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Abstract. We prove that the fractal dimension of a metric space equipped with
an Ahlfors regular measure can be recovered from the persistent homology of ran-
dom samples. Our main result is that if x1, . . . , xn are i.i.d. samples from a d-
Ahlfors regular measure on a metric space, and E0

α (x1, . . . , xn) denotes the α-
weight of the minimum spanning tree on x1, . . . , xn :

E0
α (x1, . . . , xn) =

∑
e∈T (x1,...,xn)

|e|α ,

then there exist constants 0 < C1 ≤ C2 so that

C1 ≤ n−
d−α
d E0

α (x1, . . . , xn) ≤ C2

with high probability as n→∞. In particular, d can be recovered from the limit

log
(
E0
α(x1, . . . , xn)

)
/ log(n) −→ (d− α)/d .

This is a generalization of a result of Steele [63] from the non-singular case to
the fractal setting. We also construct an example of an Ahlfors regular measure

for which the limit limn→∞ n−
d−α
d E0

α (x1, . . . , xn) does not exist with high prob-
ability, and prove analogous results for weighted sums defined in terms of higher
dimensional persistent homology.

1. Introduction

The first precise notion of a fractal dimension was proposed by Hausdorff in 1918 [32,
38]. Since then, many other definitions have been put forward, including the box [13]
and correlation [35] dimensions. These quantities do not agree in general, but coin-
cide on a class of regular sets. Fractal dimension was popularized by Mandelbrot in
the 1970s and 1980s [51, 50], and it has since found a wide range of applications in
subjects including medicine [4, 47], ecology [36], materials science [24, 69], and the
analysis of large data sets [5, 66]. It is also important in pure mathematics and math-
ematical physics, in disciplines ranging from dynamics [65] to probability [7].

Recently, there has been a surge of interest in applications of topology, and of per-
sistent homology in particular. Several authors have proposed estimators of fractal
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dimension defined in terms of minimum spanning trees and higher dimensional per-
sistent homology [2, 49, 53, 56, 67], and provided empirical evidence that those
quantities agreed with classical notions of fractal dimension. Here, we provide the
first rigorous justification for the use of random minimum spanning trees and higher
dimensional persistent homology to estimate fractal dimension.

We define a persistent homology dimension for measures (Definition 9) and prove
that it equals the Hausdorff dimension for a wide class of “regular” measures (Corol-
lary 10). In concurrent, separate work with J. Jaquette [42], we implement an al-
gorithm to compute this persistent homology dimension and provide computational
evidence that it performs as well or better than classical dimension estimation tech-
niques.

Informally, a set of “fractal dimension” d is self-similar in the sense that its “local
properties” measured at scale ε scale as εd or ε−d for some positive real number
d that may be non-integral. This is not well-defined in general, and there exist
“multifractals” for which different local properties give different values of d. Here,
we assume a standard regularity hypothesis that implies that the fractal dimension
of a measure is well-defined in the sense that the various classical notions of fractal
dimension — including the Hausdorff, box-counting, and correlation dimensions —
coincide. This is done by taking the volumes of balls centered at points in our set as
the defining “local property.”

Definition 1 ([8, 22]). A probability measure µ supported on a metric space X is
d-Ahlfors regular if there exist positive real numbers c and δ0 so that

(1)
1

c
δd ≤ µ (Bδ (x)) ≤ c δd

for all x ∈ X and δ < δ0, where Bδ (x) is the open ball of radius δ centered at x.

Ahlfors regularity is a common hypothesis used when studying geometry and analysis
in the fractal setting [22, 23, 44, 48, 55]. If µ is d-Ahlfors regular on X then it is
comparable to the d-dimensional Hausdorff measure onX, and the Hausdorff measure
is itself d-Ahlfors regular. Examples of Ahlfors regular measures include the natural
measures on the Sierpiński triangle and Cantor set, and, more generally, on any
self-similar subset of Euclidean space defined by an iterated function system whose
correct-dimensional Hausdorff measure is positive [1] (a weaker requirement than
the usual open set condition); a certain well-studied measure on the boundary of
certain hyperbolic groups including the fundamental group of a compact, negatively
curved manifold [20, 23]; and bounded probability densities on a compact manifold,
either with the intrinsic metric or one induced by an embedding in Euclidean space
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(these are indeed “self-similar” sets). As such, our methods and results will be more
general than previous papers on the absolutely continuous case. Standard arguments
used in proofs for the non-singular case do not work here, and laws of large numbers
that follow from them are false for some Ahlfors regular measures (as we will see in
Counterexample 4 below).

We study the asymptotic behavior of random variables of the form

Ei
α (x1, . . . , xn) =

∑
I∈PH i(x1,...,xn)

|I|α ,

where {xj}j∈N are i.i.d. samples from a probability measure µ on a metric space,

PH i (x1, . . . , xn) denotes the i-dimensional reduced persistent homology of the Čech
or Vietoris–Rips complex of {x1, . . . , xn} , and |I| is the length of a persistent homol-
ogy interval. Unless otherwise specified, our results apply to the persistent homology
of either the Čech or Vietoris–Rips complex, though the constants may differ. The
case where i = 0 and µ is absolutely continuous is already well-studied, under a
different guise: if T (x1, . . . , xn) denotes the minimum spanning tree on x1, . . . , xn
and

Eα (x1, . . . , xn) =
∑

e∈T (x1,...,xn)

|e|α ,

then
Eα (x1, . . . , xn) = E0

α (x1, . . . , xn)

where persistent homology is taken with respect to the Vietoris–Rips complex.

In 1988, Steele [63] proved the following celebrated result.

Theorem 2 (Steele). Let µ be a compactly supported probability measure on Rm,
m ≥ 2, and let {xn}n∈N be i.i.d. samples from µ. If 0 < α < m,

lim
n→∞

n−
m−α
m E0

α (x1, . . . , xn)→ c (α,m)

∫
Rm

f (x)(m−α)/m dx

with probability one, where f (x) is the probability density of the absolutely continuous
part of µ, and c (α,m) is a positive constant that depends only on α and m.

Steele wrote [63]:

One feature of Theorem 2 that should be noted is that if µ has bounded
support and µ is singular with respect to Lebesgue measure, then we
have with probability one that E0

α (x1, . . . , xn) = o
(
n(d−α)/d) . Part of

the appeal of this observation is the indication that the length of the
minimum spanning tree is a measure of the dimension of the support
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of the distribution. This suggests that the asymptotic behavior of the
minimum spanning tree might be a useful adjunct to the concept of
dimension in the modeling applications and analysis of fractals; see,
e.g., [50].

However, despite many subsequent sharper and more general results for non-singular
measures on Euclidean space [3, 43, 70] and Riemannian manifolds [21], little is
known about the asymptotic properties of random minimum spanning trees for sin-
gular measures. As far as we know, the only previous result toward that end is
that of Kozma, Lotker and Stupp [44], who proved that if µ is a d-Ahlfors regular
measure with connected support, then the length of the longest edge of a minimum

spanning tree on n i.i.d. points sampled from µ is ≈ (log (n) /n)1/d , where the symbol
≈ denotes that the ratio between the two quantities is bounded between two positive
constants that do not depend on n. They also raised the possibility that analogous
asymptotics hold for the alpha-weight of a minimum spanning tree, which we prove
here in Theorem 3.

More recently, as the field of stochastic topology has matured, several studies have ex-
amined the properties of the higher dimensional persistent homology of random geo-
metric complexes defined by absolutely continuous measures on Euclidean space [6,
10, 9, 28, 68]. Most relevantly, Divol and Polonik [27] proved a strong law of large
numbers akin to Steele’s theorem for the persistent homology of points sampled from
bounded, absolutely continuous probability densities on [0, 1]m . In the non-persistent
setting, several authors have investigated the homology of random geometric com-
plexes on manifolds [11, 12, 25, 54]. However, as far as we know, the current work
is the first to study persistent homology of random geometric complexes beyond the
world of absolutely continuous measures on Rm with convex support (with the ex-
ception of our unpublished manuscript [59], which has largely been subsumed into
the current work). With these broader hypotheses, we encounter difficult geomet-
ric issues related to non-locality and non-triviality of persistent homology, which we
discuss below.

A relationship between persistent homology and fractal dimension has been observed
in several experimental studies. In 1991, Weygaert, Jones, and Martinez [67] pro-
posed using the asymptotics of E0

α (x1, . . . , xn) to estimate the generalized Hausdorff
dimensions of chaotic attractors. The PhD thesis of Robins, which was arguably one
of the first publications in the field of topological data analysis, studied the scaling of
Betti numbers of fractals and proved results for the 0-dimensional persistent homol-
ogy of disconnected sets [56]. In joint work with Robert MacPherson, we proposed
a dimension for probability distributions of geometric objects based on persistent
homology in 2012 [49]. Note that the quantities studied in that paper and in the
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Figure 1. Two sets of fractional dimension, and their ε-neighborhoods: (a)
a modified Sierpiński triangle and (b) a branched polymer. Their complex
geometry is reflected by their persistent homology.

thesis of Robins measure the complexity of a shape rather than the fractional di-
mension. Most recently, Adams et al. [2] defined a persistent homology dimension
for measures in terms of the asymptotics of E1

i (x1, . . . , xn). Their computational
experiments helped to inspire this work. We study a modified version of their di-
mension here (Definition 9), and find hypotheses under which it agrees with the
Ahlfors dimension (Corollary 10).

In the extremal setting, Kozma, Lotker and Stupp [45] defined a minimum spanning
tree dimension for a metric space M in terms of the behavior of E0

α (Y ) as Y ranges
over all subsets of M, and proved that it equals the upper box dimension. In 2018, we
generalized this concept to higher dimensional persistent homology and established
hypotheses under which it agrees with the upper box dimension [60]. In the course
of this work, we investigated extremal questions about the number of persistent
homology intervals of a set of n points; these questions are also important in the
probabilistic context, as we describe below.

1.1. Our Results for Minimum Spanning Trees. Our main result is :

Theorem 3. Let µ be a d-Ahlfors regular measure on a metric space, and let {xn}n∈N
be i.i.d. samples from µ. If 0 < α < d, then

E0
α (x1, . . . , xn) ≈ n

d−α
d
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with high probability as n→∞, where the symbol ≈ denotes that the ratio of the two
quantities is bounded between positive constants that do not depend on n.

We provide a proof of this result using the language of minimum spanning trees
(rather than persistent homology) in Section 3. The special case where µ is a measure
on Euclidean space is also a consequence of either Theorems 5 or 8 below.

The hypotheses we require to prove Theorem 3 and our other results below are
somewhat weaker than Ahlfors regularity. In particular, the proofs of our upper
bounds only require that Mδ (µ) = O

(
δ−d
)
, where Mδ (µ) is the maximal number

of disjoint balls of radius δ centered at points of supp µ. Also, the proofs of our
lower bounds require that the uniform bounds in Equation 1 are satisfied on a set
of positive measure, but not necessarily at every point in the support of µ. However,
a regularity hypothesis on the underlying measure is necessary. Some definitions
of fractals include the chaotic attractors studied in Section 4 of our computational
paper [42]. Our computations suggest that for several examples and each α > 0 there

is a different value of dα so that E0
α (y1, . . . , yn) ≈ n

dα−α
dα (i.e. that the measure is

“multifractal”). In particular, we could not replace d in the previous theorem with,
say, the upper box or Hausdorff dimension of the support.

Our next result shows that a sharper law of large numbers as in Theorem 2 is false
in general for Ahlfors regular measures.

Counterexample 4. Let d = log (2) / log (3) and 0 < α < d. There exists a d-

Ahlfors regular measure µ on [0, 1] so that limn→∞ n
− d−α

d E0
α (x1, . . . , xn) does not

converge in probability.

In particular, we construct an example of a d-Ahlfors regular measure where

n−
d−α
d E0

α (x1, . . . , xn) oscillates between two positive real numbers with high proba-
bility. We provide a brief description of the counterexample here, and a complete
proof in A. The construction can easily be modified to produce a counterexample of
of dimension d for any d ∈ (0, 1) as described at the end of A, but we concentrate
on the case d = log (2) / log (3) for clarity.

Recall that the standard middle-thirds Cantor set C is constructed as the intersection
of a nested sequence of closed sets T1 ⊃ T2 ⊃ . . . , where Tk consists of 2k disjoint

intervals of length
(
1
3

)k
. Our counterexample will resemble C at some scales, and

C rescaled by 5
7

at others (see Figure 2). It will be supported on another nested
sequence of of closed sets S1 ⊃ S2 . . . . To construct the counterexample, we suppose

that limn→∞ n
− d−α

d E0
α (y1, . . . , yn) := c exists in probability, where {yj}j∈N are i.i.d.

samples from the natural measure on C. We set Sk = Tk for all sufficiently small
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Figure 2. A rough depiction of the construction of Counterexample 4,
where the size of each row is shown relative to the standard middle thirds
Cantor set C at the same scale. At larger scales, it resembles C (first row).
At a smaller scale, we shrink the pieces of the set by 5

7 relative to C (second

row) resulting in structure that resembles C rescaled by 5
7 when zooming

in further (third row). Even smaller, we re-expand pieces of the structure
by 7

5 relative to C (fourth row) so that at finer scales it resembles C again
(fifth row). We repeat this process, resulting in a structure that alternates
between resembling C and 5

7C at different length-scales.

k which ensures that, to a certain point, n−
d−α
d E0

α (x1, . . . , xn) also approaches c.

At smaller length-scales Sk instead consists of 2k intervals of length 5
7

(
1
3

)k
, and we

will show that n−
d−α
d E0

α (x1, . . . , xn) will dip down toward
(
5
7

)α
c. We repeat this

inductively, resulting in quantities that oscillate between c and
(
5
7

)α
c.

1.2. Our Results for Higher Dimensional Persistent Homology. As we noted
in our earlier paper [60], proving asymptotic results for higher dimensional persistent
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homology is challenging due to extremal questions about the number of persistent
homology intervals of a finite point set. While a minimum spanning tree on n points
always has n−1 edges, a set of n points may have trivial PH i for all i > 0, and there
exist families of finite metric spaces for which the number of persistent homology
intervals grows faster than linearly in the number of points.

To prove upper bounds for the asymptotics of Ei
α for i > 0, we require either ex-

tremal or probabilistic control of the number of persistent homology intervals of a
set of n points. Families of point sets in Euclidean space with more than a linear
number of persistent homology intervals exist [34, 60], but are considered somewhat
pathological. As far as we know, the Upper Bound Theorem [62] on the number
of faces of a neighborly polytope provides the best extremal upper bound for the
number of persistent homology intervals of the Čech complex of a finite subset of
Rm:

|PH i (x1, . . . , xn)| =

{
O (ni+1) i < bm

2
c

O
(
nb

m+1
2
c
)

i ≥ bm
2
c

For the Vietoris–Rips complex of points in Euclidean space, we [60] showed that

|PH 1 (x1, . . . , xn)| = O (n)

by modifying an argument of Goff [34]. A different extremal question arises in the
process of proving lower bounds for Ei

α. In particular, a subset Rm must have dimen-
sion above a certain non-triviality constant γmi (defined in Section 6.2) to guarantee
the existence of subsets with non-trivial i-dimensional persistent homology. Note
that γmi may depend on whether persistent homology is taken with respect to the
Čech complex or Vietoris–Rips complex. Unless otherwise noted, that dependence
is left implicit. We showed that γm1 < m− 1/2 for the Čech complex in our previous
paper [60].

The proofs of the upper bounds in the next two theorems work for Ahlfors regular
measures on arbitrary metric spaces, but the lower bound requires that the measure
is defined on a subset of Euclidean space.

Theorem 5. Let µ be a d-Ahlfors regular measure on Rm with d > γmi , and let
{xn}n∈N be i.i.d. samples from µ. If there are positive real numbers D and a so that

|PH i (x1, . . . , xn)| < Dna

for all finite subsets of supp µ, and 0 < α < ad, then there are real numbers 0 < ζ < Z
so that

ζ n
d−α
d ≤ Ei

α (x1, . . . , xn) ≤ Z n
ad−α
d
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with high probability, as n→∞. In fact, the upper bound holds with probability one.

The upper bound is shown in Proposition 27, and the lower bound in Proposition 41.
The following is a corollary, using our previous results on γ21 and the fact that the
Alpha complex of a set of n points in R2 has O (n) faces.

Corollary 6. Let µ be a d-Ahlfors regular measure on R2, and let {xn}n∈N be
i.i.d. samples from µ. If 0 < α < d. If d > 1.5, 0 < α < d, and persistent ho-
mology is taken of the Čech complex, then

E1
α (x1, . . . , xn) ≈ n

d−α
d

with high probability as n→∞. In fact, the upper bound holds with probability one.

Another corollary, based on our results on the Rips complex [60], is

Corollary 7. Let µ be a d-Ahlfors regular measure on Rm, and let {xn}n∈N be
i.i.d. samples from µ. If persistent homology is taken of the Rips complex, d > γm1 ,
and 0 < α < d, then

E1
α (x1, . . . , xn) ≈ n

d−α
d

with high probability as n→∞. In fact, the upper bound holds with probability one.

For i > 0 and m > 2, we show better upper bounds for d-Ahlfors regular measures
for which the expectation and variance of |PH i (x1, . . . , xn)| scale linearly and sub-
quadratically, respectively. These quantities can be measured in practice, allowing
one to determine whether higher dimensional persistent homology would be suitable
for dimension estimation in applications.

Theorem 8. Let µ be a d-Ahlfors regular measure on Rm so that d > γmi , and let
{xn}n∈N be i.i.d. samples from µ. If

E (|PH i (x1, . . . , xn)|) = O (n) and Var (|PH i (x1, . . . , xn)|) /n2 → 0

and 0 < α < d, then there are real numbers 0 < λ < Λ so that

λn
d−α
d ≤ Ei

α (x1, . . . , xn) ≤ Λn
d−α
d log (n)

α
d

with high probability, as n→∞.

The upper and lower bounds are shown in Propositions 32 and 41, respectively. Many
of our other results can be viewed as special cases of this theorem, including Corol-
laries 6 and 7 and the particular case of Theorem 3 where the measure is supported
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on Euclidean space. More generally, although there are few rigorous results on the
scaling of the number of persistent homology intervals in higher dimensions, com-
putational results indicate that these hypotheses hold broadly — see the Appendix.
Also, Stemeseder [64] showed that any positive, continuous probability density on
the m-dimensional Euclidean sphere satisfies the hypothesis on the expected number
of intervals, and the uniform measure on the sphere satisfies the hypothesis on the
variance. However, we think these are interesting hypotheses not because they are
easy to prove but because they can be estimated in data analysis.

1.3. Dimension Estimation. As we noted earlier, several authors have proposed
to use persistent homology for dimension estimation. Here, we provide the first
proof that these methods recover a classical fractal dimension, under certain hy-
potheses.

We define a family of PH i dimensions of a measure, one for each real number α > 0
and i ∈ N :

Definition 9.

dimPHα
i

(µ) =
α

1− β
,

where

β = lim sup
n→∞

log (E (Ei
α (x1, . . . , xn)))

log (n)
.

That is, dimPHα
i

(µ) is the unique real number d so that

lim sup
n→∞

E
(
Ei
α (x1, . . . , xn)

)
n−

k−α
k

equals∞ for all k < d, and is bounded for k > d. The case α = 1 is very closely related
to the dimension studied by Adams et al. [2], and agrees with it if defined.

Theorem 2 [63] implies that if µ is a compactly supported, non-singular probability
measure on Rm, then dimPHα

0
(µ) = m for 0 < α < m. Similarly, the results of Divol

and Polonik [27] show that if µ is a bounded probability measure on the cube in Rm,
then dimPHα

i
(µ) = m for 0 < α < m and 0 ≤ i < m.

The following is a corollary of our theorems on the asymptotic behavior of Ei
α:

Corollary 10. If µ is a d-Ahlfors regular measure on a metric space and 0 < α < d
then

dimPHα
0

= d .
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Furthermore, if µ is defined on Rm, d > γmi , and

E (|PH i (x1, . . . , xn)|) = O (n) and Var (|PH i (x1, . . . , xn)|) /n2 → 0 ,

then
dimPHα

i
= d .

This result is weaker than our main theorems, and it can be proven with weaker
hypotheses. For example, the upper bound dimPHα

0
(µ) ≤ d holds if the hypothesis

of d-Ahlfors regularity is replaced by the requirement that the upper box dimension
of the support of µ is equal to d.

Proposition 11. Let µ be a measure on a bounded metric space X, and let dimbox (X)
be the upper box dimension of X (defined below). If α < dimbox (X) then

dimPHα
0

(µ) ≤ dimbox (X) .

In separate experimental work (joint with J. Jaquette), we implement an algorithm to
compute the persistent homology dimensions and compare its practical performance
below to classical techniques for estimating fractal dimension, such as box–counting
and the estimation of the correlation dimension. The persistent homology dimension
(for i = 0) performs about as well as the correlation dimension, both in terms of the
convergence rate and speed of computation, and significantly better than the box
dimension. [42] Our results here imply that the computational estimates in [42] will
converge with high probability as the number of samples goes to infinity for several
of the examples considered. These include the PH 0 dimension of the Cantor dust,
Cantor set cross an interval, Sierpiński triangle, and Menger sponge, and the PH 1

dimensions of the Cantor set cross an interval and the Sierpiński triangle.

1.4. A Conjecture. We conjecture that if the persistent homology of the support
of an Ahlfors regular measure is trivial, then the Lebesgue measure can be replaced
with the d-dimensional Hausdorff measure Hd in Theorem 2. Note that this would
exclude Counterexample 4.

Conjecture 12. Let µ be a d-Ahlfors regular measure on a metric space M and let
{xn}n∈N be i.i.d. samples from µ. If PH 0 (supp µ) is trivial and 0 < α < d, then

lim
n→∞

n−
d−α
d E0

α (x1, . . . , xn)→ c0 (α, d)

∫
M

f (x)(d−α)/d dx

with probability one, where f (x) is the probability density of the absolutely continuous
part of µ with respect to the d-dimensional Hausdorff measure Hd and c0 (α, d) is a
continuous function of α and d.
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Furthermore, if µ is supported on Rm, d > γmi , and PH i (supp µ) is trivial then

lim
n→∞

n−
d−α
d Ei

α (x1, . . . , xn)→ ci (α, d)

∫
M

f (x)(d−α)/d dx

with probability one, where f (x) is the probability density of the absolutely continuous
part of µ with respect to the d-dimensional Hausdorff measure Hd and ci (α, d) is a
continuous function of α and d.

2. Preliminaries

We introduce notation and lemmas that will be used throughout the paper. Lemma 14
controls the asymptotics of the maximal number of disjoint balls centered at points
in the support of an Ahlfors regular measure, and will be applied in many of our
arguments. In Section 2.3, we define occupancy indicators in terms of collections of
subsets of a metric space, and prove a weak law of large numbers for them. Later in
the paper, we will use these occupancy indicators to define events implying the exis-
tence of a minimum spanning tree edge or persistent homology interval of a certain
length.

2.1. Notation. In the following, X will denote a metric space and x will denote
a finite point set with an unspecified number of elements. Furthermore, xn will
be shorthand for a finite point set {x1, . . . , xn} ⊂ X containing n points. If the
measure µ is obvious from the context, {xj}j∈N will be a collection of independent
random variables with common distribution µ. Finally, we will use symbols with the
“mathcal” font (i.e. A,B, . . .) for collections of sets.

2.2. Ahlfors Regularity and Ball-counting. Let X be a metric space, and let
Mδ (X) be the maximal number of disjoint open balls of radius δ centered at points
of X. The upper box dimension is defined in terms of the asymptotic properties of
Mδ (X) .

Definition 13. Let X be a bounded metric space. The upper box dimension of X is

dimbox (X) = lim sup
δ→0

log (Mδ (X))

− log (δ)
.

IfX admits a d-Ahlfors regular measure, we can control the behavior ofMδ (X) .

Lemma 14 (Ball-counting Lemma). If µ is a is d-Ahlfors regular measure supported
on a metric space X then

1

c
2−d δ−d ≤Mδ (X) ≤ c δ−d
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for all δ < δ0, where c and δ0 are the constants given in Definition 1.

Proof. Let {xj}Mδ(X)
j=1 be the centers of a maximal set of disjoint balls of radius δ

centered at points of X.

1 = µ (X)

≥
Mδ(µ)∑
j=1

µ (Bδ (xj)) by disjointness

≥ 1

c
δdMδ (µ) by Ahlfors regularity

=⇒ Mδ (µ) ≤ cδ−d .

The maximality of {Bδ (xi)}Mδ(µ)
i=1 implies that the balls of radius 2δ centered at the

points {xi} cover X. It follows that

1 = µ (X)

≤
Mδ(X)∑
j=1

µ (B2δ (xj))

≤ c2dδdMδ (X) by Ahlfors regularity

=⇒ Mδ (X) ≥ 1

c
2−dδ−d ,

as desired. �

2.3. Occupancy Indicators. Our strategy for proving lower bounds for the asymp-
totic behavior of Ei

α(x1, . . . , xn) will be to define certain occupancy indicators
that imply the existence of a persistent homology interval (or minimum spanning
tree edge) whose length is bounded away from zero.

If A and B are sets define

δ (A,B) =

{
0 A ∩B = ∅
1 A ∩B 6= ∅

.

Also, If A is a set and B is a collection of sets define the occupancy indicator

Ξ (x, A,B) =

{
1 δ (A,x) = 0 and δ (B,x) = 1 ∀B ∈ B
0 otherwise

.
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All occupancy indicators considered in this paper will satisfy A ∩ B = ∅ for all
B ∈ B, and B1 ∩ B2 = ∅ for all B1, B2 ∈ B so that B1 6= B2. We say that two
occupancy indicators Ξ (x, A1,B) and Ξ (x, A2, C) (where x is the same sample for
each) are disjoint if (

A1 ∪
⋃
B∈B

B

)
∩

(
A2 ∪

⋃
C∈C

C

)
= ∅ .

An n, p, q, r-bounded occupancy indicator is a random variable of the form

Ξ (xn, A,B) ,

where B is a collection of at least r sets, and xn is a collection of n independent
random variables with common distribution ν satisfying

ν (A) ≤ q/n and ν (B) ≥ p/n ∀ B ∈ B .

If the above conditions on ν and the number of sets in B hold with equality, we say
that Ξ (xn, A,B) is a n, p, q, r-uniform occupancy indicator.

Disjoint n, p, q, r-uniform occupancy indicators satisfy a weak law of large numbers
as n→∞.

Lemma 15. Let r, a > 0, and 0 < p, q < 1. Also, for each n ∈ N let Xn
1 , . . . , X

n
banc

be disjoint n, p, q, r-uniform occupancy indicators. If Yn = 1
n

∑banc
j=1 Xn

j , then

lim
n→∞

Yn = γ

in probability, where γ = ae−q (1− e−p)r .

Proof. First, we compute the limiting expectation of the events Xn
j as n→∞:

E
(
Xn
j

)
= P

(
Xn
j = 1

)
=
(

1− q

n

)n r∑
j=0

(−1)j
(
r

j

)(
1− j p/n

1− q/n

)n
by inclusion-exclusion. Therefore

lim
n→∞

E
(
Xn
j

)
= e−q

(
r∑

k=0

(−1)k
(
r

k

)
e−kp

)
= e−q

(
1− e−p

)r
where we factored the second term in the middle equation using the binomial theo-
rem. Thus limn→∞ E (Yn) = γ by linearity of expectation.
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A similar computation shows that if j 6= k,

lim
n→∞

E
(
Xn
j X

n
k

)
= e−2q

(
1− e−p

)2r
.

It follows that

lim
n→∞

Cov
(
Xn
j , X

n
k

)
= lim

n→∞

(
E
(
Xn
j X

n
k

)
− E

(
Xn
j

)
E (Xn

k )
)

= 0 .

Therefore

Var (Yn) =
1

n2

banc∑
j=1

Var (Xj) + 2

banc∑
j=1

j−1∑
i=1

Cov
(
Xn
j , X

n
k

)
∼ a

n
Var (Xn

1 ) + a
n2 − n
n2

Cov (Xn
1 , X

n
2 )

≤ a

n
+ a

(
1− 1

n

)
Cov (Xn

1 , X
n
2 )

also converges to 0 as n goes to ∞.

Let ε > 0 and 0 < ρ < 1. Choose N sufficiently large so that

|E (Yn)− γ| < ε/2 and Var (Yn) <
ε2ρ

4

for all n > N. If n > N,

P (|Yn − γ| > ε) ≤ P (|Yn − E (Yn)| > ε/2)

≤ P
(
|Yn − E (Yn)| > 1

√
ρ

√
Var (Yn)

)
≤ ρ

by Chebyshev’s Inequality. �

The occupancy indicators we define below will not be uniform, but we can use the
previous lemma to bound them. To do so, we require a standard lemma on non-
atomic measures [41, 61].

Lemma 16. If µ is a non-atomic measure on a metric space Y, and 0 < a < µ (Y )
then there exists Y0 ⊂ Y so that µ (Y0) = a.
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Lemma 17. Let r, a > 0, 0 < p, q < 1, and sn ≥ banc for all n ∈ N. Also, for each
n ∈ N let Xn

1 , . . . , X
n
sn be disjoint n, p, q, r-bounded occupancy indicators. Under these

hypotheses, there is a γ > 0 so that

lim
n→∞

1

n

sn∑
j=1

Xn
j ≥ γ

with high probability.

Proof. Let a0 = min (a, 1/ (p+ q)) , 1 ≤ j ≤ ba0nc, and

Xn
j = Ξ

(
xn, A

n
j ,Bnj

)
.

ν is non-atomic, so by the previous lemma we can find a subset B̂ of each set B ∈ Bnj
so that ν

(
B̂
)

= p/n. Let

B̂nj =
{
B̂ : B ∈ Bnj

}
and Dn =

ba0nc⋃
j=1

⋃
B̂∈B̂n

B̂ .

We will show that there are disjoint sets Ân1 , . . . , Â
n
ba0nc so that Anj ⊆ Ânj ⊂ Dc

n and

ν
(
Ânj

)
= q/n for j = 1, . . . , ba0nc. Let D̂n = Dc

n \ ∪jAnj . The maximum index of j

is ba0nc and a0 (p+ q) ≤ 1 so

ν
(
D̂0

)
≥
ba0nc∑
j=1

( q
n
− ν

(
Anj
))

.

Applying the previous lemma to ν |D̂n gives a C1 ⊂ D̂n with ν (C1) = q/n− ν (An1 ) ,

so if Ân1 = C1∪An1 then An1 ⊆ Ân1 ⊂ D̂n and ν
(
Ân1

)
= q/n. Assuming we have found

Ân1 , . . . , Â
n
k we can apply the same argument to ν |D̂n\∪kj=1Â

n
j

to find Ânk+1.

Let

X̂n
j = Ξ

(
xn, Â

n
j , B̂nj

)
.

By construction, Xn
j = 1 =⇒ X̂n

j = 1 so 1
n

∑bsnc
j=1 X

n
j stochastically dominates

1
n

∑ba0 nc
j=1 X̂n

j . Applying the Lemma 15 to the latter sum implies the desired result. �
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3. The Proofs for Minimum Spanning Trees

We prove the upper and lower bounds in Theorem 3 in Sections 3.1 and 3.2 below.
First, we sketch both proofs. If x is a finite metric space, let T (x) denote the
minimum spanning tree on x, and let p (x, δ) be the number of edges of T (x) of
length greater than δ.

To prove the upper bound, we begin by controlling p (x, δ) in terms of the max-
imal number of disjoint balls of radius δ/2 centered at points of xn (Lemma 19).
Combining this with the asymptotics we found in the ball-counting lemma above
(Lemma 14) gives that p (xn, δ) ≤ Cδ−d for some constant C > 0 and all xn ⊂ X.
We convert this into a bound on Eα

i (xn) by integrating (Lemma 20) and using that
a minimum spanning tree on n points has n− 1 edges, yielding the upper bound in
Theorem 3 (Proposition 21).

For the lower bound, we define an occupancy indicator that implies the existence of
a minimum spanning tree edge of length at least δ, by requiring that a ball of radius
δ is occupied and its annulus of radii (δ, 2δ) is not (Lemma 22 and the preceding
text). Taking a collection of these indicators for a maximal set of disjoint balls of
radius 2n−1/d and applying Lemma 17 gives that

p
(
xn, n

−1/d) ≥ γn

with high probability as n→∞ for some γ > 0 (Lemma 23). Summing over edges of
length exceeding n−/d proves the lower bound in Theorem 3 (Proposition 24).

We use the next lemma in our proofs of both the upper and lower bounds. Let Gx,ε

be graph the with vertex set x so that x1 and x2 are connected by an edge if and
only if d (x1, x2) < ε (this is the one-skeleton of the Vietoris-Rips complex on x).
The following is a corollary of Kruskal’s algorithm.

Lemma 18.

p (x, ε) = β0 (Gx,ε)− 1

where β0 (Gx,ε) is the number of connected components of Gx,ε.

3.1. Proof of the Upper Bound in Theorem 3.

Lemma 19. Let X be a metric space and suppose that there are positive real numbers
D and d so that

(2) Mδ (X) ≤ D δ−d
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for all δ > 0, where Mδ(X) is be the maximal number of disjoint open balls of radius
δ centered at points of X (as defined in the previous section). Then

p (x, δ) < D2−d δ−d

for all finite subsets x of X and all δ > 0.

Proof. Let x ⊂ X and δ > 0. Also, let y consist of the centers of a maximal set
of disjoint balls of radius δ/2 centered at points of x. The maximality of y implies
that for every x ∈ x there exists a y ∈ y so that d (x, y) < δ. In particular, every
connected component of Gx,δ has a vertex that is an element of y. Therefore,

p (x, δ) = β0 (Gx,δ)− 1 by Lemma 18

≤ |y| − 1

≤ D (δ/2)−d by Eqn. 2

= 2−dDδ−d .

�

The previous lemma controls of the number of MST edges of length greater than ε.
We can use this to prove an upper bound for Eα

0 (xn) via the following lemma of
Cohen-Steiner et al. [19].

Lemma 20. Let J ⊂ R+ be a bounded set of positive real numbers and let

Jε = {j ∈ J : j > ε} .

If

|Jε| ≤ f (ε) <∞

for all ε > 0 then ∑
j∈Jε

jα ≤ εαf (ε) + α

∫ max J

δ=ε

f (δ) δα−1 dδ

for all α > 0. Furthermore, if |J | ≤ f (0) <∞ then

(3)
∑
j∈J

jα ≤ α

∫ max J

δ=0

f (δ) δα−1 dδ .



FRACTAL DIMENSION AND PERSISTENT HOMOLOGY 19

Proof. For completeness, we reproduce the proof in [19].
∑

j∈Jε j
α can be expressed

as an integral involving the distributional derivative of |Jε| . Applying integration by
parts yields: ∑

j∈Jε

jα =

∫ ∞
δ=ε

−∂ |Jδ|
∂δ

δα dδ

=
[
− |Jδ| δα

]∞
δ=ε

+ α

∫ ∞
δ=ε

|Jδ| δα−1 dδ

= εα |Jε|+ α

∫ sup J

δ=ε

|Jδ| δα−1 dδ

≤ εαf (ε) + α

∫ sup J

δ=ε

f (δ) δα−1 dδ .

�

Combining the previous two lemmas gives an an extremal upper bound for E0
α (xn)

that, when combined with Lemma 14, implies the upper bound for Theorem 3.

Proposition 21. Let X be a metric space and suppose that there are positive real
numbers D and d so that

Mδ (X) ≤ D δ−d

for all δ > 0. If 0 < α < d, then there exists a Dα > 0 so that

E0
α (xn) ≤ Dα n

d−α
d

for all n and all collections xn of n points in X. Furthermore, there exists a Dd > 0
so that

E0
d (xn) ≤ Dd log (n)

for all n and all collections xn of n points in X.

Proof. Rescale X if necessary so that its diameter is less than 1, and let

κ =
1

2

(
D

n− 1

)1/d

.

The previous lemma implies that

p ({xn} , ε) ≤ 2−dDε−d .

Furthermore,

p ({xn} , ε) ≤ n− 1
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because a minimum spanning tree on n points has n − 1 edges. Combining these
yields that p ({xn} , ε) ≤ f (ε) where

(4) f (ε) = min
(
n− 1, 2−dDε−d

)
=

{
n− 1 ε ≤ κ

2−dDε−d ε ≥ κ
.

We have that Applying Lemma 20 to the set of edge lengths of the minimum spanning
tree on xn yields

E0
α (xn) =

∑
e∈T (xn)

|e|α

≤ α

∫ 1

δ=0

f (δ) δα−1 dδ by Eqn. 3

= (n− 1)

∫ κ

δ=0

αδα−1 dδ + α2−dD

∫ 1

δ=κ

δα−d−1 dδ by Eqn. 4

= (n− 1) [δα]κδ=0 −
α

d− α
2−dD

[
δα−d

]1
δ=κ

= (n− 1)κα +
α

d− α
2−dD

(
κα−d − 1

)
= 2−αD

α
d

(
1 +D

α

d− α

)
(n− 1)

d−α
d − α

d− α
2−dD

≤ Dαn
d−α
d ,

where

Dα = 2−αD
α
d

(
1 +D

α

d− α

)
.

The result for α = d follows from a similar computation. �

We now prove the upper bound in Theorem 3.

Proof of the Upper Bound in Theorem 3. Let µ be a d-Ahlfors regular measure and
0 < α < d, and let X be the support of µ. By Lemma 14 there is a c > 0 so that

Mδ (X) ≤ c δ−d

for all δ > 0. Therefore, by the previous lemma there exists a Dα > 0 so that

E0
α (xn) ≤ Dα n

d−α
d

for all collections of n points xn ⊂ X. �
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Proposition 21 also implies Proposition 11, that the PH 0 dimension of a measure is
bounded above by the upper box dimension (Definition 13) of its support, even if it
is not Ahlfors regular.

Proof of Proposition 11. Let µ be a measure on a metric space X, d = dimbox (X)
be the upper box dimension of X, and α < d < d0. By Definition 13 there is a D > 0
so that

Mδ (X) ≤ D δ−d0

for all sufficiently small δ. Therefore, by Proposition 21, there is a Dα > 0 so that

E0
α (xn) ≤ Dα n

d0−α
d0

for all sets of n points xn ⊆ X.

Then

β := lim sup
n→∞

log (E (Ei
α (xn)))

log (n)
≤

log
(
n
d0−α
d0

)
log (n)

=
d0 − α
d0

and, recalling Definition 9,

dimPHα
i

(µ) =
α

1− β
≤ α

1− (d0 − α) /d0
= d0 ,

where we have used that d0−α
d0

> 0. This inequality holds for any d0 > d, so

dimPHα
i

(µ) ≤ d = dimbox (X) ,

as desired. �

3.2. Proof of the Lower Bound in Theorem 3. Our strategy to prove a lower
bound for the asymptotics of E0

α (xn) is to define random variables in terms of occu-
pancy patterns of disjoint balls of radius 2r. This will in turn allow us to count the
number of minimum spanning tree edges of lenght at least r.

Let M be a metric space and let µ be a d-Ahlfors regular measure with support M.
If B is a ball of radius 2r centered at a point y ∈ M and x is a finite subset of M,
define

ω (B,x) = Ξ (x, B \Br (y) , {Br (y)}) .

That is, ω (B,x) = 1 if x intersects Br (y) but not the annulus centered at y with
radii r and 2r.
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Figure 3. The red balls on the right all satisfy ω (B,x) = 1, which guar-
antees that the minimum spanning tree on the left has at least three edges
whose length exceeds r.

Lemma 22. Let B be a set of disjoint balls of radius 2r centered at points of M, and
let x be a finite subset of M. Then

p (x, r) ≥
∑
B∈B

ω (B,x)− 1 .

Proof. This is an immediate consequence of Lemma 18. See Figure 3. �

Next, we take B to be a maximal set of disjoint balls of radius 2n−1/d and use
Lemma 17 to provide a lower bound for p

(
xn, n

−1/d) .
Lemma 23. There is a positive real number γ > 0 so that

p
(
xn, n

−1/d) ≥ γn

with high probability as n→∞.

Proof. Fix n ∈ N and let ε = n−1/d. Let Bn
1 , . . . , B

n
sn be a maximal collection of

disjoint balls of radius 2ε centered at points of X, and let ynj be the center of Bn
j for

j = 1, . . . , sn.

Set

p =
1

c
and q = 2dc− 1

c
.
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where c is the constant appearing in the definition of Ahlfors regularity (Definition 1).
By that definition,

µ
(
Bε

(
ynj
))
≥ pεd =

p

n
and

µ
(
Bn
j \Bε

(
ynj
))
≤ c (2ε)d − 1

c
εd =

q

n
.

Also, Lemma 14 implies that

sn ≥
1

c
2−d2ε−d =

1

c
2−2dn .

Therefore, the occupancy indicators ω (Bn
1 ,xn) , . . . , ω

(
Bn
sn ,xn

)
satisfy the hypothe-

ses of Lemma 17 and

lim
n→∞

1

n

sn∑
j=1

ω
(
Bn
j ,xn

)
≥ γ

with high probability as n → ∞. Combining this with Lemma 22 gives the desired
result.

�

The lower bound in Theorem 3 follows quickly.

Proposition 24. Let µ be a d-Ahlfors regular measure on a metric space M. If
{xj}j∈N are i.i.d. samples from µ, and γ is as given in the previous lemma, then

lim
n→∞

n−
d−α
d E0

α (xn) ≥ γ

with high probability.

Proof. We have that

lim
n→∞

n−
d−α
d E0

α (xn) ≥ lim
n→∞

n−
d−α
d

(
n−1/d

)α
p
(
xn, n

−1/d)
≥ lim

n→∞
n−

d−α
d n−α/d (γn) by Lemma 23

= γ

with high probability as n→∞. �
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4. Persistent Homology

We provide a brief introduction to the persistent homology [29] of a filtration, loosely
following [60]. For a more in-depth survey refer to, e.g., [14, 15, 30, 31, 33]. A
filtration of topological spaces is a family {Xε}ε∈I of topological spaces indexed by
an ordered set I, with inclusion maps Xε1 ↪→ Xε2 for all pairs of indices ε1 < ε2. For
example, if X is a subset of a metric space M , the ε–neighborhood filtration of X,
{Xε}ε≥0 , is the family of ε-neighborhoods of X, where

Xε = {m ∈M : d (m,X) < ε} ,

together with inclusion maps Xε1 ↪→ Xε2 for ε1 < ε2. See Figure 1. If X is a subset
of Euclidean space, this construction is homotopy equivalent to the Čech complex
of X. The Čech complex of a subset X of a metric space is the simplicial complex
defined by

(x1, . . . , xn) ∈ C (X, ε) if ∩nj=1 Bε (xj) 6= ∅ .

Note that the Čech complex depends on the ambient metric space. For example if
p1, p2, p3 are the vertices of an acute triangle Rm and the ambient space is Rm then the
2-simplex (p1, p2, p3) will enter C (X, ε) when ε equals the circumradius of the triangle.
If the ambient space is {p1, p2, p3} , the simplex (p1, p2, p3) will enter the complex
when ε equals the maximum pairwise distance between the three points.

In Euclidean space, the Alpha complex of a finite set x is filtration on the Delu-
anay triangulation on x. We do not define the Alpha complex here; see [29] for a
definition.

Another common construction is the Vietoris–Rips complex: if Y is a metric space,
let V (Y, ε) be the simplicial complex defined by

(y1, . . . , yn) ∈ V (Y, ε) if d (yj, yk) < ε for j, k = 1, . . . , n .

The family {V (Y, ε)}ε>0 together with inclusion maps for ε1 < ε2 is a filtration
indexed by the positive real numbers. As noted earlier, all of our results apply to
both the Čech and Vietoris–Rips complexes except for Corollaries 6 and 7, though
the constants may differ. We will suppress the dependence of persistent homology
on the underlying filtration, unless otherwise noted.

The persistent homology module of a filtration is the product
∏

ε∈I Hi (Xε) ,
together with the homomorphisms jε0,ε1 : Hi (Xε0) → Hi (Xε1) for ε0 < ε1, where
Hi (Xε) denotes the reduced homology of Xε with coefficients in a field. If the rank
of iε0,ε1 is finite for all ε0 < ε1, — a hypothesis satisfied by all filtrations considered
in this paper [17, 15] — the persistent homology module decomposes canonically
into a set of interval modules [16, 71]. We denote the colletion of these intervals as
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PH i (X) ; each interval (b, d) ∈ PH i (X) corresponds to a homology generator that
is “born” at ε = b and “dies” at ε = d.

If x is a finite metric space and persistent homology is taken with respect to the
Vietoris–Rips complex, Kruskal’s algorithm implies that there is a length-preserving
bijection between intervals of PH 0 (x) and the edges of the minimum spanning tree
on x. The same is true if persistent homology is taken with respect to the Čech
complex if the ambient space is Rm, except that an interval is matched with an edge
of twice its length.

4.1. Properties of Persistent Homology. Let X be a metric space. For each
ε > 0, let PH ε

i (X) denote the set of intervals of PH i (X) of length greater than
ε:

PH ε
i (X) = {I ∈ PH i (X) : |I| > ε} .

Also, define

(5) pi (X, ε) = |PH ε
i (X)| .

If X, Y ⊂ X, let dH (X, Y ) denote the Hausdorff distance between X and Y :

dH (X, Y ) = inf {ε ≥ 0 : Y ⊆ Xε and X ⊂ Yε} .

Also, let d (X, Y ) be the infimal distance between pairs of points, one in each
set:

d (X, Y ) = inf
x∈X,y∈Y

d (x, y) .

We use the following properties of persistent homology in our proofs:

(1) Stability: If dH (X, Y ) < ε, there is an injection

η : PH 2ε
i (X)→ PH i (Y )

so that if η ((b0, d0)) = (b1, d1) then

max (|b0 − b1| , |d0 − d1|) < ε .

In particular,

pi (X, 2ε+ δ) ≤ pi (Y, δ)

for all δ ≥ 0. [17, 18]

(2) Additivity for well-separated sets: If X1, . . . , Xn ⊂M and

d (Xj, Xk) > max (diamXj, diamXk) (1− δj,k) ∀j, k
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then
pi (∪jXj, ε) ≥

∑
j

pi (Xj, ε) .

(3) Translation invariance: PH i (X) = PH i (X + t) for all t ∈ Rm.

(4) Scaling: For all ρ > 0,

PH i (ρX) = {(ρb, ρd) : (b, d) ∈ PH i (X)} .

We use property (1) in our proofs of both the upper and lower bounds in Theorems 5
and 8, and property (2) for our proof of the lower bound. For these results, we also
require a non-triviality property (as in Definition 35) and an upper bound for the
number of i-dimensional persistent homology intervals of a set of n points.

4.2. A Lemma. If X is a metric space, let F i
α (X, ε) denote the α-weighted sum of

the persistent homology intervals of X of length greater than ε :

F i
α (X, ε) =

∑
I∈PH ε

i(X)

|I|α .

We will use the following lemma in the next section.

Lemma 25. If dH (X, Y ) < ε/4 then

F i
α (X, ε) < 2αF i

α (Y, ε/2) .

Proof. By stability, there is an injection

η : PH ε
i (X)→ PH

ε/2
i (Y )

so that for all I ∈ PH ε
i (X)

|I| < |η (I)|+ ε/2 ≤ 2 |η (I)| .
It follows that

F i
α (X, ε) =

∑
I∈PH ε

i(X)

|I|α

<
∑

I∈PH ε
i(X)

2α |η (I)|α

≤ 2α
∑

J∈PH ε/2
i (Y )

|J |α

= 2αF i
α (Y, ε/2) .
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�

5. Upper Bounds

In this section, we prove the upper bounds for in Theorems 5 and 8, where the
former assumes extremal hypotheses on the number of intervals of PH i (xn) and the
latter assumes that the expectation and variance of the number of intervals behave
nicely.

In the extremal case, we closely follow the approach of Section 3.1. Instead of using
that a minimum spanning tree on n points has n − 1 edges, we assume that the
number of intervals of PH i (xn) is bounded above by Dna for some constant D. We
control pi (xn, δ) by approximating xn by with the centers of a maximal set of disjoint
balls of radius δ/2 and applying stability (Lemma 26). The asymptotics we found
in the ball-counting lemma above (Lemma 14) then imply that pi (xn, δ) ≤ Cδ−ad

for some constant C > 0 and all xn ⊂ X. We convert this into a bound on Eα
i (xn)

by integrating (using Lemma 20) and again using our assumption on the number of
intervals, yielding the upper bound in Theorem 5 (Proposition 27).

While the extremal hypotheses allow us to prove the desired upper bound in Corol-
lary 6, they are inadequate to show a similar upper bound for subsets of higher
dimensional Euclidean space. Instead, we show that we can obtain a better upper
bound on the scaling of Eα

i (xn) by assuming that

(6) E (|PH i (xn)|) = O (n)

and

Var (|PH i (xn)|) /n2 → 0 ,

which are quantities that can be estimated in practice during the course of data
analysis. We use Equation 6 to control the persistent homology of the support of
the measure (X) by approximating X by a point sample in Lemma 29 and applying
stability in Lemma 30, resulting in Proposition 31 on the asymptotics of truncated
α-weighted sums for PH i (X) . With that, we write PH i (xn) a sum of two terms, one
which approximates PH i (X) and one which corresponds to “d-dimensional noise” at
a certain scale. Controlling both terms gives a proof of the upper bound in Theorem 8
(Proposition 32).

5.1. Extremal Hypotheses. First, we prove the upper bound in Theorem 5, which
implies the upper bound for our result on measures supported on a subset of R2

(Corollary 6). The next lemma uses bottleneck stability to convert an extremal
bound on the number of persistent homology intervals of a set of n points in a
metric space X into a bound on the number of intervals of length greater than ε
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for any Y ⊆ X. It is the analogue of Lemma 19 for higher dimensional persistent
homology.

Lemma 26 (Interval Counting Lemma). If X is a bounded metric space so that

|PH i (x1, . . . , xn)| < Dna .

for some positive real numbers a and D and all finite subsets {x1, . . . , xn} of X, then

pi (Y, ε) < D′ε−ad

for some D′ > 0, all Y ⊆ X, and all ε > 0.

Proof. Recall from Equation 5 that pi (Y, ε) is the number of intervals of PH i (Y ) of
length greater than ε.

Let Y ⊆ X, ε > 0, and {yj} be the centers of a maximal set of disjoint balls of radius
ε/4 centered at points of Y. The balls of radius ε/2 centered at the points {yj} cover
Y so

dH ({yi} , Y ) < ε/2

It follows that

pi (Y, ε) ≤ pi ({yi} , 0) by stability

≤ D |yi|a by hypothesis

≤ DMε/4 (X)a

≤ Dca4−a/dε−ad by Lemma 14

as desired. �

The next proposition is the analogue of Proposition 21. The proof is nearly identical,
and we do not repeat it here.

Proposition 27. If X satisfies the hypotheses of the previous lemma and α < ad,
then there exists a Dα > 0 so that

Ei
α (x1, . . . , xn) ≤ Dαn

ad−α
d

for all finite subsets {x1, . . . , xn} ⊂ X and all n ∈ N. Furthermore there exists a
Dd > 0 so that

Ei
ad (x1, . . . , xn) ≤ Dd log (n)

for all finite subsets {x1, . . . , xn} ⊂ X and all n ∈ N.
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We now prove the upper bound in Theorem 5.

Proof of the Upper Bound in Theorem 5. Let µ be a d-Ahlfors regular measure and
let X be the support of µ. Assume that there are positive real numbers D and a so
that

|PH i (xn)| < Dna

for all finite subsets of X, an let 0 < α < ad.

By Lemma 14 there is a c > 0 so that

Mδ (X) ≤ c δ−d

for all δ > 0. Therefore, by the previous lemma there exists a Dα > 0 so that

E0
α (xn) ≤ Dα n

ad−α
d

for all collections of n points xn ⊂ X. �

5.2. Probabilistic Hypotheses. While the extremal hypotheses of the previous
section allow us to prove the desired upper bound in Corollary 6, they are inadequate
to show a similar upper bound for subsets of higher dimensional Euclidean space.
Here, we show that hypotheses on the the expectation and variance of the number of
PH i intervals of a set of n points imply better asymptotic upper bounds (the upper
bound in Theorem 8). The idea of the proof is to control the behavior of the support
of the measure (PH i (X)) in terms of the persistent homology of point samples
from X. With that, we write PH i (xn) a sum of two terms, one which approximates
PH i (X) and one which corresponds to “d-dimensional noise” at a certain scale.

First, we require the following lemma, which follows from a standard argument using
the union bound; see [54] for a proof.

Lemma 28. Let µ be a probability measure on a metric space X, and {Bj}lj=1 ⊂ X

be a collection of balls so that so that µ (Bj) ≥ a for all j. Then

P (xn ∩Bj 6= ∅ for j = 1, . . . , l) ≥ 1− le−an .

Next, we apply the previous lemma to control the Hausdorff distance between X and
finite samples from an Ahlfors regular measure on X.

Lemma 29. If µ is a d-Ahlfors regular measure with support X then there exists
a positive real number A0 depending only on the constants c and d appearing in the
definition of Ahlfors regularity so that

(7) P (dH ({xn} , X) < ε) ≥ 1− cε−de−A0εdn
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for all ε > 0.

Proof. Let y =
{
y1, . . . , yMε/3(X)

}
be the centers of a maximal set of disjoint balls of

radius ε/3 centered at points of X. By the definition of Ahlfors regularity,

µ
(
Bε/3 (y)

)
≥ A0ε

d

for all y ∈ y, where A0 = 3−d/c.

The balls of radius 2ε/3 centered at the points of y cover X so

dH (y, X) < 2ε/3 .

Therefore, if {xn} ∩Bε/3 (y) 6= ∅ for all y ∈ y then

dH ({xn} , X) < ε/3 + 2ε/3 = ε .

It follows that

P (dH ({xn} , X) < ε) ≥ P
(
{xn} ∩Bε/3 (y) 6= ∅ for all y ∈ y

)
≥ 1−Mε/3 (X) e−A0εdn by Lemma 28

≥ 1− cε−de−A0εdn by Lemma 14 .

�

In the next lemma, we show that if the expected number of persistent homology
intervals of xn is O(n), then we can control the number of “long” persistent homology
intervals of X itself.

Lemma 30. Let X be a bounded metric space that admits a d-Ahlfors regular measure
µ satisfying

E (|PH i (xn)|) = O (n) .

Then there are positive real numbers A1 and ε0 so that

pi (X, ε) ≤ A1ε
−d log (1/ε)

for all ε < ε0.

Proof. By hypothesis, there are positive real numbers D1 and N1 so that

E (|PH i (xn)|) ≤ nD1/2

for all n > N1. By Markov’s inequality,

(8) P (|PH i (xn)| ≤ nD1) ≥ 1/2 .
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Manipulating the inequality in Equation 7 to solve for the number of points samples
required to approximate X within a distance of ε/2 with probability exceeding 1/2
gives that

(9) P
(
dH
({
x1, . . . , xm(ε)

}
, X
)
< ε/2

)
≥ 1/2

where

(10) m (ε) = d 2d

A0

ε−d log
(
2d+1cε−d

)
e .

Note that m (ε) is chosen to give distances of less than ε/2, rather than less than ε.
Let ε be sufficiently small so that m (ε) > N1. The events in Equations 8 and 9 both
occur with probability greater than 1

2
so there exists at least one point set in the

intersection. That is, there exists a finite point set x1, . . . , xm(ε) of X so that

(11)
∣∣PH i

(
x1, . . . , xm(ε)

)∣∣ ≤ D1m (ε)

and

(12) dH
({
x1, . . . , xm(ε)

}
, X
)
< ε .

Therefore,

pi (X, ε) ≤ pi
({
x1, . . . , xm(ε)

}
, 0
)

by stability and Eqn. 12

≤ D1m (ε) by Eqn. 11

= D1d
2d

A0

ε−d log
(
2d+1cε−d

)
e by Eqn. 10

= O
(
ε−d log (1/ε)

)
as ε→ 0. �

Next, we use the previous lemma to control F i
α(X, ε), the truncated α-weighted sum

defined in Section 4.2:
F i
α (X, ε) =

∑
I∈PH ε

i(X)

|I|α .

where PH ε
i (X) is the set of PH i intervals of X of length greater than ε.

Proposition 31. If X satisfies the hypotheses of the previous lemma and 0 < α < d,
then there exist positive real numbers A2 and ε1 so that

F i
α (X, ε) ≤ A2ε

α−d log (1/ε)

for all ε < ε1.

.
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Proof. Without loss of generality, we may rescale X so its diameter is less than one.
By the previous lemma

(13) pi (X, ε) ≤ f (ε) := A1 (ε)−d log

(
1

ε

)
for all ε < ε0. Applying Lemma 20 yields

(14) F i
α (Y, ε) ≤ εαf (ε) + α

∫ ε0

t=ε

f (t) tα−1 dt+ F i
α (Y, ε0) .

By Equation 13, the first term of Equation 14 equals

A1ε
α−d (log (1/ε)) ,

which has the desired asymptotics as ε→ 0. The second term equals

α

∫ ε0

t=ε

A1t
α−d−1 log (1/t) dt =

A1

[
− 1

d− α
tα−d log (1/t)− 1

(d− α)2
tα−d

]ε0
ε

= A1

(
1

d− α
εα−d log (1/ε) +

1

(d− α)2
εα−d

)
− A1

(
1

d− α
εα−d0 log (1/ε0) +

1

(d− α)2
εα−d0

)
= O

(
εα−d log (1/ε)

)
.

Therefore, pi(X, ε) = O
(
εα−d log (1/ε)

)
, as desired.

�

Finally, we can bootstrap the previous result to control Ei
α (xn) and prove the upper

bound in Theorem 8. For clarity, we restate that upper bound as a proposition.

Proposition 32. Let µ be a d-Ahlfors regular measure on a bounded metric space.
If

E (|PH i (xn)|) = O (n)

and
Var (|PH i (xn)|) /n2 → 0 ,

then there is a Λ > 0 so that

Ei
α (xn) ≤ Λn

d−α
d log (n)

α
d

with high probability as n→∞.



FRACTAL DIMENSION AND PERSISTENT HOMOLOGY 33

Proof. Let

(15) Gi
α (x, ε) =

∑
I∈PH i(x)\PH ε

i(x)

|I|α .

Our strategy is to write

Ei
α (xn) = Gi

α (xn, ε) + F i
α (xn, ε)

for a well-chosen ε. The former term can be interpreted as “noise,” and the latter
approximates the persistent homology of the support of µ.

Let 0 < p < 1, and let D be a positive real number so that

E (|PH i (xn)|) ≤ (D/2)n

for all sufficiently large n. By Chebyshev’s inequality,

P (|PH i (xn)| > Dn) ≤

P
(∣∣∣ |PH i (xn)| − E (|PH i (xn)|)

∣∣∣ > Dn/2
)

≤ Var (|PH i (xn)|) 4

D2n2

which converges to 0 as n→∞, by hypothesis. Therefore, there is a M so that

(16) P (|PH i (xn)| > Dn) < p/2

for all n > M.

Solving for ε in Equation 7 gives that

(17) P (dH ({xn} , X) > ε (n) /4) < p/2

if

ε (n) = 4A
−1/d
0 n−1/dW

(
2cA0n

p

)1/d

,

where W is the Lambert W function. W (m) ∼ log (m) as m → ∞, and W (m) ≤
log (m) for m ≥ e [40]. Therefore, there are positive real numbers A3 and N1 (p) ,
where the former does not depend on p but the latter does, so that

(18)
A3

2
n−1/d log (n)1/d ≤ ε (n) ≤ A3n

−1/d log (n)1/d

for all n > N1 (p) . The right hand side goes to zero as n → ∞ so we can choose
N2 (p) > N1 (p) to be sufficiently large so that ε (n) < ε1 for all n > N2 (p) , where ε1
is given in Proposition 31. Let n > N2 (p)
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and suppose that xn satisfies

(19) |PH i (xn)| < Dn and dH (xn, X) < ε (n) /4 ,

an event which occurs with probability greater than 1− p by Equations 16 and 17.

Write

(20) Ei
α (xn) = F i

α (xn, ε (n)) +Gi
α (xn, ε (n)) .

We consider the two terms separately.

Gi
α (xn, ε (n)) ≤ D |xn| ε (n)α by Eqns. 15 and 19

≤ 2αDAα3n
d−α
d log (n)α/d

= A4n
d−α
d log (n)

α
d ,

where A4 = 2αDAα3 is a positive constant that does not depend on n or p.

To bound the second term in Equation 20, we apply Lemma 25 to find

F i
α (x, ε (n)) ≤ 2αF i

α

(
X,

ε (n)

2

)
≤ A2 (ε (n))α−d log

(
1

ε (n)

)
by Prop. 31

≤ A2A
α−d
3 n

d−α
d log (n)−

d−α
d log

(
1

2A3

n1/d log (n)−1/d
)

by Eqn. 18

= A2A
α−d
3 n

d−α
d log (n)−

d−α
d

(
1

d
log (n)− log

(
2A3 log (n)1/d

))
≤ 1

d
A2A

α−d
3 n

d−α
d log (n)

α
d

= A5n
d−α
d log (n)

α
d ,

where A5 = 1
d
A2A

α−d
3 is a positive constant that does not depend on n or p.

In summary, if Λ = A4 + A5 and 0 < p < 1, then there exists an N2(p) > 0 so that

P
(
Ei
α (xn) ≤ Λn

d−α
d log (n)

α
d

)
> 1− p

for all n > N2(p). �
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6. The Lower Bound

In this section, we prove the lower bound in Theorems 5 and 8. While our proofs
of the upper bounds work for Ahlfors regular measures on arbitrary bounded metric
spaces, here we restrict our attention to Ahlfors regular measures on Euclidean space.
This will allow us to use the structure of the cubical grid on Rm.

We remind the reader of the occupancy indicators defined in Section 2.3. If x is
point set, A is a set, and B of a collection of sets then

Ξ (x, A,B) =

{
1 δ (A,x) = 0 and δ (B,x) = 1 ∀B ∈ B
0 otherwise

,

where for any set C

δ (C,x) =

{
0 C ∩ x = ∅
1 C ∩ x 6= ∅

.

To prove the lower bound, we modify the approach in our paper on extremal PH -
dimension [60] to work in a probabilistic context. The outline of the argument is
similar to that in Section 3.2, but more care is required to construct occupancy
indicators implying the existence of persistent homology intervals. We work on two
different length-scales: we divide the ambient Euclidean space into cubes of width
n−1/d, and divide each of these cubes into km sub-cubes of width n−1/d/k. Using
the non-triviality constants defined in [60] (Definition 35), we show that if a cube
contains sufficiently many sub-cubes that overlap with the support of the measure,
then we can define an occupancy indicator guaranteeing the existence PH i interval of
a certain length. We count the number of cubes with sufficiently many occupied sub-
cubes in Lemma 39, and apply Lemma 17 to the corresponding occupancy indicators
to give

pi
(
xn, ε0 n

−1/d) ≥ Ω1n

with high probability as n → ∞ for some Ω1 > 0 (Lemma 40). Summing over
intervals of length greater than ε0 n

−1/d proves the desired lower bound (Proposi-
tion 41).

The proof is complicated, so we warm up with the special case of an m-Ahlfors regu-
lar measure on Rm. The approach is more straightforward, but contains some of the
same elements. These arguments also appear in our unpublished manuscript [59],
which has largely been subsumed into the current work. First, we find an occupancy
indicator defined in terms of sub-cubes of a larger cube that guarantees the existence
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of a persistent homology interval of a given length, regardless of what happens out-
side of the cube in Lemma 34. Then, we assemble a collection of these occupancy
indicators to show the lower bound in Propostition 33.

6.1. The Absolutely Continuous Case. Note that if µ is an m-Ahlfors regular
measure on Rm, then µ is comparable to the Lebesgue measure on its support and
is thus absolutely continuous with respect to it.

Proposition 33. Let µ be an m-Ahlfors regular measure on Rm. There exist a con-
stant Ψ > 0 so that

lim
n→∞

n−
d−α
d Ei

α (x1, . . . , xn) ≥ Ψ

with high probability.

Before proving the proposition, we state and prove a preliminary lemma to find an
occupancy indicator guaranteeing the existence of a persistent homology interval of a
given length, regardless of what happens outside of the cube (in a sense made precise
in Equation 21 below). The idea is to take B to be the set of sub-cubes that intersect
an i-dimensional sphere sphere that is separated from the boundary of a cube, as
shown in Figure 4. Let

Jε,i (X) = {(b, d) ∈ PH i (X) : d ≤ ε} .

Lemma 34. Let 0 ≤ i < m, and 0 < b < d < 1/8. There exists a λ0 > 0 so
that if C ⊂ Rm is an m-dimensional cube of width R and λ > λ0, there exists a
collection B of disjoint, congruent cubes of width Rλ−

1
m so that if A = C \ ∪B∈BB

and Ξ (x, A,B) = 1 then PH i (x ∩ C) contains an interval
(
b̂, d̂
)

with

0 < b̂ < Rb < Rd < d̂ .

Furthermore,

(21) Jd̂,i (x) = Jd̂,i (x ∩ C) ∪ Jd̂,i (x \ (x ∩ C)) .

Proof. We may assume without loss of generality that R = 1 and C is centered at
the origin. Let Si ⊂ Rm be an i-dimensional sphere of diameter 1/4 centered at the
origin; note that PH i (S

i) consists of a single interval (0, 1/8) for the Čech complex
(a slightly different argument is required for the Rips complex).

Let

(22) κ = min

(
b,

1

8
− d, 1

24

)
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Figure 4. The setup in the proof of Lemma 34.

and

λ0 =
mm/2

κm
.

Choose λ > λ0 and set δ = λ−
1
m . Let C be the cubes in the standard tesselation of

Rm by cubes of width δ and let

B =
{
c ∈ C : Si ∩ c 6= ∅

}
.

See Figure 4.

If Ξ (x, A,B) = 1, then
dH
(
x ∩ C, Si

)
< κ

where we used the fact that the length of the diagonal of an m-dimensional cube
of width δ is δ

√
m. Stability and Equation 22 imply that PH i (x ∩ C) includes an

interval
(
b̂, d̂
)

so that

b̂ < κ ≤ b < d ≤ 1

8
− κ < d̂ <

1

8
+ κ ≤ 1/6 .

By construction,

1

2
d (x ∩ C,Cc) >

1

2

(
d
(
Si, Cc

)
− κ
)

=
3

16
− κ/2 ≥ 1/6 > d̂ ,

where Cc is the complement of C. Therefore, the the ε-neighborhoods of x ∩ C ′ and
Cc are disjoint for all ε ≤ d̂ and Equation 21 holds. �

Proof of Propostion 33. We will construct a set of bounded occupancy indicators of
the form defined in the previous lemma, and apply Lemma 17. The reader may want
to remind themselves of the definitions in Section 2.3.

µ is absolutely continuous so its support contains a cube C.Without loss of generality,
we may assume that C is a unit cube. Let b0 = 1/16, d0 = 1/8, and λ > λ0, where λ0
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is as in the previous lemma. Set δ = n−1/m, and let {D1, . . . , Ds} be the sub-cubes
in the cubical tessellation of width δ which are fully contained within C. There is a
constant κ > 0 depending only on m so that

(23) s ≥ κδ−m ≥ κn .

Assume δ is sufficiently small so that k > δm/2. Let l ∈ {1, . . . , s} , and let Al and Bl
be the set and collection of disjoint sub-cubes of width δλ−

1
m contained in Cl given

by the previous lemma. It follows from the statement of that lemma that

(24) pi

(
xn,

1

16
n−1/m

)
≥

s∑
j=1

Ξ (xn, Al,Bl) .

Let c be the constant appearing the definition of Ahlfors regularity, v0 be the volume
of a unit ball in Rm, and

q =
cmm/2v0

2m
and p =

v0
λ2mc

.

If E0 is a ball of radius δ
√
m/2 containing C,

µ (Al) ≤ µ (E0) ≤ c vol (E0) = cv0
(
δ
√
m/2

)m
= qδm =

q

n
.

Similarly, if B is a cube of Bl, and E1 is a ball of radius δλ−
1
m/2 contained in B

µ (B) ≥ µ (E1) ≥
1

c

(
δλ−

1
m

)m
v0 =

p

n
.

Let r = |Bl| and note that r depends only on λ0, b0, and d0. Ξ (xn, Al,Bl) is a n, p, q, r-
bounded occupancy indicator for each l, so by Lemma 17 there exists a γ0 > 0 so
that

(25)
1

s

s∑
j=1

Ξ (xn, Al,Bl) ≥ γ0

with high probability as n→∞. We have that

pi

(
xn,

1

16
n−1/m

)
≥

s∑
j=1

Ξ (xn, Al,Bl) by Eqn. 24

≥ γ0s by Eqn. 25

≥ γ0κn by Eqn. 23

with high probability as n→∞.
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Then, by counting intervals of length greater than n−1/m/16,

lim
n→∞

n−
m−α
m Ei

α (xn) ≥ lim
n→∞

n−
m−α
m pi

(
xn,

1

16
n−1/m

)(
1

16

(
n−1/d

))α
= 16−α lim

n→∞

1

n
pi

(
xn,

1

16
n−1/d

)
≥ 16−ακγ0

:= Ω0

with high probability as n→∞. �

It is straightforward to modify the previous argument to work for any metric space
X with a subset Y that is the bi-Lipschitz image of a cube in Euclidean space. In
particular, if the bi-Lipschitz constant is L, it would suffice to take b0 to be 1

16L2 and

d0 to be 1
8

and argue that an interval (b, d) ∈ PH i (C) with b < δ
16L2 <

δ
8

corresponds

to an interval (b1, d1) ∈ PH i (X) with b1 <
δ

16L
< δ

8L
< d1.

6.2. Non-triviality Constants. To prove the lower bound, we modify the approach
in our paper on extremal PH -dimension [60] to work in a probabilistic context. If
µ is a d-Ahlfors regular measure on Rm and δ > 0, let Cδ (µ) be the cubes in the
grid of mesh δ that intersect the support of µ. The basic idea is to sub-divide the
grid of mesh δ so each cube contains km sub-cubes. If k is chosen carefully, we
can find a positive fraction of cubes in Cδ (µ) that contain enough cubes of Cδ/k (µ)
to guarantee a stable PH i class. In fact, we can require that the sub-cubes have
probability exceeding a certain threshold. We then control the number of stable PH i

classes realized by a random sample xn with Lemma 17.

In previous work [60], we raised the question of how large a subset of the integer
lattice can be without having a subset with “stable” i-dimensional persistent homol-
ogy.

Definition 35. For x ∈ Zm, let the cube corresponding to x — C (x) — be the cube
of width 1 centered at x. A subset X of Zm has a stable i-dimensional persistent
homology class if there is a c > 0 so that if Y is any subset of ∪x∈XC (x) satisfying

Y ∩ C (x) 6= ∅ ∀ x ∈ X ,

then there is an I ∈ PHi (Y ) so that |I| > c (see Figure 5). The supremal such c is
called the size of the stable persistence class.

Note that this notion depends on whether persistent homology is taken with respect
to the Rips complex or the Čech complex, but is defined for both.
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(a) (b) (c) (d)

Figure 5. The Čech PH 1 class of the lattice points corresponding to the
gray cubes in (a) and (b)is stable — any choice of one point in each cube will
give the vertices of an acute triangle, and therefore a set with non-trivial
PH 1. The one in (c) and (d) is not, because the points in (d) form an obtuse
triangle so the persistent homology of that set is trivial. [60]

Definition 36. Let ξmi (N) be the size of the largest subset X of {1, . . . , N}m ⊂ Zm
so that no subset Y of X has a stable PH i-class. Define

γmi = lim inf
N→∞

log (ξmi (N))

log (N)
.

γmi may depend on whether persistent homology is taken with respect to the Rips
complex or the Čech complex, but we suppress the dependence here. γm0 = 0 for all
m ∈ N : any subset of Zm with more than 3m points has a minimum spanning tree
edge of length at least 1 and thus a PH 0 interval of at length at least 1/2 for the
Čech complex and one of length at least 1 for the Rips complex (at least 3m points
are necessary to rule out point sets with points from neighboring cubes). In [60], we
proved that γm1 ≤ m − 1

2
if persistent homology is taken with respect to the Čech

complex. Note that Definition 36 does not include the same restriction on the size
as in [60].

6.3. Ahlfors Regular Measures and Box Counting. Before proceeding to the
proof of the lower bound, we prove two technical lemmas about the asymptotics of
the number of cubes that intersect the support of a d-Ahlfors regular measure. The
first is similar to Lemma 14 on the asymptotic number of disjoint balls. Let Cδ be
the cubes in the cubical grid of mesh δ in Rm centered at the origin, and for δ, a > 0
define

(26) Cδ,a (µ) =
{
C ∈ Cδ : µ (C) ≥ aδd

}
and

(27) Nδ,a (µ) = |Cδ,a (µ)| .
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(The upper and lower box dimensions of a subset of Euclidean space can be defined in
terms of the asymptotic properties of Nδ,0 (X) , analogously to Definition 13.)

Lemma 37. If µ is a is d-Ahlfors regular measure with support X ⊂ Rm, then there
exist real numbers 0 < c0 ≤ c1 < ∞ depending on m and the constants c and d
appearing in the definitions of Ahlfors regularity so that

(28) c0δ
−d ≤ Nδ,ĉ (µ) ≤ c1δ

−d

for all δ < δ0, where ĉ = 1
c2m

. Similarly, there exist real numbers 0 < c′0 ≤ c′1 <
depending on c, d, and m so that

(29) c′0δ
−d ≤ Nδ,0 (µ) ≤ c′1δ

−d

for all δ < δ0.

Proof. Let C be a cube in the grid of mesh δ that intersects X, and x ∈ C ∩ X.
First, we show that bounds for Nδ,0 (µ) imply bounds for Nδ,ĉ (µ) , and vice versa.
By Ahlfors regularity,

µ (Bδ (x)) >
1

c
δd .

Also, Bδ (x) intersects at most 2m cubes in the grid of mesh δ, so at least one cube
adjacent to C has measure exceeding ĉδd (where two cubes are adjacent if they share
at least one point). Each cube of Cδ,ĉ (µ) is adjacent to at most 3m cubes of Cδ (µ) , so
we can find a lower bound for Nδ,ĉ (µ) in terms of the number of cubes that intersect
the support:

(30)
1

3m
Nδ,0 (µ) ≤ Nδ,ĉ (µ) ≤ Nδ,0 (µ) ,

where the upper bound is trivial.

To show the lower bounds in the statement, we compute

1 = µ (X)

≤
∑

C∈Cδ,0(µ)

µ (C)

≤ cδdmd/2Nδ,0 (µ)

=⇒ Nδ,0 (µ) ≥ 1

c
md/2δ−d

which is the lower bound in Equation 29 with c′0 = 1
c
md/2. Then, by Equation 30,

the lower bound in Equation 28 holds with c′0 = 3−m 1
c
md/2.
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Figure 6. Collections of cubes associated with the natural measure µ on
the Sierpiński triangle.

For the upper bounds, note that the intersection of two cubes may have positive
measure, but a cube can share measure with only 3m − 1 adjacent cubes. It follows
that

1 = µ (X)

≥ 1

3m
ĉδdNδ,ĉ (µ)

=⇒ Nδ,ĉ (µ) ≤ c 6mδ−d ,

which is the upper bound in Equation 28 with c1 = c 6m. Then, upper bound in
Equation 29 holds with c′1 = c1 = c 18m, using Equation 30. �

We consider cubes at two different scales: cubes of width δ, and smaller cubes ob-
tained by divding each cube of width δ into km sub-cubes. Our eventual goal is
to count the number of cubes of width δ which contain sufficiently many positive
measure sub-cubes of width δ/k to define an occupancy event implying a persistent
homology class. The next definition introduces collections of cubes corresponding to
a measure µ, some of which are illustrated in Figure 6.

Definition 38 (Cube Collections Corresponding to a Measure). Let µ be a d-Ahlfors
regular measure on Rm and let Cδ,a (µ) be as defined in Equation 26. For k ∈ N, δ > 0,
and C ∈ Cδ,0 (µ) , define

(31) Dk (C) =
{
D ∈ Cδ/k,ĉ (µ) : D ⊂ C

}
where ĉ = 1

c2m
as in Lemma 37 above, and set

Dk (C) = |Dk (C)| .
Next, we define a collection of cubes in Cδ,0 (µ) which contain sufficiently many sub-
cubes. For δ > 0 and 0 < β < d, let

Ck,βδ =
{
C ∈ Cδ,0 (µ) : Dk (C) > kβ

}
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and

M (δ, k, β) =
∣∣∣Ck,βδ ∣∣∣ .

Next, we prove a technical lemma establishing a lower bound for M (δ, k, β) ., The
argument is similar to that of Lemma 26 in [60].

Lemma 39. If µ is a d-Ahlfors regular measure supported on Rm and 0 < β < d,
then there exists a K so that for any k > K there exit positive constants δ1 and c2
so that

(32) M (δ, k, β) > c2δ
−d

for all δ < δ1.

Proof. Let c0, c
′
1, and δ0 be the constants from Lemma 37 so

(33) Nδ,0 (µ) ≤ c′1δ
−d and Nδ,ĉ (µ) ≥ c0δ

−d

for all δ < δ0.

A cube in Cδ,0 (µ) is either an element of Ck,βδ and contains between kβ and km

sub-cubes of Cδ/k,ĉ (µ) , or is contained in Cδ,0 (µ) \ Ck,βδ and can contain at most kβ

sub-cubes in that set. On the other hand, each sub-cube in Cδ/k,ĉ (µ) is contained in
exactly one larger cube in Cδ,0 (µ) . Therefore,

Nδ/k,ĉ (µ) ≤ kmM (δ, k, β) + kβ
∣∣∣Cδ,0 (µ) \ Ck,βδ

∣∣∣
≤ kmM (δ, k, β) + kβNδ,0 (µ) .

Re-arranging terms, we have that

M (δ, k, β) ≥
Nδ/k,ĉ (µ)− kβNδ,0 (µ)

km

≥ c0k
dδ−d − kβc′1δ−d

km
by Eqn. 33

=
(
c0k

d−m − c′1kβ−m
)
δ−d .

As β < d, we can choose K sufficiently large so that if k > K then the coefficient

c2 :=
(
c0k

d−m − c′1kβ−m
)
,

is positive, and Equation 32 holds for all δ < δ0, as desired.

�
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6.4. Proof of the Lower Bound in Theorems 5 and 8. We require one more
lemma before proving the lower bound. The idea is similar to that of Lemma 23:
we assemble a collection of occupancy indicators which each imply the existence of a
persistence interval of a given length using Definition 36 and Lemma 39, and apply
Lemma 17 to bound the total number of intervals in probability.

Lemma 40. If µ be a d-Ahlfors regular measure on Rm with d > γmi , then there exist
positive real numbers ε0 and Ω1 so that

lim
n→∞

1

n
pi
(
xn, ε0 n

−1/d) ≥ Ω1

with high probability.

Proof. Let γmi < β < d. By Definition 36, we can find a K0 so that kβ > ξmi (k) for
all k > K0. Let k > min (K,K0) , where K0 is as given in the previous lemma, and
let δ1 and c2 also be as in that lemma. There are only finitely many collections of
sub-cubes of [k]m , so there are only finitely many stable PH i classes of subsets of
[k]m . Let ε0 be the minimum of the sizes of these stable classes.

Let δ = n−1/d and choose n large enough so that δ < δ1. We will define a collection
of occupancy indicators in terms of subsets of cubes in Ck,βδ which imply the length
of a PH i interval of length at least ε0δ. To ensure that the indicators do not interfere
with each other, let {D1, . . . , Ds} be a maximal collection of cubes in Ck,βδ so that

(34) d (Dj, Dl) > (δ + 1)
√
m

for all j, l ∈ {1, . . . , s} so that j 6= l. See Figure 7. There is a constant 0 < κ < 1 that
depends only on d so that s ≥ κM (δ, k, β) . Furthermore, by the previous lemma,

s ≥ κM (δ, k, β) > κc2δ
−d = κc2n .

Let l ∈ {1, . . . , s} . By construction, Dk (Dl) (defined in Equation 31) contains at
least kβ sub-cubes. k > K0, so kβ > ξmi (k) and there is a collection of sub-cubes
Bl ⊂ Dk (Dl) with a stable PH i class (using Definition 36). Let

Al = B̂δ
√
m (C) \ ∪B∈BlB

where B̂δ
√
m (Dl) is the union of all cubes in the grid of mesh δ/k within distance

δ
√
m of Dl (see Figure 7). Also, let B′l be collection of the interiors of the sub-cubes

Bl. Note that Equation 34 implies that the sets Al and B′l are disjoint for different
values of l. It follows from property (2) in Section 4.1 that

pi
(
xn, ε0 n

−1/d) ≥ s∑
j=1

Ξ (xn, Al,B′l) .
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Figure 7. The setup in the proof of Lemma 40.

Al is contained in a ball of radius δ
√
m + δ so if q = c (

√
m+ 1)

d
then, by Ahlfors

regularity,

µ (Al) ≤ cδd
√
m+ 1

d
=
q

n

for all l ∈ {1, . . . , s} . Also, each B ∈ Bl is an cube of width δ/k in Rm so

µ (B) ≥ 1

c

(
δ
√
m

2k

)d
=
p

n
,

where p = 2−dk−dmd/2/c. Therefore, Ξ (xn, Al,B′l) is a n, p, q, km-bounded occupancy
indicator for each l, and the desired result follows from Lemma 17. �

The proof of the lower bound in Theorems 5 and 8 is now straightforward.

Proposition 41. Let µ be a d-Ahlfors regular measure on Rm with d > γmi . Then
there is an Ω > 0 so that

lim
n→∞

n−
d−α
d Ei

α (x1, . . . , xn) ≥ Ω

with high probability.
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Proof. Let ε0 be as in the previous lemma. By counting intervals of length greater
than ε0n

−1/d, we have that

lim
n→∞

n−
d−α
d Ei

α (xn) ≥ lim
n→∞

n−
d−α
d pi

(
xn, ε0n

−1/d) (ε0n−1/d)α
= εα0 lim

n→∞

1

n
pi
(
xn, ε0n

−1/d)
≥ εα0Ω1 by Lemma 40

:= Ω

with high probability as n→∞. �
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Random Structures and Algorithms, 2017.

[13] M. G. Bouligand. Ensembles impropres et nombre dimensionnel. Bulletin des Sciences
Mathématiques, 1928.

[14] Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society, 2009.
[15] F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The Structure and Stability of Persistence

Modules. Springer, 2016.
[16] Frederic Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Y. Oudot.

Proximity of persistence modules and their diagrams. Proceedings of the 25th Annual ACM
Symposium on Computational Geometry (SoCG), 2009.

[17] Frédéric Chazal, Vin de Silva, and Steve Oudot. Persistence stability for geometric complexes.
Geometriae Dedicata, 2014.

[18] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete & Computational Geometry, 37(1), 2007.

[19] David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko. Lipschitz func-
tions have lp-stable persistence. Foundations of Computational Mathematics, 2010.

[20] Michel Coornaert. Mesures de patterson-sullivan sur le bord d’un espace hyperbolique au sens
de gromov. Pacific Journal of Mathematics, 1993.

[21] J.A. Costa and A.O. Hero. Geodesic entropic graphs for dimension and entropy estimation in
manifold learning. IEEE Transactions on Signal Processing, 2004.

[22] Guy David and Stephen Semmes. Analysis of and on Uniformly Rectifiable Sets. American
Mathematical Soceity, 1993.

[23] Guy David and Stephen Semmes. Fractured fractals and broken dreams: self-similar geometry
through metric and measure. Clarendon Press, Oxford, 1997.

[24] S. Davies and P. Hall. Fractal analysis of surface roughness by using spatial data. Journal of
the Royal Statistical Society Series B, 1999.

[25] Henry-Louis de Kergorlay, Ulrike Tillmann, and Oliver Vipond. Random Čech complexes on
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Appendix A. Construction of Counterexample 4

We will construct a d-Ahlfors regular measure σ with d = log(2)
log(3)

so that if {zj}j∈N are

i.i.d. samples from µ and 0 < α < d then the quantity

n−
d−α
d Eα

0 (z1, . . . , zn)

oscillates with high probability as n → ∞. Our example will be constructed as the
intersection of a nested sequence of closed subsets Y1 ⊃ Y2 ⊃ Y3 . . . of [0, 1] , where
each Yj is the union of finitely many congruent, disjoint intervals. At some scales the
set will resemble the Cantor set, while at others it will resemble the Cantor set scaled
by a factor 5

7
. As described at the end of this section, the construction can easily be

modified to produce a counterexample of dimension d for any d ∈ (0, 1) .

We introduce notation and shorthand related to sets of intervals. Call a finite set
of disjoint intervals I an “interval collection.” We will abuse notation, and use I to
refer to both the collection I and the union ∪I∈II. Let |I| be the number of intervals
in the collection, and ‖I‖ be the minimum length of an interval.
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Before proving Counterexample 4, we prove three technical lemmas. The first one
shows that if two point sets have the same “interval membership” in a fine enough
interval collection, then the length of the corresponding minimum spanning trees is
close. If I = {Ij}kj=1 and {x1, . . . , xn} ⊂ I let φI (x1, . . . , xn) record the interval
membership of the points x1, . . . , xn :

φI (x1, . . . , xn) = (l1, . . . , ln) if x1 ∈ Il1 , . . . , xn ∈ Iln .

Lemma 42. Let n ∈ N, ε0 > 0, and α > 0. There exists a δ > 0 so that if I is an
interval collection with ‖I‖ < δ and {x1, . . . , xn} , {y1, . . . , yn} ⊂ I satisfy

φI (x1, . . . , xn) = φI (y1, . . . , yn)

then ∣∣E0
α (x1, . . . , xn)− E0

α (y1, . . . , yn)
∣∣ < ε0 .

Proof. The function x→ xα is α-Holder continuous on [0, 1] so there exists a C > 0
so that

(35) |xα − yα| < C |x− y|α

for all x, y ∈ [0, 1] . Let

(36) δ =
1

2

( ε0
Cn

)1/α
.

If I, {x1, . . . , xn} , and {y1, . . . , yn} satisfy the hypotheses then |xi − yi| < δ for
i = 1, . . . , n, because xi and yi are contained in an interval whose length is less than
δ.

It follows that∣∣E0
α (x1, . . . , xn)− E0

α (y1, . . . , yn)
∣∣ =

∣∣∣∣∣
n−1∑
i=1

(xi+1 − xi)α − (yi+1 − yi)α
∣∣∣∣∣

≤
n−1∑
i=1

|(xi+1 − xi)α − (yi+1 − yi)α|

≤
n∑
i=1

C |(xi+1 − yi+1) + (xi − yi)|α by Eqn. 35

< nC2αδα by ‖I‖ < δ

= ε0 by Eqn. 36 .

�
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The next lemma shows that probability measures supported on a fine enough interval
collection which induce the same distribution of interval membership have random
minimum spanning trees with similar lengths. If µ is supported on an interval col-
lection I, let µnI be the discrete random variable φI (x1, . . . , xn) .

Lemma 43. Let ε > 0 and 0 < α < d. Let S1 ⊃ S2 . . . be a nested sequence of
interval collections with ‖Sj‖ → 0, and let µ be a probability measure supported on
∩jSj so that

(37)
∣∣∣n− d−αd E0

α (x1, . . . , xn)− c
∣∣∣ < ε/2

with probability greater than 1− ε for an integer n > 0. Then there exists an M (ε, n)
so that if j > M (ε, n) and ν is any probability measure supported on Sj satisfying
νnSj = µnSj (that is, µ and ν induce the same discrete probability distribution on the

intervals in the set Sj) then∣∣∣c− n− d−αd E0
α (y1, . . . , yn)

∣∣∣ < ε

with probability greater than 1− ε, where {yk}k∈N are i.i.d. points sampled from ν.

Proof. For convenience, define

F (x1, . . . , xn) =
∣∣∣c− n− d−αd E0

α (x1, . . . , xn)
∣∣∣ .

Let δ > 0 be as given in by the previous lemma for ε0 = n
d−α
d ε/2. Choose M (ε, n)

sufficiently large so that ‖Sj‖ < δ for j > M (ε, n) .

Let j > M (ε, n) and define

V = φSj
(
F−1 (ε/2)

)
.

That is, (l1, . . . , ln) ∈ V if there exist points x1 ∈ Il1 , . . . , xn ∈ Iln so that F (x1, . . . , xn) <
ε/2 (where Sj = {Is}). By Equation 37

µnSj (V ) > 1− ε

and, because the discrete random variables µnSj and νnSj coincide by hypothesis,

νnSj > 1− ε .

Therefore, with probability greater than 1 − ε, φI (y1, . . . , yn) ∈ V so there ex-
ist z1, . . . , zn satisfying F (z1, . . . , zn) < ε/2 and φI (y1, . . . , yn) = φI (z1, . . . , zn) .
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Figure 8. The setup in the proof of Lemma 44.

(z1, . . . , zn) and (y1, . . . , yn) satisfy the hypotheses of the previous lemma, so

F
(
E0
α (y1, . . . , yn)

)
≤
∣∣∣n− d−αd (E0

α (z1, . . . , zn)− E0
α (y1, . . . , yn)

)∣∣∣+ F (z1, . . . , zn)

≤ n−
d−α
d ε0 + ε/2

= ε .

�

The third lemma compares the behavior of random minimum spanning trees on an
interval collection with that of one on another interval collection formed by trans-
lating its intervals. A natural map between two interval collections I and J is
an order-preserving homeomorphism f : I → J so that, for any I ∈ I, f |I is a
translation and f (I) is an interval in J . Note that if I and J are sets of disjoint,
congruent intervals so that |I| = |J | and ‖I‖ = ‖J ‖ , then there is a unique natural
map between them.

Lemma 44. Let I and J be interval collections contained in [0, 1], and suppose that
there is a natural map f : I → J . Let 0 < α < d, and let µ be a probability measure
supported on I so that

n−
d−α
d E0

α (xn)→ c

in probability as n→∞, for some real number c. Then

n−
d−α
d E0

α (f (x1) , . . . , f (xn))→ c

in probability as n→∞.

Proof. First, note that if {y1, . . . , yn} is an ordered set of points in R, the edges of
the minimum spanning tree T (y1, . . . , yn) are the intervals [y1, y2] , . . . [yn−1, yn] . For
a finite point set x ⊂ I let T0 (x) be the set of edges of T (x) that are contained in
an interval of I:
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T0 (x) = {e ∈ T (x) : e ⊆ I for some I ∈ I}

and let T1 (x) consist of the remaining edges:

T1 (x) = T (x) \ T0 (x) .

See Figure 8. Let k = |I| and note that |T1 (x)| < k.

Recall that xn is shorthand for {x1, . . . , xn} . If the edge [xj, xj+1] is contained in
T0 (xn) , then [xj, xj+1] ⊆ I for some I ∈ I, and by the definition of a natural map
there is a J ∈ J so that f (I) = J and f|I is a translation. Therefore [f (xj) , f (xj+1)]
is an interval in T0 (f (xn)) of the same length as [xj, xj+1] . It follows that there is a
length-preserving bijection between the edges of T0 (xn) and T0 (f (xn)) , and

(38)
∑

e∈T0(xn)

|e|α =
∑

e∈T0(f(xn))

|e|α .

For ε > 0, choose N sufficiently large so that for all n > N

(39) kn−
d−α
d < ε/4

and

(40)
∣∣∣n− d−αd E0

α (xn)− c
∣∣∣ < ε/2

with probability greater than 1− ε.

Let n > N. We have that

∣∣E0
α (f (xn))− E0

α (xn)
∣∣ ≤

∣∣∣∣∣∣
∑

e∈T0(f(xn))

|e|α −
∑

e∈T0(xn)

|e|α
∣∣∣∣∣∣

+
∑

e∈T1(f(xn))

|e|α +
∑

e∈T1(xn)

|e|α

= 0 +
∑

e∈T1(f(xn))

|e|α +
∑

e∈T1(xn)

|e|α using Equation 38

< 2k all edges are contained in [0, 1]

< ε/2n
d−α
d using Equation 39 .
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Figure 9. The nested sequences of closed sets defining C and 5
7C.

Therefore,∣∣∣n− d−αd E0
α (f (xn))− c

∣∣∣ ≤ n−
d−α
d

∣∣E0
α (f (xn))− E0

α (xn)
∣∣+
∣∣∣n− d−αd E0

α (xn)− c
∣∣∣

< ε/2 + ε/2

= ε

with probability greater than 1 − ε, where we used the previous computation and
Equation 40. �

We are now ready to construct the counterexample.

As described in the introduction, our counterexample is related to the Cantor set.
The Cantor set can be defined in terms of a middle thirds operation on interval col-
lections. If I is an interval, let K (I) be the set of two intervals of length 1/3 |I|

K (I) = {1/3I, 1/3I + 2/3 |I|} ,
and if I is an interval collection let

K (I) = {K (I) : I ∈ I} .
Define Tm to be the set of intervals obtained by applying K to {[0, 1]} m− 1 times.
Tm consists of 2m−1 intervals of length (1/3)m−1 . Then the Cantor set is

C = ∩m∈NTm .
See Figure 9.

We define two more operations on interval collections. One produces slightly thinner
intervals than K does, and the other produces slightly thicker intervals. If I is an
interval, let

L (I) =

{(
5

7

)(
1

3

)
I,

(
5

7

)(
1

3

)
|I|+

(
1−

(
5

7

)(
1

3

))
I

}
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Figure 10. The interval operations L and Γ applied T2, the second interval
collection used in the definition of the Cantor set.

and

Γ (I) =

{(
7

5

)(
1

3

)
I,

(
7

5

)(
1

3

)
|I|+

(
1−

(
7

5

)(
1

3

))
I

}
.

If I is an interval collection, define L (I) and Γ (I) by performing the operation on
each interval in the collection. See Figure 10. The scaling factor 7

5
was chosen so

that the intervals of Γ (Sk) are disjoint.

If S1 ⊃ S2 ⊃ S3 . . . is a nested sequence of interval collections, there is natural
probability measure µS on ∩nSn that assigns equal probability to each interval of Sj,
for each value of j. That is,

µS (I) =
1

|Sj|
for I ∈ Sj .

For example, the natural measure on the Cantor set is µT , where T1 ⊃ T2 ⊃ T3 . . . is
the nested sequence of interval collections defined above (and depicted in Figure 9).
It assigns probability 1/2 to each interval in T2, probability 1/4 to each interval in
T3, and so on.

Proof of Counterexample 4. Set d = log(2)
log(3)

and choose 0 < α < d. Also, let µ and ν

be the natural probability measures on C and 5
7
C, where C is the Cantor set. Let

{xj}j∈N and {yj}j∈N be i.i.d. samples from µ and ν, respectively. Assume that there
is a real number c so that

(41) n−
d−α
d E0

α (x1, . . . , xn)→ c

in probability as n → ∞. If this was false, C would be our desired example. Theo-
rem 3 implies that c > 0. By rescaling the Cantor set, we have that

n−
d−α
d E0

α (y1, . . . , yn)→
(

5

7

)α
c

in probability as n→∞.
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We will construct a nested sequence of interval collections S1 ⊃ S2 ⊃ S3 . . . mostly by
applying the middle thirds operation K, but infrequently and alternately applying
the operations L and Γ.

Let {εi} be a sequence of real numbers converging to zero. We proceed by induction.
Let n1 be large enough so∣∣∣c− n− d−αd1 E0

α (x1, . . . , xn1)
∣∣∣ < ε1/2

with probability greater than 1− ε1, choose m1 > M (ε1, n1) , where M (ε1, n1) is as
given in Lemma 43. Let S1 = Tm1 , where Tm1 is the m1-th interval collection from
the construction of the Cantor set. Then, by the definition of M (ε1, n1) , if σ is any
probability measure σ satisfying

σ (I) =
1

|S1|
for I ∈ S1

(that is, σ assigns the same probabilities to intervals in S1 as µ does) then∣∣∣c− n− d−αd1 E0
α (x1, . . . , xn1)

∣∣∣ < ε1

with probability greater than 1−ε1. (Note that we are indexing the sets Sj differently
than described in the introduction but the resulting example is the same.)

By way of induction suppose that there are integers n1, . . . , nk−1 and a nested se-
quence of interval collections S1 ⊃ . . . ⊃ Sk−1 so that

• For odd i = 1, . . . , k − 1, Si consists of 2bi disjoint intervals of length
(
1
3

)bi
for some integer bi.

• For even i = 2, . . . , k− 1, Si consists of 2bi disjoint intervals of length 5
7

(
1
3

)bi
for some integer bi.

and, furthermore, if σ is any probability measure on Sk−1 satisfying

σ (I) =
1

|Sj|
for I ∈ Sj, j = 1, . . . , k − 1

then if {zj}j∈N are i.i.d. samples from σ,

• for odd i = 1, . . . , k − 1,∣∣∣c− n− d−αdi E0
α (x1, . . . , xni)

∣∣∣ < εi

with probability greater than 1− εi.
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• for even i = 2, . . . , k − 1,∣∣∣∣(5

7

)α
c− n−

d−α
d

i E0
α (x1, . . . , xni)

∣∣∣∣ < εi

with probability greater than 1− εi.

If k is odd, let Ik = Γ (Sk−1) , so Ik consists of 2bk−1+1 disjoint intervals of length(
1
3

)bk−1+1
. It follows that there is a natural map fk : Tbk−1+1 → Ik, where Tbk−1+1 is

the (bk−1 + 1)-st interval collection in the construction of the Cantor set. Let µk be
the pushforward of µ by fk (recall that µ is the natural measure on the Cantor set)
and let {wj}j∈N be i.i.d. samples from µk. fk is a natural map, so Lemma 44 and
Equation 41 imply that

n−
d−α
d E0

α (w1 . . . wn)→ c

in probability as n→∞. It follows that there exists an nk so that

(42)
∣∣∣n− d−αdk E0

α (w1, . . . , wnk)− c
∣∣∣ < εk/2 ,

with probability greater than 1 − εk. µk is supported on intersection of the nested
interval collections

Ik = fk
(
Tbk−1+1

)
⊃ fk

(
Tbk−1+2

)
⊃ fk

(
Tbk−1+3

)
. . .

and
∥∥fk (Tbk−1+j

)∥∥→ 0 as j →∞ so the hypotheses of Lemma 43 are met; choose j >

M (εk, nk) , where M (εk, nk) is as defined in that Lemma and set Sk = fk
(
Tbk−1+j

)
.

Then, by the definition of M (εk, nk) , if σ is any probability measure so that

σ (I) =
1

|Sk|
for I ∈ Sk

(that is, σ assigns the same probabilities to intervals in Sk as µk does) then

(43)
∣∣∣n− d−αdk E0

α (z1, . . . , znk)− c
∣∣∣ < εk

with probability greater than 1− εk, as desired.

The argument for even k is very similar, except we set Ik = L (Sk−1) , the intervals

of Ik have length 5
7

(
1
3

)bk−1+1
, fk is a natural map from 5

7
Tbk−1+1 to Ik, µk is the

pushforward of ν by fk, and c is replaced by
(
5
7

)α
c in Equations 42 and 43.

Let σ be the natural probability measure on S = ∩jSj (the one that assigns equal
probability to the intervals of Sj for all values of j), and let {zj}j∈N be i.i.d. samples
from σ. By construction

n
− d−α

d
2k E0

α (z1, . . . , zn2k
)→ c
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but

n
− d−α

d
2k+1 E

0
α

(
z1, . . . , zn2k+1

)
→
(

5

7

)α
c

in probability as k →∞.

To complete the proof, we will show that σ is d-Ahlfors regular. Let x ∈ S. As a
first case, let m ∈ N and consider the ball of radius 1

3m
centered at x, an interval of

length 2
3m
. Sm+1 contains 2m intervals whose lengths are either 1

3m
or 5

7
1
3m
. B3−m (x)

contains at least 1 interval of Sm+1 (the one that has x as an element) and intersects
at most 4 such intervals. Therefore,

σ (B3−m (x)) ≥ 1

|Sm|
= 2−m =

(
3−m

)d
and

σ (B3−m (x)) ≤ 4

|Sm|
= 4

(
2−m

)
= 4

(
3−m

)d
.

Let 0 < δ < 1, ε0 = 3blog3(δ)c, and ε1 = 3dlog3(δ)e, so

ε0 ≤ δ < 3ε0 and ε1/3 < δ ≤ ε1 .

By our previous computations,

σ (Bδ (x)) ≥ σ (Bε0 (x)) ≥ εd0 ≥ 3−dδd

and
σ (Bδ (x)) ≤ σ (Bε1 (x)) ≤ 4εd1 ≤ 4

(
3dδd

)
.

Therefore, σ is d-Ahlfors regular with δ0 = 1 and c = 4
(
3d
)
.

�

The construction for general d ∈ (0, 1) is nearly identical, but is based on the middle-
β Cantor set rather than the middle thirds Cantor set. Let 0 < β < 1 and γ = 1−β

2
.

For an interval I define

Kβ (I) = {γI, γI + (1− γ) |I|} ,
so Kβ (I) consists of two intervals of length γ |I| obtained by removing an interval

of length β |I| from the middle of I. Let T β1 = [0, 1] , and inductively define T βk =

K
(
T βk−1

)
. If T β = ∩kT βk , then T is the union of two separated copies of itself rescaled

by γ, and the natural measure on T is Ahlfors regular of dimension

d :=
log (2)

log (1/γ)
=

log (2)

log (2)− log (1− β)
.
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(a) (b) (c)

Figure 11. The (a) Menger sponge, (b) Sierpiński triangle, and (c) two
stacked tori. Figures were generated in Mathematica.

Note that d ranges between 1 and 0 as β ranges from 0 to 1. To finish the construction,
repeat the previous argument verbatim except replace 5

7
with a scaling factor η so

that

1− β < η < 1

and 7
5

with 1
η
. This will produce a d-Ahlfors regular measure so that if 0 < α < d

then n−
d−α
d E0

α (x1, . . . , xn) oscillates between a positive constant and ηα times that
constant.

Appendix B. Scaling of Persistent Homology

We provide computational evidence that the hypotheses of Theorem 8 hold in many
cases. We examine four examples in R3 — the natural measures on the Menger
sponge and the Sierpiński triangle cross an interval, the uniform measure on two
tori stacked one above the other, and empirical data from earthquake hypocenters.
See Figure 11. The first three are Ahflors regular measures, with dimensions of
log(20)
log(3)

≈ 2.727, 1 + log(3)
log(2)

≈ 2.585, and 2, respectively. Note that γ21 ≤ 2.5 [60], so

the first two examples are known to meet all requirements of Theorem 8 for i = 1
except for perhaps the scaling of the expectation and variance of the number of
intervals.

We sample points from the natural measures on the Menger sponge and the Sierpiński
triangle using the procedures described in [42]. The rejection sampling algorithm
developed in [26] was used to sample points from the uniform distribution of the

torus
(√

x2 + y2 −R
)2

+ z2 = r2 with R = 2 and r = 1. The z-coordinate was
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(a) (b)

Figure 12. Scaling of |PH i (x1, . . . , xn)| /n for four examples, and i = 1, 2.

(a) (b)

Figure 13. Variance of |PH i (x1, . . . , xn)| divided by n2 for three exam-
ples, and i = 1, 2.

translated by 3 with probability 1
2
. The earthquake hypocenter data comes from the

Hauksson–Shearer Waveform Relocated Southern California earthquake catalog [37,
46, 58]; data was processed as in [42]. Persistent homology was computed using the
implementation of the Alpha complex in GUDHI [52, 57].

Figure 12 shows the empirical expectation of PH i (x1, . . . , xn) divided by n for each
of the four examples, and i = 1, 2. The expectation was averaged over 100 trials for
each example except for the earthquake data, which was averaged over 7. In each
case, the quantity appears to limit to a constant with n, indicating linear scaling of
the number of intervals. Figure 13 shows the empirical variance of PH i (x1, . . . , xn)
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divided by n2 for the three regular examples. This quantity decreases toward zero
for all examples.


