topological properties
of that sequence as well. For example, the expected num-
ber of cycles of length four to which an edge belongs will
converge. More precisely, let H be the labeled adjacency
graph of a square, let Gi be the labeled adjacency graph
of the cell complex Ci, and let inj(H,Gi) be the num-
ber of times H appears in Gi. Although both v(Gi) (the
number of vertices of Gi) and inj(H,Gi) will usually di-
verge with increasing i, if {Gi} converges, the normalized
quantity inj(H,Gi)/v(Gi) will converge as well.

More generally, the normalized number of adjacency
preserving maps from H to Gi converges for any labeled
graph H. This may be used to find, e.g., the probability
that a 0-cell is adjacent to a specified number of 1-cells
(as for the number of contacts around a sphere in an ran-
dom sphere packing), the probability that a 1-cell is con-
nected to 0-cells of specified degree (as with the Randic̀
index [18] of an organic molecule), the joint probability
of adjacent 2-cells being incident to specified numbers of
1-cells (as in the Aboav-Weaire relation [32, 33] for a 2D
microstructure), or the probability of a 1-cell participat-
ing in a cycle of specified length (as for ring statistics
[14] in an covalent glass). In this sense, the cloth pro-
vides a complete description of the local topology of the
underlying cell complex, as initially claimed in Section I.

Consider a dynamical process on random cell com-
plexex, and suppose that many of the properties of the
system converge as time proceeds. The steady-state hy-
pothesis is that there is a time interval when all scale-
invariant properties of the network are constant in time,
though this interval will depend on the initial conditions.
To connect this to the formalism established above, con-
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struct a sequence of initial conditions of increasing size
and allow all of them to evolve to the steady-state con-
dition. By the steady-state hypothesis, the cloths of the
systems will be identical up to finite size effects and the
cell complex sequence will converge. This implies the
existence of a universal limit distribution that may be
viewed as a probability distribution of swatch types for
an infinite steady state.

In practice, one can track the distance from a cell com-
plex to a reference state as the cell complex evolves. If
the steady-state hypothesis holds and the reference is
in the steady state condition, then the distance will de-
crease toward zero and stabilize for a significant interval
of time. Hence, the distance provides a powerful tool to
test the steady-state hypothesis. In Section V, we use
this to study the convergence properties of a model grain
boundary network.

Finally, we note that the subject of convergent cell
complex sequences is deeper than may be apparent from
this section. For instance, the analysis of global graph
properties of a convergent cell complex sequence (i.e.,
those that can be expressed as maps from the adjacency
graph Gn into a graph H) is much more difficult than
that of local topological properties, and not all of them
are convergent. An example of a convergent global graph
property is the number q-colorings of Gn for sufficiently
high q, i.e., the number of different ways that q colors may
be assigned to the vertices of Gn such that no vertices
connected by an edge have the same color. A second
point is that the swatch frequencies in a cell complex
are far from independent—given a swatch of radius r,
the swatches with roots on the neighboring vertices are
determined up to radius r−1. This fact is reflected by an
important property of the limit probability distribution
called involution invariance. Further exposition of these
subjects is beyond the scope of this paper; the interested
reader is encouraged to refer to the book by Lovasz [31].

V. TWO MODELS OF GRAIN GROWTH

Microstructure evolution in polycrystalline materials
is quite complicated, with the general case involving
the precipitation of solid phases, the diffusion of solute
species, the formation of dislocation networks, and the in-
teraction of stress fields with all of the above processes.
Along with the scarcity of experimental values for many
of the relevant material properties, this means that prac-
tical simulations of microstructure evolution often require
a number of simplifying assumptions.

Perhaps the simplest system with a nontrivial evo-
lution is a pure polycrystalline material with negligible
stored strain energy. This system is represented in two
dimensions by a space-filling set of grains, with two ad-
jacent grains meeting on a grain boundary and three
adjacent grain boundaries meeting on a triple junction.
The disruption of the atomic bonding along the bound-
aries endows them with an energy per unit length, and

(a) (b) (c)

FIG. 4: (a) A continuous grain boundary edge. (b) Node p
joins two discrete boundary edges. (c) Vertex q joins three
discrete boundary edges.

the minimization of this energy drives the motion of the
boundaries and a concomitant increase in the average
area of the grains. Hence, grain growth is a result of
boundary motion, and boundary motion is usually de-
scribed by the Turnbull relation [24]

vn = m0 exp

(
− Qgb

kBT

)
p.

Here vn is the boundary velocity in the normal direc-
tion, m0 is the mobility prefactor, Qgb is the activation
energy for boundary motion, and p is the driving pres-
sure. For a pure polycrystalline material with negligible
strain energy and a constant boundary energy per unit
length γ [34], the pressure on a boundary is given by the
Young–Laplace equation [35]

p = γκ, (1)

where κ is the boundary curvature. Further assuming a
constant boundary mobility m allows the governing equa-
tion to be reduced to

vn = mγκ, (2)

or the equation for curvature driven motion. This is the
starting point for most simulations of grain growth in two
dimensions.

The microstructure is modeled as a network of polyg-
onal curves in two dimensions. Grain boundaries consist
of line segments that meet at nodes of degree two, and
triple junctions consist of vertices of degree three. The
nodes and vertices of the grain boundary network corre-
spond to the node p and the vertex q of Figure 4, respec-
tively. Equations of motion for the nodes are derived by
considering the boundary edge in Figure 4a, and assum-
ing that this edge is a planar curve of length ∆s. If the
length is sufficiently small, then the curvature is effec-
tively constant and the edge can be considered as an arc
of a circle. Let the angle subtended by the arc be ∆θ, the
point halfway along the arc be r, and the normal vector
at r be n̂. The force on this edge arises from the line ten-
sion γ being applied to the segment endpoints along the
tangent vectors t̂1 and t̂2, and the force per unit length
of boundary is γ(t̂1 + t̂2)/∆s. Multiplying the force per
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unit length by the boundary mobility m gives

∆r

∆t
=
mγ(t̂1 + t̂2)

∆s
= mγ

2 sin(∆θ/2)

∆s
n̂

≈ mγκn̂

for the velocity of r, where the displacement ∆r occurs in
a time interval ∆t. The second equality follows from t̂1
and t̂2 having equal and opposite components perpendic-
ular to n̂, and components of length sin(∆θ/2) parallel
to n̂. The approximate equality uses the small angle sine
approximation and defines the curvature as κ = ∆θ/∆s.
This is precisely the equation of curvature driven motion,
and suggests that the equation of motion for the nodes
of the discrete case can be derived in a similar manner.

The configuration in Figure 4b is the discrete version
of the continuous boundary edge in Figure 4a. Two adja-
cent segments intersect at the node p, and the vectors v1

and v2 extend from p to the two adjacent nodes. An eq-
uitable partition of the grain boundary network assigns
half of the segments along v1 and v2 to p, and the remain-
ing half to the adjacent nodes. The node p is therefore
associated with a boundary length of (‖v1‖ + ‖v2‖)/2.
The force that arises from the line tension γ being ap-
plied along the vectors v1 and v2 is γ(v̂1 + v̂2), where v̂i

is the unit vector along vi. As before, multiplying the
force per unit length by the boundary mobility m gives

∆p

∆t
=

2mγ(v̂1 + v̂2)

‖v1‖+ ‖v2‖
(3)

for the velocity of p, where the displacement ∆p occurs
in a time interval ∆t. This is a suitable discrete approx-
imation for curvature driven motion provided that the
small angle sine approximation holds. That is, the exte-
rior angle in Figure 4b should be small. Our simulations
satisfy this condition by dynamically interpolating the
polygonal curves to keep the exterior angle at every node
below π/10.

Notice the absence of an equation of motion for triple
junctions in the continuous system. The reason for this
is that requiring the boundaries to move by curvature
flow does not uniquely specify the behavior of the triple
junctions, though any equation of motion must satisfy
the following physical constraint. Let M be a mobility
of the triple junctions that is distinct in units and value
from the mobility m of the boundaries. Any equation of
motion should cause the angles between boundary edges
in an infinitesimal neighborhood around a triple junction
to approach 2π/3 in the limit of high M. Conversely,
decreasing M should increase the deviation of the an-
gles from 2π/3 for a triple junction subject to a constant
driving force.

A simple equation of motion for the triple junctions
that is consistent with the above physical constraint is
given by the following line of reasoning. With reference
to Figure 4c, the force on the triple junction q that arises
from the line tension γ being applied along the vectors
w1, w2 and w3 is written as γ(ŵ1 + ŵ2 + ŵ3), where ŵi

(a) (b)

FIG. 5: Topological operations that occur in the grain growth
simulations include (a) edge flips and (b) digon deletions.

is the unit vector along wi. Multiplying this force by the
triple junction mobility M gives

∆q

∆t
= Mγ(ŵ1 + ŵ2 + ŵ3) (4)

for the velocity of q, where the displacement ∆q occurs
in a time interval ∆t. Since Equation 4 assigns a finite
mobility M to the vertices, Equations 3 and 4 will be
called the finite mobility equations. Note that there is
some evidence of finite triple junction mobilities in the
literature [36, 37].

The finite mobility equations are not the only option.
Instead, one can require that the grain boundaries meet
at angles of 2π/3 (called the Herring Angle condition),
which provides a reasonable set of boundary conditions
for the curvature flow along the edges. [38, 39] This can
be interpreted as giving the vertices infinite mobility, as
they always move to the point which locally minimizes
the lengths of the neighboring edges. The Herring Angle
condition also implies that the rate of change of the area
A of a grain with n bounding triple junctions is given by
the von Neumann–Mullins relation [40, 41]

dA

dt
= mγ

π

3
(n− 6). (5)

That is, the rate of change of the area depends linearly
on the number of bounding triple junctions. While Equa-
tion 5 is a consequence of Equation 2 and the Herring
Angle condition, the quantities appearing in Equation 5
can be more reliably measured than the normal direction
and curvature of a polygonal curve. This motivated the
development of an alternate set of equations of motion
based on the von Neumann–Mullins relation [42] that
will be called the von Neumann–Mullins equations.

Two topological operations are allowed in the simula-
tion, namely, the flip of an boundary edge and the dele-
tion of a digon. A boundary flip occurs whenever the
length of a boundary passes below a threshold value and
the creation of a degree-four vertex appears imminent,
as in Figure 5a. The boundary direction is changed and
connections with adjacent boundaries are shuffled to min-
imize the sum of the two angles opposite to the flipped
boundary. A digon is deleted whenever the maximum dis-
tance between points on the two boundaries passes below
a threshold value, as in Figure 5b. One of the boundaries
is deleted, and the remaining boundary is merged with
the two adjacent boundaries. Note that the topological
change that occurs when a grain shrinks to a point can
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(a) (b)

FIG. 6: Initial conditions for the grain boundary simulation:
(a) a Voronoi tessellation of randomly distributed points and
(b) a perturbed lattice.

be expressed as a combination of the two previous oper-
ations.

Grain growth simulations were always performed in a
square with periodic boundary conditions, with two types
of initial conditions. The first is given by the Voronoi di-
agram of randomly distributed points, and a portion of
this initial condition is shown in Figure 6a. The sec-
ond is a perturbed honeycomb lattice, and a portion of
this is shown in 6b. It is generated by perturbing the
vertices of the dual triangular lattice with displacements
independently sampled from a two-dimensional Gaussian
distribution with a standard deviation of one-fourth the
lattice spacing, then computing the Voronoi diagram.

VI. A STATISTICAL STEADY STATE

We used one of the cell complex distances to compare
the model grain boundary networks to a reference con-
dition throughout the simulations. The reference condi-
tion was a network with 3.1 × 106 boundaries resulting
from a simulation that used the von Neumann–Mullins
equations, that began from a Voronoi tessellation with
6.0 × 107 boundaries, and for which all measured scale-
free properties had converged. Since the number of
swatch types increases dramatically as a function of ra-
dius, the sample size required to accurately compute the
cloth increases dramatically as well. Practically, r = 7
was the largest radius that gave reliable cloth statistics;
an appreciable number of swatch types occurred only
once for r = 8 in all of our simulations, indicating that
larger samples would be needed. Nevertheless, there are
so many swatch types for this radius that the cloth still
offered a very detailed description, and we use the dis-
tance dr with r = 7 instead of the limit distance d in the
following.

Figure 7 shows the distance to the reference condition
for three simulations, one using the finite mobility equa-
tions and the other two the von Neumann–Mullins equa-
tions. For the latter two, the distance to the reference
condition decreased very rapidly as they evolved, indi-
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FIG. 7: Distances of several simulations to the reference con-
dition. Error bars show the standard deviation of the distance
of a steady-state configuration with the indicated number of
edges to the reference condition.

FIG. 8: The steady-state condition of the model grain bound-
ary network.

cating convergence toward the steady state depicted in
Figure 8. The simulation using the finite mobility equa-
tions also approached the reference condition, but not as
quickly. The evolution of the systems is parametrized by
the number of edges, a non-increasing function of time.

While Figure 7 indicates that the distance to the ref-
erence condition initially decreases, the distance to the
reference condition visibly increases for small numbers of
remaining edges. This may be explained by the decrease
in the sample size increasing the statistical error in the
swatch frequencies and the apparent distance to the ref-
erence condition. A test of convergence to the steady
state should account for this source of error. Let Rn be
a set of networks with n edges that are already in the
steady state. A measured distance may be compared to
the distribution of distances from elements of Rn to the
reference condition; if the measured distance falls within
one standard deviation of the mean of this distribution
for a long time interval, then the network being consid-
ered is likely in the steady state. Practically, the set Rn

contains random subsamples of the reference condition.
A single subsample is constructed from the vertices and
edges within some radius of a randomly selected vertex,
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with vertices on the boundary excluded as necessary to
attain the desired number of edges.

This procedure is used to evaluate the convergence of
the simulations in Figure 7. The simulations began with
3.0 × 107 boundary edges. The error bars in the figure
extend one standard deviation above and below the mean
distance from the elements of Rn to the reference condi-
tion. Note that the simulations using the von Neumann–
Mullins equations (the solid green line and the evenly
dashed blue line) are within one standard deviation of the
subsamples throughout the interval between 100, 000 and
1000 edges, and that the same is true for the simulation
using the finite mobility equations (the dashed line) be-
tween 50, 000 and 1000 edges. This offers strong evidence
that they have converged to the steady state in the indi-
cated intervals. Further evidence in the form of various
statistical quantities suggests that the simulations using
the von Neumann–Mullins equations converged with as
many as 500, 000 edges remaining, though the reference
condition does not contain enough edges to allow inde-
pendent subsamples of that size. This data leads to a
conjecture:

Conjecture 1. There exists a unique limit distribution σ
on the space of all countable, connected one-dimensional
cell complexes with a root cell specified such that all
generic initial conditions converge to σ under the von
Neumann–Mullins Equations.

Of course, a definition of “generic initial conditions” is
required for this to be a mathematical precise conjecture.
This turns out to be a delicate question, and is addressed
in a separate paper for a mathematical audience [43].

It is not obvious a priori that the finite mobility equa-
tions should approach the same steady state as the von
Neumann–Mullins Equations. A possible explanation is
that is a consequence of the fact that curvature is not a
scale-free property: a circle of half the radius has twice
the curvature. Thus, as the system coarsens and the av-
erage edge length increases, the average speed of an edge
will decrease. In contrast, the finite vertex mobility equa-
tions are scale invariant. As a result, the vertices move
faster and faster relative to the edges, in effect causing
their relative mobility to increase toward infinity. It fol-
lows that the triple point angles should approach 2π/3,
and therefore that the system should behave more like the
von Neumann–Mullins Equations. This is corroborated
by Figure 9 which shows how the average deviation of the
triple point angles from 2π/3 changes in a simulation us-
ing the finite vertex mobility equations. The simulation
is the same finite mobility system from Figure 7.

This reasoning also explains why the convergence is
slower for the finite mobility equations, as they only drift
toward the infinite mobility case. Still, they provide a
good approximation of this behavior in the long term,
which will be important for the 3D case where (as far as
we know) there is no discrete, physical way to directly
simulate a system with infinite vertex mobility. Let us
note that a family of different universal conditions can
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FIG. 9: The average deviation of the triple point angles from
2π/3 for a simulation using the finite mobility equations.

FIG. 10: The third topological operation that occurs in the
dislocation simulations is the edge intersection, resulting in
the joining of edges.

be obtained by rescaling the mobility of the vertices as
the simulation evolves to keep their speed relative to the
edges constant. The resulting behavior is mathematically
interesting, and is discussed in length in B. Schweinhart’s
thesis [43, 44].

VII. A MODEL DISLOCATION NETWORK

This section applies the concepts of a swatch and a
cloth to measure the approach of a model dislocation net-
work to a topological steady state. More specifically, the
dislocation network is modeled as a network of polygo-
nal curves in three dimensions. Line segments composing
a dislocation meet at nodes of degree two, while dislo-
cations meet at vertices of degree three. The complex
calculations required to model the interactions of dislo-
cation edges are neglected, and only the dislocation self
energy is retained. That is, a dislocation edge is given
a constant energy γ per unit length and evolves follow-
ing a simple line-tension model [25]. There is evidence
in the literature [45, 46] that this approach is justified
when considering the general characteristics of a com-
plex dislocation network rather than specific dislocation
reactions. Since our purpose is to study the statistical
topology of a dislocation network instead of the effect of
dislocations on material properties, we believe that this
is a reasonable simplification. This system is also of in-
trinsic mathematical interest.

The three topological operations that are allowed in
the simulation include the two analogues of the opera-
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(a) (b)

FIG. 11: Initial conditions of the dislocation network included
(a) Voronoi graphs and (b) random graphs, with the construc-
tions given in the text. Note that (b) shows a smaller volume
than (a), since edges are much denser in the random graph.

tions in Figure 5 (an edge flip and a digon deletion) and
the edge intersection, shown in Figure 10. An edge inter-
section occurs whenever two non-neighboring edges meet
transversely. The edges are subdivided at the point of
intersection and joined by a newly created edge. Since
detecting intersections is computationally expensive, the
simulation could be made substantially more efficient if
this topological operation could be neglected without
measurably changing the topological steady state. Us-
ing the metric on cloths introduced in Section IV, we
provide evidence that this is indeed the case.

The simulations were performed in a cube with peri-
odic boundary conditions. Initial conditions for the sim-
ulations were generated from a set of random points by
one of two procedures. The first was constructed from
the edge set of the Voronoi diagram of the points. Since
the vertices of this network had degree four, the network
had to be modified to make an admissible dislocation net-
work. Every vertex was replaced by an edge, and the four
adjacent edges were assigned to the vertices to minimize
the maximum angles opposite to the newly created edge.
The resulting initial condition is called a Voronoi graph,
and is depicted in Figure 11a. Ken Brakke’s VOR3DSIM
program was used to compute Voronoi tessellations [47].
For the second procedure, points of degree less than three
were randomly connected by edges with others closer
than a threshold distance. If there were no points within
the threshold, two cases were considered. If the point
had degree two, it was considered to be a node along the
edge between its two neighbors. Otherwise, it was paired
with the closest possible point. This process proceeded
until the creation of edges was no longer possible. The
resulting initial condition is called a random graph, and
is depicted in Figure 11b.

Since the model grain boundary network and the model
dislocation network both satisfy the same conditions at
the nodes and vertices and evolve by curvature-driven
motion, Equations 3 and 4 (the finite mobility equations)
can also be used as equations of motion for the model
dislocation network.
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FIG. 12: Distances of several simulations to the reference
condition.

FIG. 13: A small region in the steady-state condition for the
model dislocation network.

To test the convergence of the simulations, we tracked
their distance to a reference condition throughout their
evolution. The reference condition resulted from a simu-
lation with λ = 1667 starting with a Voronoi graph with
slightly more than 107 edges, and has about 106 edges.
As discussed in the final paragraph of the previous sec-
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tion, the finite mobility equations are not scale invariant,
so a system evolving by them can only drift toward a
topological steady state. Thus, we must be careful when
selecting a reference condition, and comparing other sim-
ulations to it. However, if the mobility and the number
of initial edges are large enough, the system should be
very close to a steady state condition toward the end of
its evolution. Our measurements of several properties
support this, and it appears that any deviation from the
topological steady state due to the finite value of the mo-
bility is small relative to the statistical variation due to
finite size effects.

Figure 12 shows the distance to the reference condition
for three simulations. For all three, the distance to the
reference condition decreased rapidly as they evolved, in-
dicating convergence toward the state depicted in Figure
13. The evolution of the systems is parametrized by the
number of edges in the system, which generally decreases
with time but can increase if there are frequent edge in-
tersections. For example, the simulation for one of the
random graph initial conditions (shown by the dashed
red line in Figure 12) initially experienced many intersec-
tions, leading to a transient where the number of edges
increased. As shown in Figure 14 though, the number of
intersections as a fraction of all topological changes de-
clined as the simulation progresses, eventually decreasing
to almost none in the long term. This suggests that the
long-term behavior may be insensitive to the detection of
edge intersections. As further evidence for this, the re-
maining two simulations in Figure 12 did not detect edge
intersections, and yet converged toward the same state.

VIII. CONCLUSION

Although random cell complexes occur throughout the
physical sciences, our ability to characterize them ap-
pears to have been limited by the absence of a suitable
language. This paper proposes that the topology of the
cell complex be represented by a graph. A swatch (de-
fined in Section II) characterizes the local topology of
the cell complex around a root vertex, and provides a
description of the local environment that is agnostic to
the details of the physical system. A cloth (defined in
Section III) is constructed from the probabilities of every
swatch type occurring around a randomly selected root
vertex, and may be used to answer any question pertain-
ing to the statistical local topology of the cell complex.
This includes, e.g., the distribution of the number of con-
tacts around a sphere in a random sphere packing, the
distribution of the number of sides in the rings in a co-
valent glass, and the distribution of the number of faces
in the grains of a polycrystal.

For cell complexes that evolve by some dynamical pro-
cess, a sequence of cell complexes can be constructed at
successive points in the evolution. A distance on cell
complexes is defined in Section IV such that the ele-

ments of this sequence become arbitrarily close together
if the system evolves toward a steady state. This allows
a precise definition of the limiting condition to be given.
This was applied to a two-dimensional grain boundary
network with uniform boundary energies and mobilities,
and obeying one of two different sets of equations of mo-
tion. The first assumed an infinite vertex mobility, and
is designed [42] to accurately satisfy the von Neumann–
Mullins relation [40, 41]. The second assumed a finite
vertex mobility, and is derived in Section V by consider-
ing the forces on a discrete boundary edge. As described
in Section VI, the simulations converged to steady states
that do not appear to depend on the initial conditions.
Furthermore, simulations with both sets of equations of
motion converged to the same steady state, though the
convergence is slower in the finite vertex mobility case.
This shows that the distance on cloths can be used not
only to measure the convergence of a simulations to a
steady state, but also to quantify the extent of the dif-
ferences introduced into simulation results by the use of
alternative numerical implementations.

Section VII describes a model dislocation network
where the dislocations are endowed with a constant en-
ergy per line length and the network evolves by energy
minimization. As with the grain boundary network, sim-
ulations beginning from different sets of initial condi-
tions converged toward steady states that were identi-
cal within sampling errors. Perhaps more significantly,
the distance on cloths shows that the approach from the
random graph initial condition to the steady state does
not depend on the implementation of a separate topologi-
cal operation when dislocations intersect, as in Figure 10.
That is, the implementation of this specific model system
can be significantly simplified and computational require-
ments can be reduced without measurably changing the
statistical local topology of the steady state condition.

A distance on cell complexes is expected to be useful
more generally as well. Apart from testing for the conver-
gence of simulations and the invariance of the results to
implementation details, the distance allows a meaning-
ful comparison of simulations with experimental obser-
vations, the quantification of the variability of cell com-
plexes generated in a particular way, and the iterative
modification of a cell complex by continually reducing the
distance to an intended target. We sincerely hope that
this stimulates further research into statistical topology
and its applications to materials science and physics.

Acknowledgments

The authors would like to thank the Institute for
Advanced Study where the original idea occurred. B.
Schweinhart was supported by a National Science Foun-
dation Graduate Research Fellowship under Grant No.
DGE-1148900, and the Center of Mathematical Sciences
and Applications at Harvard University.



12

[1] H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and
E. Ma, Nature 439, 419 (2006).

[2] W. H. Zachariasen, Journal of the American Chemical
Society 54, 3841 (1932).

[3] C. Motz, D. Weygand, J. Senger, and P. Gumbsch, Acta
Materialia 57, 1744 (2009).

[4] F. Smallenburg, L. Leibler, and F. Sciortino, Physical
review letters 111, 188002 (2013).

[5] D. J. Rowenhorst, A. C. Lewis, and G. Spanos, Acta
Materialia 58, 5511 (2010).

[6] J. Banhart, Progress in materials Science 46, 559 (2001).
[7] S. F. Swallen, K. L. Kearns, M. K. Mapes, Y. S. Kim,

R. J. McMahon, M. D. Ediger, T. Wu, L. Yu, and
S. Satija, Science 315, 353 (2007).

[8] S. Singh, M. D. Ediger, and J. J. de Pablo, Nature ma-
terials 12, 139 (2013).

[9] M. Clusel, E. I. Corwin, A. O. N. Siemens, and J. Brujić,
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