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What is the best way to distinguish local atomic environments
from HCP, FCC, and BCC lattices with noise added?
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from HCP, FCC, and BCC lattices with noise added?
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Application: ldentifying Defects in a Polycrystal

A Polycrystal cross-section C Stacking fault

Many existing methods: Common Neighbor Analysis,
Neighborhood Distance Analysis, Centrosymmetry, Voronoi
Topology, Polyhedral Template Matching, ...

Lazar et al, 2015
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Definitions and Notation

m An atomic configuration is a point cloud in R, labeled by
atomic species. Our methods work for multiple species, but
today we assume one.

m A local atomic environment is a point cloud in the ball of
radius r, B,, usually centered at an atom.

m For an atomic configuration X and y € R™, let ¢, (y; X) be
the local atomic environment of radius r centered at y :

(pr(y;X) :XmBr(y)
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A Metric on Local Atomic Environments

Goal: define a metric d on local atomic environments. It should be
continuous with respect to the atomic positions including atoms
moving on and off the boundary of B,. That is,

d(<Pr(X: X)7 ‘;Or(y; Y))
should be continuous in x, y, r, and the positions of all atoms.

Most current methods rely on the choice of the “closest N points”
to a root atom — not continuous in this sense!
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A Metric on Local Atomic Environments

The metric should be invariant to Euclidean isometries. If X, and
Y, are local atomic environments then

d(X, V7)) = (X p(0))

for all p € SO(m).



The 2-Wasserstein Metric

1/2
wlX.¥) = gin, | 3 d(sn0)

The minimum is taken over all matchings 1 from X to Y.



The Local 2-Wasserstein Metric

dw(X,Y)=_ min (dW(X’, Y')?
X/|=[v'|
n:X'=Y'

1/2
+ Y d(x,0B,)*+ Y d(y,0B) )

xEX\X' yeY\Y’
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Computation

m We compute the Euclidean Wassserstein Metric by a
branch-and-bound algorithm on SO(3), taking advantage of
the symmetries of the reference conditions.

m We compute the Local Wasserstein Metric using the
Hungarian algorithm.

m Speed (using heuristics): ~ .16 seconds per local environment
per thread for an FCC reference with 19 atoms, ~ 1.3 seconds
per local environment per thread for an FCC reference with
55 atoms.

Li and Hartley, 2007
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Proposed Test

m Data: a local atomic environment X centered at an atom x,
reference atomic configurations Ry, ..., Ry, a temperature T,
and a radius r.

m For each R;, let R! be the random configuration:
R{ = R; + thermal noise

If y € Ri, let y’ be the corresponding atom in RY.
m For each reference R;, let y € R; and compute

pi =P | dew (X,sor(y Y)) < dew (wr(y’: Y'), ey Y))

m Classify X as type R; if p; = max; p;.

Assume all atoms in the reference are identical, for clarity
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Synthetic Data

m References: FCC, BCC, HCP lattices with unit bond length.

m Thermal noise: add Gaussian displacements to each atom
with standard deviation o.

m For each reference R and o € R™, compute the probability
that a local environment in R’ is classified correctly.

m Compare accuracy with methods implemented in OVITO.

Stukowski, 2010



Performance Comparison: FCC
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Performance Comparison: HCP
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Performance Comparison: BCC
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Shear Data

Different test for atomic environments with large non-thermal
strains: Classify X as type R; if

dEw(X, R;) = m_in dEw(X, Rj)
J

Synthetic Data: shear reference R; in a random directly by a factor
A, add Gaussian noise, estimate probability of correct classification.



Shear Performance Comparison: FCC
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Conclusion

m We propose using the (local) Euclidean Wasserstein metric for
local atomic environment classification.

m The metric performs better than existing methods for
distinguishing HCP and FCC environments at high
temperatures.

m Proposed application: studying the phase transition from
graphite to diamond



