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What reference best matches a local atomic environment?
Input: a local atomic environment, a list of references, the
temperature
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What is the best way to distinguish local atomic environments
from HCP, FCC, and BCC lattices with noise added?
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Application: Identifying Defects in a Polycrystal

Many existing methods: Common Neighbor Analysis,
Neighborhood Distance Analysis, Centrosymmetry, Voronoi
Topology, Polyhedral Template Matching, . . .
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Definitions and Notation

An atomic configuration is a point cloud in Rm, labeled by
atomic species. Our methods work for multiple species, but
today we assume one.

A local atomic environment is a point cloud in the ball of
radius r , Br , usually centered at an atom.

For an atomic configuration X and y ∈ Rm, let ϕr (y ;X ) be
the local atomic environment of radius r centered at y :

ϕr (y ;X ) = X ∩ Br (y)
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A Metric on Local Atomic Environments

Goal: define a metric d on local atomic environments. It should be
continuous with respect to the atomic positions including atoms
moving on and off the boundary of Br . That is,

d
(
ϕr (x ;X ), ϕr (y ;Y )

)
should be continuous in x , y , r , and the positions of all atoms.

Most current methods rely on the choice of the “closest N points”
to a root atom — not continuous in this sense!
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A Metric on Local Atomic Environments

The metric should be invariant to Euclidean isometries. If Xr and
Yr are local atomic environments then

d(Xr ,Yr ) = d
(
Xr , ρ(Yr )

)
for all ρ ∈ SO(m).
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The 2-Wasserstein Metric

dW (X ,Y ) = min
η:X→Y

∑
x∈X

d
(
x , η(x)

)21/2

The minimum is taken over all matchings η from X to Y .



The Local 2-Wasserstein Metric

dLW (X ,Y ) = min
X ′⊆X ,Y ′⊆Y
|X ′|=|Y ′|
η:X ′→Y ′

dW (X ′,Y ′)2

+
∑

x∈X\X ′

d(x , ∂Br )2 +
∑

y∈Y \Y ′

d(y , ∂Br )2

1/2



The Euclidean Wasserstein Metric

dEW (X ,Y ) = min
ρ∈SO(m)
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Computation

We compute the Euclidean Wassserstein Metric by a
branch-and-bound algorithm on SO(3), taking advantage of
the symmetries of the reference conditions.

We compute the Local Wasserstein Metric using the
Hungarian algorithm.

Speed (using heuristics): ≈ .16 seconds per local environment
per thread for an FCC reference with 19 atoms, ≈ 1.3 seconds
per local environment per thread for an FCC reference with
55 atoms.

Li and Hartley, 2007
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Proposed Test

Data: a local atomic environment X centered at an atom x ,
reference atomic configurations R1, . . . ,Rk , a temperature T ,
and a radius r .

For each Ri , let R ′i be the random configuration:

R ′i = Ri + thermal noise

If y ∈ Ri , let y ′ be the corresponding atom in R ′i .

For each reference Ri , let y ∈ Ri and compute

pi = P

dEW

(
X , ϕr (y Y )

)
< dEW

(
ϕr (y ′;Y ′), ϕr (y ;Y )

)
Classify X as type Rj if pi = maxj pj .

Assume all atoms in the reference are identical, for clarity
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Synthetic Data

References: FCC, BCC, HCP lattices with unit bond length.

Thermal noise: add Gaussian displacements to each atom
with standard deviation σ.

For each reference R and σ ∈ R+, compute the probability
that a local environment in R ′ is classified correctly.

Compare accuracy with methods implemented in OVITO.

Stukowski, 2010
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Shear Data

Different test for atomic environments with large non-thermal
strains: Classify X as type Ri if

dEW (X ,Ri ) = min
j

dEW (X ,Rj)

Synthetic Data: shear reference Ri in a random directly by a factor
λ, add Gaussian noise, estimate probability of correct classification.
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Shear Performance Comparison: FCC



Conclusion

We propose using the (local) Euclidean Wasserstein metric for
local atomic environment classification.

The metric performs better than existing methods for
distinguishing HCP and FCC environments at high
temperatures.

Proposed application: studying the phase transition from
graphite to diamond
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