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Overview

I study the topology and geometry of complex geometric objects.
Broadly speaking, this falls under the purview of topological data
analysis. I’m interested in both theory and applications, especially
to materials science.



Topology and Geometry of Complex Geometric Objects
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Oxide Glasses

Oxide glasses are present in our daily lives, but the relationship
between the local structure and global physical properties
of these materials is poorly understood. This is due in part to the
lack of an appropriate language to describe that local structure.

B. Schweinhart, D. Rodney, and J.K. Mason, Statistical Topology
of Bond Networks with Applications to Silica (2019).



Silica

The bond network of silicon dioxide (silica) is a bipartite graph,
where silicon atoms are (usually) adjacent to four oxygen atoms,
and oxygen atoms are (usually) adjacent to two silicon atoms.



Idea

Current goal: develop a rigorous methodology to classify local
atomic environments appearing in oxide glass. It should
differentiate glasses produced at different cooling rates, as
well as different crystalline forms of SiO2.

Future goal: relate global physical properties of glasses to
local structure. One possible application: what local atomic
environments are associated with crystal nucleation?

The methodology is also applicable to other random graph
models with relatively constrained degree distribution.
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Swatches: Local Atomic Environments

If G is the bond network of an atomistic material, and v is an
atom in G the swatch or local atomic environment of radius r
centered at v is the ball of radius r in the graph distance.1

1B. Schweinhart, J.K. Mason, and R.D. MacPherson, Topological Similarity
of Random Cell Complexes and Applications, Physical Review E 93 (2016).



(In)equivalent Environments

Two swatches are equivalent if they are isomorphic as rooted,
colored graphs.



The Cloth

Given a graph G and a radius r , the counting measure
on the vertices of G induces an empirical probability distribution
of swatch types of radius r . This family of probability distributions
is called the cloth of G . It characterizes the local topology of G .



Crystal Cloth

For many crystalline materials, the cloth is supported on one or
two topological types.



Disordered Cloth

For disordered materials, the notion of a single “unit cell” is
replaced by a probability distribution of local configurations.



Application: Different Cooling Rates

This methodology distinguishes molecular dynamics simulations of
glasses produced at different cooling rates. We can both see an
overall pattern (faster cooling rate yields more “disorder”), and
identify specific environments over-represented in the different
preparations.2

2B. Schweinhart, D. Rodney, and J.K. Mason, Statistical Topology of Bond
Networks, with Applications to Silica.



Crystalline SiO2 and Radius 6

Proposed application: detect local atomic environments related to
crystal nucleation.

Crystalline forms of SiO2 such as quartz and cristobalite are
indistinguishable below radius r = 6.



The Combinatorial Explosion

R # of Classes per Atom

4 0.01
5 0.07
6 0.90
7 1.00

Number of graph isomorphism classes detected in a sample of 106

radius 6 atomic environments approaches 106! A different
approach is needed.

In Statistical Topology of Bond Networks with Applications to
Silica, we study notions of equivalence for local atomic
environments that are coarser than graph isomorphism.
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The H1 Barcode

The H1 barcode encodes information about algebraically
independent rings in the local environment, and their distance from
the root atom. At radius 6, it distinguishes glasses produced at
different cooling rates as well as different crystalline forms of silica.
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Fractal Dimension

Fractal dimension measures how the properties of a shape
depend on scale.

The first notion of a fractional dimension was proposed by
Hausdorff in 1918. Since then, several other definitions have
been proposed, including the box-counting, packing, and
correlation dimensions.

These dimensions agree on a wide class of “regular” sets.
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Fractal Applications

Fractal dimension has applications in a wide variety of fields
including medicine, ecology, materials science, and the analysis of
large data sets. In some of these applications, it is important to
estimate fractal dimension from random point samples.
1Riscovič and Pavlovič, Scanning (2013), 2Kagan, Geophysical Journal International (2007), 3Lorthois and Cassot,
Journal of Theoretical Biology (2010)



Filtrations

A filtration of topological spaces is family {Xα}α∈I with ordered
index set I , together with inclusions iα,β : Xα ↪→ Xβ for α < β.
Example: if S ⊂ R2 we have the filtration of ε-neighborhoods
{Sε}ε∈R+ .
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Persistent Homology

Persistent Homology (PH) tracks how the homology changes
through a filtration. PH i is a set of intervals corresponding to
homology generators that are born and die in this process.



Definition of Persistent Homology

Given a filtration {Xα} , PH i (Xα) is the unique set of intervals so
that

rank(iα,β : Hi (Xα)→ Hi (Xβ)) = #
{
I ∈ PH i (Xα) : [α, β] ⊆ I

}
.



Persistent Homology

The information in PH is often summarized by a persistence
diagram: a scatter plot of (birth, death) for each interval.



Persistent Homology

PH1(Sε) is a set of intervals, one for each component of the
complement that disappears as ε increases (by Alexander duality).
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Persistent Homology

PH1(Sε) has one interval for each bounded component of the
complement of S (by Alexander duality).



Persistent Homology of a Sample



Persistent Homology of a Sample

If we take the persistent homology of larger and larger samples, the
diagram begins to approach that of the support.



Persistent Homology of a Sample

We also have a cluster of small intervals that are usually written off
as “noise.” We can use this noise to estimate fractal dimension!



Minimum Spanning Trees

Definition (Minimum Spanning Tree)

Let x be a finite metric space. The minimum spanning tree on x,
denoted T (x) is the connected graph with vertex set x that
minimizes the sum of the length of the edges.

In fact, for any α > 0, T (x) minimizes the weighted sum

Σe∈T (x) |e|α .
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Minimum Spanning Trees and PH0

Observation: If x is a finite metric space, then there is a bijection
between the edges of T (x) and the intervals of PH0(x). An edge
corresponds to an interval of half the length.3

3Note: this depends on whether persistent homology is taken with respect
to the Rips or Čech complex.



Minimum Spanning Trees and PH0

The proof follows Kruskal’s algorithm to compute the MST:
expand balls until two from different components overlap.
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Main Questions

Question

Can the fractal dimension of a metric measure space be estimated
from the persistent homology of random point samples?

“Fractal Dimension and the Persistent Homology of Random
Geometric Complexes,” (2018).

Question

How does the practical performance of the PH i -dimension compare
to classical methods such as box-counting or the correlation
algorithm?

“Fractal Dimension Estimation with Persistent Homology: A
Comparative Study,” with J. Jaquette (2019).
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Previous Work on Fractal Dimension and PH

Several authors have defined fractal dimensions based on PH, and
compared computational estimates with known dimensions:

Robins (PhD thesis, 2000): Persistent Betti numbers of
fractals, proved results for H0 of disconnected sets.

MacPherson and S. (“Measuring Shape with Topology,”
2012): PH of shapes, studied probability distributions of
polymers.

Adams et. al. (“A Fractal Dimension for Measures via PH,”
2019): PH of random point samples; definition very similar to
the one here. Computational experiments that motivated the
current work.

S. (“PH and the Upper Box Dimension,” 2018): PH of
extremal point sets. First rigorous results relating PH to a
classically defined fractal dimension.
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Weighted Lifetime Sums

Definition (α-Weighted Lifetime Sum)

If X is a bounded metric space, define

E i
α (X ) =

∑
(b,d)∈PHi (X )

(d − b)α .

When i = 0 and X is finite the sum can be taken over the edges of
the minimum spanning tree on X :

E 0
α (X ) =

1

2α

∑
e∈T (X )

|e|α .
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Steele’s Theorem

Theorem (Steele, 1988)

Let µ be a compactly supported probability measure on Rm,
m ≥ 2, and let {xn}n∈N be i.i.d. samples from µ. If 0 < α < m,

lim
n→∞

n−
m−α
m E 0

α(x1, . . . , xn)→ c(α,m)

∫
Rm

f (x)(m−α)/m dx

with probability one, where f (x) is the probability density of the
absolutely continuous part of µ, and c(α,m) is a positive constant
that depends only on α and m.
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Persistent Homology Dimension

Let µ be a probability measure on a metric space, {xi}i∈N be i.i.d.
samples from µ, and α ∈ R+. Idea: if the support of µ is

d-dimensional, then E i
α(x1, . . . , xn) should scale as n

d−α
d .

Definition

dimPHα
i

(µ) =
α

1− β
where

β = lim sup
n→∞

log(E(E i
α(x1, . . . , xn)))

log(n)
.
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Steele’s Theorem

Corollary (Steele, 1988)

If µ is a nonsingular, compactly supported probability distribution
on Rm and 0 < α < m

dimPHα
0

(µ) = m .



Steele’s Theorem and Fractal Dimension

Quote (Steele, 1988)

One feature of the previous theorem that should be noted is that if
µ has bounded support and µ is singular with respect to Lebesgue
measure, then we have with probability one that
E 0
α(x1, . . . , xn) = o(n(m−α)/m). Part of the appeal of this

observation is the indication that the length of the minimum
spanning tree is a measure of the dimension of the support of the
distribution. This suggests that the asymptotic behavior of the
minimum spanning tree might be a useful adjunct to the concept
of dimension in the modeling applications and analysis of fractals.



Minimum Spanning Trees on Fractals

However, despite many subsequent stronger results for
absolutely continuous measures, very little was known about
random minimum spanning trees from singular measures.

Only previous rigorous result: Kozma, Lotker, and Stupp
(2011) on the length of the longest edge of a random
minimum spanning tree drawn from a Ahlfors regular measure
with connected support.

Computational experiments: Weygaert, Jones, and Martinez
(1992).
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Ahlfors Regularity

Definition (Ahlfors Regularity)

A probability measure µ supported on a metric space X is d-Ahlfors
regular if there exist positive real numbers c and r0 so that

1

c
rd ≤ µ(Br (x)) ≤ c rd

r for all x ∈ X and r < r0.

Ahlfors regularity is a standard hypothesis that implies that the
fractal dimension of a measure is well defined. That is, the various
classical notions of dimension coincide and equal d .



Ahlfors Regular Examples

The natural measures on the Cantor set, Sierpinski triangle, as
well as any self-similar fractal defined by an iterated function
system whose correct-dimensional Hausdorff measure is
positive (this is weaker than the usual open-set condition).

A natural measure on the boundary of a certain hyperbolic
groups, such as the fundamental group of a compact,
negatively curved manifold.

Bounded probability densities on a compact Riemannian
manifolds.



Main Theorem for Minimum Spanning Trees

Theorem (S., 2018)

Let µ be a d-Ahlfors regular measure on a metric space, and let
{xi}i∈N be i.i.d. samples from µ. If 0 < α < d ,

C0 ≤ n−
d−α
d E 0

α(x1, . . . , xn) ≤ C1

with high probability as n→∞, where C0 and C1 are positive
constants that do not depend on n. In particular,

dimPHα
0

(µ) = d .
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Sharpness of Our Result

There is a d-Ahlfors regular measure so that n−
d−α
d E 0

α(x1, . . . , xn)
oscillates between two constants with high probability. The idea is
to “interleave” the Cantor set with the Cantor set rescaled by 5/7.



Higher Dimensional Persistent Homology

Higher dimensional results are more difficult because of extremal
questions about the number of PH i intervals of a set of n points.
See “Persistent Homology and the Upper Box Dimension” (S.,
2018). Our cleanest result is for R2 (for the Čech complex):

Theorem (S., 2018)

Let µ be a d-Ahlfors regular measure on R2 with d > 1.5, and let
{xi}i∈N be i.i.d. samples from µ. If 0 < α < d , there are constants
0 < C0 ≤ C1 so that

C0 ≤ n−
d−α
d E 1

α(x1, . . . , xn) ≤ C1

with high probability as n→∞. In particular,

dimPHα
1

(µ) = d .
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Computational Results

Question

How does the practical performance of the PH i -dimension compare
to classical methods such as box-counting or the correlation
algorithm?

“Fractal Dimension Estimation with Persistent Homology: A
Comparative Study,” with J. Jaquette (2019).



Computational Results

We compare the performance of algorithms to estimate the PH i ,
box-counting, and correlation dimensions, for three classes of
examples: self-similar fractals, chaotic attractors, and empirical
earthquake data.



Sierpinski Triangle

In general, the PH0 and correlation dimensions perform
comparably well. In cases where the true dimension is known, they
approach it at about the same rate. In most cases, the
box-counting and higher PH i dimensions perform worse.



Sierpinski Triangle

We found one simple rule for fitting a power law to estimate the
PH0 which worked well for all examples, in contrast to the
correlation dimension and (especially) the box-counting dimension.



Ikeda attractor

Different notions of dimension may disagree for non-regular sets.



Earthquake Data

We applied the dimension estimation algorithms to the
Hauksson–Shearer Southern California earthquake catalog, and
found a PH0 dimension estimate of 1.76 and a correlation
dimension estimate of 1.66. This is in line with previous studies.



PH complexity

Definition (MacPherson–S.,2012)

compi
PH(X ) = inf

{
α : E i

α(X ) <∞
}
.

Measures the complexity of a shape, rather then the dimension.



PH complexity

Example True Dim. compPH0
(X ) compPH1

(X )

S log(3)
log(2) 0 log(3)

log(2)

C × I 1 + log(2)
log(3)

log(2)
log(3) 0

C × C 2 log(2)
log(3)

2 log(2)
log(3)

2 log(2)
log(3)



An Indicator of Difficulty?

comp0
PH(S) < comp0

PH(C × I ) < comp0
PH(C × C )



Future Directions

If µ has connected support, do sharper asymptotics hold for
E i
α(x1, . . . , xn), as in Steele’s theorem (a

Beardwood-Halton-Hammersley type result)?

Sharper results for i > 0?

Can we formalize the observed relationship between comp0
PH ,

and the difficulty of dimension estimation?

Thank you for your attention!
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Dependence on α

For self-similar fractals, lower values of α produced better
convergence for dimi

PH when compi
PH 6= 0, but there wasn’t much

difference otherwise.



Dependence on α

For non-regular sets, different values of α may give different values
for dimi

PH .



Ikeda attractor

comp1
PH ≈ .95?



Shell Annuli

If S is a swatch of radius R and 0 ≤ i ≤ j ≤ r , let S(i , j) be the
subgraph consisting of atoms between shells i and j and the bonds
between them.



H1

G (i , j) = rank(H1(S(i , j)))

That is, G (i , j) is the # of “independent rings” of S(i , j).
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H1 Barcode

Our local environments are one dimensional, so G (i , j) ≤ G (k , l) if
(i , j) ⊆ (k , l). As such, there is a unique set of intervals so that

G (i , j) = # of intervals contained in (i , j).
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Lower Bound Proof Sketch

For a ball B2ε(y) and a finite set x ⊂ X define the occupancy event

ω(B2ε(y), x) =

{
1 x ∩ Bε(y) 6= ∅ and x ∩ (B2r (y) \ Bε(y)) = ∅
0 otherwise

.



Lower Bound Proof Sketch

Lemma (Disjoint Ball Lemma)

Let B be a set of disjoint balls of radius 2ε centered at points of
X , and let x be a finite subset of X . Then

F (x, ε) ≥
∑
B∈B

ω(B, x)− 1 .



Lower Bound Proof Sketch

Let n ∈ N and ε = n−1/d . Let Bn
1 , . . . ,B

n
sn be a maximal collection

of disjoint balls of radius 2ε centered at points of X .

Lemma

There is a positive real number γ > 0 so that

lim
n→∞

1

n

sn∑
j=1

ω(Bn
j , xn) ≥ γ

in probability as n→∞.

Idea: use Ahlfors regularity to control sn, apply standard
probabilistic arguments.
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lim
n→∞

n−
d−α
d E 0

α(xn) ≥ lim
n→∞

n−
d−α
d n−α/dF (xn, n

−1/d)

≥ lim
n→∞

1

n

sn∑
j=1

ω(Bn
j , xn) ball occupancy

≥ γ previous lemma

in probability as n→∞.
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Upper Bound Proof Sketch

xn = {x1, . . . , xn} ⊂ X . We prove an extremal upper bound on
E 0
α(xn) that is stronger than what was stated in the previous slide.

Idea: control the number of edges of length greater than ε. Let

F (xn, ε) =
∣∣∣{e ∈ T (xn) : |e| > ε

}∣∣∣ .
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Upper Bound Proof Sketch

Lemma (ε-approximation Lemma)

If X supports a d-Ahlfors regular µ, there exists a C > 0 so that
for any Y ⊆ X and any ε > 0 there is a finite point set Y ε ⊂ Y so
that

dH(Y ,Y ε) < ε

|Y ε| < Cε−d .

F (xn, ε) ≤ F (x
ε/2
n , 0) by bottleneck stability

=
∣∣∣xε/2

∣∣∣− 1

≤ 2dCε−d
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Upper Bound Proof Sketch

T (xn) has n − 1 edges so

F (xn, ε) ≤ f (ε) := min(n − 1, 2−dCε−d)

=

{
n − 1 ε ≤ κ
2−dCε−d ε ≥ κ

,

where

κ =
1

2
(

D

n − 1
)1/d .
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Upper Bound Proof Sketch

E 0
α(xn) =

∑
e∈T (xn)

|e|α

=

∫ ∞
ε=0
−
∂
∣∣F (xn, ε)

∣∣
∂ε

εα dε

≤ . . . integration by parts

≤ α

∫ diamX

ε=0
f (ε)εα−1 dε

≤ . . .

≤ Dαn
d−α
d ,

where
Dα = 2αD

α
d (1 + D

α

d − α
) .
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