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Abstract. We propose that the recently defined persistent homology dimensions are a practical

tool for fractal dimension estimation of point samples. We implement an algorithm to estimate the

persistent homology dimension, and compare its performance to classical methods to compute the
correlation and box-counting dimensions in examples of self-similar fractals, chaotic attractors, and an

empirical dataset. The performance of the 0-dimensional persistent homology dimension is comparable

to that of the correlation dimension, and better than box-counting.

1. Introduction

Loosely speaking, fractal dimension measures how local properties of a set depend on the scale at which
they are measured. The Hausdorff dimension was perhaps the first precisely defined notion of fractal
dimension [23, 41]. It is difficult to estimate in practice, but several other more computationally prac-
ticable definitions have been proposed, including the box-counting [10] and correlation [34] dimensions.
These notions are in-equivalent in general.

Popularized by Mandelbrot [57, 58], fractal dimension has applications in a variety of fields including
materials science [17,44,92], biology [6,52,66], soil morphology [68], and the analysis of large data sets [7,
86]. It is also important in pure mathematics and mathematical physics, in disciplines ranging from
dynamics [81] to probability [8]. In some applications, it is necessary to estimate the dimension of a set
from a point sample. These include earthquake hypocenters and epicenters [39,47], rain droplets [28,54],
galaxy locations [37], and chaotic attractors [34,81].

We propose that the recently defined persistent homology dimensions [1, 77] (Definition 1 below) are
a practical tool for dimension estimation of point samples. Persistent homology [20] quantifies the
shape of a geometric object in terms of how its topology changes as it is thickened; roughly speaking,
i-dimensional persistent homology (PH i) tracks i-dimensional holes that form and disappear in this
process. Recently, it has found many applications in fields ranging from materials science [43, 73] to
biology [31, 89]. There are further applications of persistent homology in machine learning, for which
different methods of vectorizing persistent homology have been defined [2, 11]. In most applications,
larger geometric features represented by persistent homology are of greatest interest. However, in
the current context it is the smaller features — the “noise” — from which the dimension may be
recovered.

For a finite subset of a metric space {x1, . . . , xn} and a positive real number α define the α weight
Eiα (x1, . . . , xn) to be the sum of the lengths of the (finite) PH i intervals to the α power:

Eiα (x1, . . . , xn) =
∑

I∈PH i(x1,...,xn)

|I|α .
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(a) (b) (c)

(d) (e) (f)

Figure 1. Three self-similar fractals: (a) the Sierpinski Triangle, (b) the Cantor dust,
and (c) the Cantor set cross an interval; and three chaotic attractors arising from the:
(d) Hénon map (e) Ikeda map and (f) Rulkov map.

If µ is a measure on bounded metric space,
{
xj
}
j∈N are i.i.d. samples from µ, and i is a natural

number the PH i-dimension dimPHα
i

(µ) measures how Eiα (x1, . . . , xn) scales as n→∞. In particular,

if Eiα (x1, . . . , xn) ≈ n d−αd , then dimPHα
i

(µ) = d. See below for a precise definition.

We estimate the persistent homology dimension of several examples, and compare its performance to
classical methods to estimate the correlation and box-counting dimensions. We study the convergence
of estimates as the sample size increases, and the variability of the estimate between different samples.
The examples we consider are from three broad classes: self-similar fractals, chaotic attractors, and
empirical data. The sets in the former class (shown in Figure 1(a)– 1(c)) have known dimensions, and
are regular in a sense that implies that the various notions of fractal dimension agree for them. That
is, they have a single well-defined “fractal dimension.” This makes it easy to compare the performance
of the different dimension estimation techniques. In those cases, our previous theoretical results [77]
imply that at least the zero-dimensional version of persistent homology dimension will converge to the
true dimension.

The second class of fractals we study are strange attractors arising from chaotic dynamical systems, see
e.g. Figure 1(d)-1(f). Generically, these sets are not known to be regular, and the various definitions
of fractal dimension may disagree for them. Finally, we apply the dimension estimation techniques to
the Hauksson–Shearer Southern California earthquake catalog [40].

We also propose that a notion of persistent homology complexity due to MacPherson and Schwein-
hart [56] may be a good indicator of how difficult it is to estimate the correlation dimension or persistent
homology dimension of a shape.
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In summary, we conclude the following.

• Effectiveness. Based on our experiments, the PH 0 and correlation dimensions perform com-
parably well. In cases where the true dimension is known, they approach it at about the same
rate. In most cases, the box-counting, PH 1, and PH 2 dimensions perform worse.

• Efficiency. Computation of the PH 0 dimension is fast and comparable with the correlation
and box-counting dimensions. The PH 1 dimension is reasonably fast subsets of R2, but the
PH 1 and PH 2 dimensions are quite slow for point clouds in R3, and computations for sets with
higher ambient dimension are impractical.

• Equivalence. For a large class of regular fractals the PH dimension coincides with various clas-
sical definitions of fractal dimension. However, there are fractal sets for which these definitions
do not agree, with sometimes surprisingly large differences (e.g. the Rulkov and Mackey-Glass
attractors). Within the class of PH i dimensions, there is variation between dimension estimates
coming from different choices of the homological dimension or scaling weight. All this said, it
can be difficult to determine whether dimensions truly disagree, or if the convergence is very
slow.

• Error Error estimates, whether they are the “statistical test error” of the correlation dimension
or the empirical standard deviation of estimates between trials, do not contain meaningful
information about the difference between the dimension estimate and the true dimension. In
general, it is difficult to tell whether a dimension estimate has approached its limiting value.

• Ease-of-use We found one simple rule for fitting a power law to estimate the PH 0 which worked
well for all examples, in contrast to the correlation dimension and (especially) the box-counting
dimension.

In the following, we briefly survey previous work comparing different methods for the estimation of
fractal dimension (Section 1.1), outline the different methods considered here (Section 2), and discuss
the results for each example (Sections 3, 4, and 5).

1.1. Background and Previous Work. Many previous studies have compared different methods for
fractal dimension estimation. These include surveys focusing on applications to chaotic attractors [83],
medical image analysis [52], networks [70], and time series and spatial data [32]. Fractal dimension
estimation techniques have also been applied for intrinsic dimension analysis in applications where an
integer-valued dimension is assumed [13,63].

Several previous studies have observed a relationship between fractal dimension and persistent homol-
ogy. Estimators based on 0-dimensional persistent homology (minimum spanning trees) were proposed
by Weygart et al. [87] and Martinez et al. [61]; we explain their relationship to the current work af-
ter Definition 1 below. The PhD thesis of Robins [69], arguably the first publication in the field of
topological data analysis, studied persistent Betti numbers of fractals and proved results for the 0-
dimensional homology of totally disconnected sets. In 2012, MacPherson and Schweinhart introduced
an alternate definition of PH dimension, which we refer to here as “PH i complexity” to avoid confusion
(Section 2.1.3). The two previous notions measure the complexity of a shape rather than a classical
dimension; they are trivial for Rm, for example. A 2019 paper of Adams et al. [1], proposed a PH
dimension that is a special case of the one we consider here, and performed computational experi-
ments on self-similar fractals. However, they do not compare the estimates with those of other fractal
dimension estimation techniques. In 2018, Schweinhart [78] proved a relationship between the upper
box-counting dimension and the extremal properties of the persistent homology of a metric space, which
was a stepping stone to the paper where the current definition was introduced [77]. The latter paper
did not undertake a computational study of the persistent homology dimension; we mention relevant
theoretical results in Section 2.1.1.

The second class of fractals we study arise in dynamical systems. A dynamical system describes the
motion of trajectories x(t) within a phase space, with a rule for describing how x(t) changes as time t
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increases, and are referred to as either discrete or continuous depending on whether t ∈ Z+ or t ∈ R+.
An attractor A is an invariant set (that is, if x(t) ∈ A, then x(s) ∈ A for all s > t) in the phase space
such that if x(t) is close to A, then its distance to A will decrease to zero asymptotically as t → ∞.
Some attractors are simple, consisting of a collection of points or smooth periodic orbits, but some
are complicated, such as those shown in Figure 1 (d-f). In dissipative systems strange attractors —
attractors with a fractional dimension — can occur.

For self-similar fractals, dimension is easy to compute exactly and approximate computationally. The
situation for strange attractors is quite different; in general, the fractal dimension of an attractor cannot
be computed analytically. The measures on these sets may not be regular, and the different notions of
dimension appear to disagree in many cases. Note that when estimates for different notions of fractal
dimension disagree, it is difficult to tell whether this is because (1) one method converges much faster
than the other (2) there is a significant systematic error in the estimates, or (3) the two definitions are
genuinely different.

To offer a further cautionary tale, in [46] the authors study a family of quasi-periodically forced 1D
maps with an attracting invariant curve. As a parameter changes, the curve becomes less stable and it
becomes increasingly wrinkled; for any resolution, parameters exist for which the curve will appear to
be a strange non-chaotic attractor [35]. However, until the invariant curve completely loses stability,
the attractor remains a smooth 1-dimensional curve. Hence, no matter how fine a resolution we use
to compute our dimension estimate, we can never be sure that our estimate is close to its convergent
value.

The Lyapunov exponents of a dynamical system describe its exponential rates of expansion and con-
traction, and can be used to define the Lyapunov dimension of the attractor [91]. The Kaplan-Yorke
conjecture claims that the Lyapunov dimension of a generic dynamical system will equal the informa-
tion dimension of its attractor [27, 48]. For a class of strange attractors arising from 2D maps, Young
showed this to be the case, and moreover that the Lyapunov, Hausdorff, box-counting, and Rényi di-
mensions all coincide [90]. Other attractors appear to exhibit multifractal properties in the sense that
different notions of fractal dimension disagree. The multifractal properties of such an attractor can
be studied with a one-parameter family of dimensions such as the generalized Hausdorff [33] or Rényi
dimensions [5,67]. We can also examine this with the PH i dimensions by varying the weight parameter
α — see Figure 12.

The Takens embedding theorem also illustrates the importance of fractal dimension to the study of
attractors. In an experimental setting, it is often impossible to record all of the relevant dynamic
variables. However, one can reconstruct the entire attractor from the time series of a single observed
quantity using a time delay embedding [81]. Namely, for a choice of time delay τ and embedding
dimension m, a 1-dimensional time series {x1, . . . xN} ⊆ R may be used to construct a m-dimensional
time series consisting of points {xi, xi−τ , . . . , xi−(m−1)τ} ∈ Rm. If m is at least twice the box-counting
dimension of the attractor, then generically this reconstruction will be diffeomorphic to the original
attractor [75]. These techniques have been widely applied and we briefly mention some references
which use this in the context of topological data analysis [29,62,64].

2. Dimension Estimation Methods

2.1. Persistent Homology Dimension. We give a brief, informal introduction to persistent homol-
ogy for the special case of a subset of Euclidean space. For a more in depth survey, see [14, 21, 22, 30].
Note that the definition of the PH dimension also makes sense for subsets of an arbitrary metric
space.

Persistent homology [20] quantifies the shape of a geometric object in terms of how the topology of the
set changes as it is thickened. To be precise, if X is a subset of Rm, define the family of ε-neighborhoods
{Xε}ε∈R+ by

Xε =
{
y ∈ Rm : d(y,X) < ε

}
.
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Figure 2. ε-neighborhoods for the Sierpinski triangle (above) and a sample of 100
points from that set (below).

(a) (b) (c)

Figure 3. Persistence diagrams for (a) 100 point sample from the Sierpinski triangle,
(b) 1000 points from the Sierpinski triangle and (c) the Sierpinski triangle itself (where
the area of a dot is proportional to the number of persistent homology intervals with
corresponding birth and death time).

Figure 2 shows ε-neighborhoods of the Sierpinski triangle S and a sample of 100 points from that set.
The Sierpinski triangle S contains infinitely many holes which disappear as we thicken it. The first
homology group of Sε is an algebraic invariance which essentially counts the number of holes in Sε. The
last hole to disappear is in the center of the triangle; it vanishes when we have thickened the triangle

by ε = 1
4
√
3
. Persistent homology represents this largest hole by the single interval

(
0, 1

4
√
3

)
. The next

three largest holes disappear at ε = 1
8
√
3

and correspond to three intervals
(

0, 1
8
√
3

)
. The following nine

holes are represented by nine intervals
(

0, 1
16
√
3

)
, and so on. These are the first dimensional persistent

homology intervals of the Sierpinski triangle, which we denote by PH 1 (S) .

The zero-dimensional persistent homology of a metric space tracks the connected components that
merge together as the geometric object is thickened. The Sierpinski triangle is already connected at
ε = 0, so PH 0 (S) is trivial. However, the finite point sample x shown in Figure 2 has 100 components.
As we thicken x by an amount ε the first component disappears when ε equals δ/2, where δ is the
smallest pairwise distance between the points. This corresponds to the interval

(
0, δ/2

)
in PH 0 (x) .

One can find all PH 0 intervals of x by increasing ε and forming an interval whenever there are two
points x1, x2 ∈ x so that d (x1, x2) < ε and x1 and x2 are in different components of xε0 for all ε0 < ε.
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This is essentially the same as Kruskal’s algorithm for computing the minimum spanning tree on x,
which leads to a proof that there is a bijection between the edges of that tree and the intervals of
PH 0 (x) where an interval corresponds to an edge of twice its length.

Roughly speaking, the higher dimensional homology groups Hi(Xε) count the number of higher di-
mensional “holes” in Xε. The higher dimensional persistent homology is defined in terms of how these
groups Hi (Xε) change as ε increases. The structure of the persistent homology is captured by a unique
set of intervals that track the birth and death of homology generators as ε changes [12,14]. We denote
this set of intervals by PH i (X) .

Traditionally, the information contained in persistent homology is plotted in a persistence diagram
showing the scatter plot (birth,death) for each interval. The persistence diagrams of the Sierpinski
triangle, and point samples from it with 100 and 1000 points are shown in Figure 3. Note that the
1-dimensional persistent homology of the point sample with 1000 roughly approximates that of the Sier-
pinski triangle, with 1 interval that dies around ε = 1

4
√
3
, three that die around ε = 1

8
√
3
, and 9 that die

around ε = 1
16
√
3
. This is a consequence of the “bottleneck stability” of persistent homology [15].

It is a remarkable fact that if x is a finite subset of Euclidean space, then the intervals PH i (x) can
be computed exactly and efficiently. This is done by replacing the infinite family of ε-neighborhoods
{xε}ε∈R+ with a finite sequence of finite simplicial complexes, called the Alpha complex of x; these
complexes are subcomplexes of the Delaunay triangulation on x [20].

Note that there is more than one way to define the persistent homology of a metric space. Here, we use
the persistent homology of the Čech complex persistent homology of X. If X is a subset of Euclidean
space, this is equivalent to the persistent homology of the ε-neighborhood filtration of X described
above (as well as the persistent homology of the Alpha complex, if X is finite). Another common
(in-equivalent) notion is the persistent homology of the Vietoris–Rips Complex on X [18, 88]. We use
the Čech complex because there are efficient algorithms to compute its persistent homology for finite
subsets of R2 and R3, as discussed below. A persistent homology dimension defined in terms of the
Vietoris—Rips complex also has nice properties [77], and may work better in examples without an
embedding into a small-dimensional Euclidean space.

2.1.1. Definition of the PH dimension. Consider a sample {x1, . . . , xn} of independent points from the
natural measure on the Sierpinski triangle. As n increases, the persistence diagram of the point sample
will converge (in the bottleneck distance) to the persistence diagram of the Sierpinski triangle itself.
As such, it might seem strange that we can recover the dimension of that set from the 0-dimensional
persistent homology of the samples (PH 0(S) is trivial). However, one may notice in Figure 3 that there
is a large cluster of points, both 0- and 1-dimensional, along the plotted diagonal line. These points are
generally considered to be “noise” and do not significantly contribute to the larger features of interest
in other applications of persistent homology. However, the rate at which this “noise” decays is linked
to the dimension of the underlying object.

To track the growth of this “noise”, we define the power-weighted sum for α > 0 by:

Eiα (X) =
∑

I∈PH i(X)

|I|α ,

where the sum is taken over all finite intervals and |I| denotes the length of an interval. The scaling
properties of random variables of the form E0

α (x1, . . . , xn) as n → ∞ has been studied extensively
in probabilistic combinatorics [3, 49, 80, 93], and the case i > 0 has recently been of interest [19, 77].
Motivated by a theorem of Steele [80] and the computational work of Adams et al. [1], Schweinhart [77]
introduced the following definition of the persistent homology dimension.
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(a) (b) (c)

Figure 4. Dimension estimation for a sample of 106 points from the Lorenz attractor,
using the methods described in Section 2. Power laws were fitted in the ranges denoted
by the arrows.

Definition 1. Let X be a bounded subset of a metric space and µ a measure defined on X. For each
i ∈ N and α > 0 we define the persistent homology dimension:

dimPHα
i

(µ) =
α

1− β
,

where

β = lim sup
n→∞

log

(
E
(
Eiα (x1, . . . , xn)

))
log (n)

.

We write this as the PH α
i dimension, and sometimes omit the i or α when making general statements.

That is, dimPHα
i

(µ) = d if Eiα (x1, . . . , xn) scales as n
d−α
d . Larger values of α give relatively more

weight to large intervals than to small ones. The case α = 1 is closely related to the dimension studied
by Adams et al. [1], and agrees with it if defined. Weygaert et al. [87] defined a family of minimum
spanning tree dimensions that are equivalent to the PH 0 dimensions, and used heuristic arguments to
claim that they coincide with the generalized Hausdorff dimensions for chaotic attractors. Martinez et
al. [61] asserted that the α→ 0 of the PH 0 dimension gives the Hausdorff dimension for point samples
from chaotic attractors.

It is a corollary of Steele [80] that if µ is a non-singular measure on Rm, and 0 < α < m then
dimPHα

0
(µ) = m. Schweinhart [77] proved that if µ satisfies a fractal regularity hypothesis called Ahlfors

regularity, then dimPHα
0

(µ) equals the Hausdorff dimension of the support of µ (which coincides with
the box-counting dimension under the regularity hypothesis). He also proved that if d equals the upper
box-counting dimension of the support of µ and α < d then dimPHα

0
(µ) ≤ d, as well as weaker results

about the cases where i > 0.

Note that if µ is supported on a k-dimensional subspace of Rm, then Hi (X) is trivial for i ≥ k. It follows
that dimPHα

i
(µ) = 0. As such, even if µ is regular, its PH i dimension may not equal its Hausdorff

dimension unless the Hausdorff dimension is sufficiently large. In particular, if µ is a d-Ahlfors regular
measure supported on a 2-dimensional subspace of Rm, d > 1.5, and α < d then PH α

1 –dimension of µ
equals d. [77]

Schweinhart’s results show that the PH α
0 and PH α

1 dimensions of the natural measures on the Sierpinski
triangle, Cantor set cross an interval, and Cantor dust equal the Hausdorff dimensions of those sets
when α is less than the true dimension.

2.1.2. Computation of the PH dimension. We use different methods to compute persistent homology
for the cases i = 0 and i > 0. In the 0-dimensional case, we use minimum spanning tree-based algorithms
that work much more quickly, and are fast even for point samples with high ambient dimension. We use
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the implementation of the dual–tree Boruvka Euclidean minimum spanning tree algorithm [59] included
in the mlpack library [16] to compute the edges of the minimum spanning tree on a point sample. This
algorithm was sufficiently fast for point clouds with 106 points in R8. See [59] for a brief survey of other
algorithms to compute minimum spanning trees for point sets in Euclidean space and abstract metric
spaces.

For i > 0, we use GUDHI to compute the persistent homology of the Alpha complex of the point
sample. [60,71] Both this computation and the previous one could be optimized by re-writing the data
structures to support insertion of vertices.

Given a sample of n points x1, . . . , xn, we compute the α-weighted sum Eiα
(
x1, . . . , xci

)
for 100 log-

arithmically spaced values of ci between 1, 000 and n. Then, we use linear regression to fit a power

law to the data
(
ci, E

0
α

(
x1, . . . , xci

))
. After some trial-and-error, we found that fitting the power law

between x = cn and x = cbnc/2 provided a reasonable estimate for all examples tested. Using a smaller
range sometimes produced better convergence when i > 0, but also introduced more oscillations in the
estimate. Alternate non-linear regression methods did not seem to result in better performance.

Figure 4(a) shows the power law fits this method produces for a sample from the Lorenz attractor.

2.1.3. PH complexity. In some instances, the dimension of a metric space can be computed in terms
of the persistent homology of the metric space itself. For example, as shown in Figure 3(c), the 1-
dimensional persistent homology of the Sierpinski triangle contains intervals that scale as its dimension.
This is captured by an alternate notion of PH dimension defined by MacPherson and Schweinhart [56],
which measures the complexity of the connectivity of the shape rather than the classical dimension.
Here, we refer to it as the “PH complexity” of a shape to differentiate it from notions of dimension. As
we will see below, this quantity may be an indicator of when the dimension is hard to estimate using
any of the methods presented here.

If X is a subset of a metric space, define the cumulative PH i curve Fi by

Fi (X, ε) = #
{
I ∈ PH i (X) : |I| > ε

}
Then the PH i complexity of X is

compPH i
(X) = lim

ε→0

− log
(
Fi (X, ε)

)
log (ε)

.

Note that compPH i
(Rn) = 0 for any i. Also, if S is the Sierpinski triangle in Figure 2, our computation

of the persistence diagram of S shows that compPH 0
(S) = 0 and compPH 1

(S) = log(3)
log(2) .

We can estimate Fi (X, ε) from samples; as the Hausdorff distance between {x1, . . . , xn} and X converges
to zero, bottleneck stability implies that Fi (X, ε) will converge for values of ε large relative to the
Hausdorff distance. In Figure 10 below we compute compPH 1

of the Ikeda attractor.

2.2. The Correlation Dimension. The correlation dimension [34] is commonly used in applications
because it is easy to implement and provides reasonable answers even for relatively small sample sizes.
A probability measure µ on a metric space X induces a probability measure ν on the distance set of X.
Define the correlation integral of X as the cumulative density function of ν:

C (ε) = P
(
d (x, y) < ε

)
.

The correlation dimension equals the limit

lim
ε→0

log
(
C (ε)

)
log (ε)

if it exists. There is an extensive literature on the estimation and properties of the correlation dimension;
see for example [9, 24,65,79,84].
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(a) (b)

Figure 5. Correlation dimension estimates for (a) the Cantor dust and (b) the
Lorenz attractor. The evenly dashed red lines indicate the statistical test error, and
the unevenly dashed blue lines show the empirical standard deviation across 50 trials.

2.3. Computation of the Correlation Dimension. For a finite point sample x1, . . . , xn one can
estimate the correlation dimension as

lim
ε→0

lim
n→∞

logC (n, ε)

log ε

where

C (n, ε) =
#{
(
xi, xj

)
: d
(
xi, xj

)
< ε, i < j}

n (n− 1)
,

if n is taken to ∞ appropriately as ε→ 0. That is, C (n, ε) measures the number of distances less than
ε in proportion to the number of all inter-point distances.

As with other dimension estimates, this limiting expression converges logarithmically slowly. To accel-
erate the convergence, we can essentially apply l’Hôpital’s rule to find the limit by computing a slope.
To do so, we fix a collection of logarithmically spaced values ε1 < · · · < εm, and compute a linear
regression through the data

(
log εi, logC(n, εi)

)
. Our estimate for the correlation dimension is then

given by the slope of the line of best fit. For a fixed point sample, the values of ε1 and εm are often
chosen by hand to avoid outliers and edge effects.

While computing the O(n2) inter-point distances is prohibative for very large n, such a calculation is
not needed, as many of these distances are large and do not factor into the dimension calculation [83].
Using a kd-tree, one can quickly compute the O(n) shortest distances with O(n log n) effort. After some
trial-and-error, we settled upon the heuristic for choosing ε1 and εm as below:

C(N, ε1) ≈ n.75

n(n− 1)
C(N, εm) ≈ 50n

n(n− 1)
.

See Figure 4(b). This heuristic provides a way to choose values of ε1 and εm consistently amongst
different fractals and different sample sizes. It appears to give near-optimal convergence rates to the
true dimension for self-similar fractals, and estimates that agree with the values in the literature for
the Hénon, Ikeda, and Lorenz attractors [34,79,83].

As has been previously reported [83], the “statistical test error” from the linear regression calcula-
tion does not have much predictive value about the limiting dimension — see Figure 5. Also, it is
much smaller than the empirical standard deviation of the dimension estimate between trials in some
cases.
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(a) (b)

Figure 6. (a) Box-counts for a sample of 106 points from the Sierpinski triangle.
(b) Error in the dimension estimate obtained by fitting a power law to the box counts
between widths of the form 2−i/2 and 2−j/2. Compare to the error of correlation di-
mension and PH 1

0 dimension estimates in Figure 7(b), which are smaller than .002
for all samples of sizes between 2 105 and 106 points. Only dark squares would yield
comparably good estimates for the box-counting dimension.

2.4. The Box-counting Dimension. The box-counting dimension [10] of a bounded subset of X of

Rm is defined in terms of the number of cubes of width δ needed to cover X. Let
{
Cδi

}
i∈N

be the cubes

in the standard tiling of Rm by cubes of width δ, and let Nδ (X) be the number of cubes in
{
Cδi

}
i∈N

that intersect X. Define the upper and lower box-counting dimensions by

dimbox (X) = lim sup
δ→0

−Nδ (X)

δ
and dimbox (X) = lim inf

δ→0
−Nδ (X)

δ
,

respectively. If the upper and lower box-counting dimensions coincide, the shared value is called the
box-counting dimension of X and is denoted dimbox (X) . There are several equivalent definitions; see
Falconer [25] for details. Many studies have investigated the properties and estimation of the box-
counting dimension, including [50,74,82].

2.4.1. Computation of the Box-counting Dimension. We found it difficult to find a general method to
compute the box-counting dimension that worked well for different examples and different numbers of
samples. For example, computing box-counts of the form N2−i (x) and fitting a power law between 2−i

and 2−j resulted in estimates that were sensitive to i, j, and the number of samples. In some cases,
it was easy to cherry-pick a specific choice just because it seemed to have the best convergence to the
true dimension, though other choices resulted in power law fits that looked just as good. See Figure 6
for an example, which plots the error in the dimension estimate for many possible power law fits. Only
very specific choices have errors as small as estimates of the correlation and PH 0 dimensions for the
same sample.

We settled on the following method, which produced reasonably good results for planar examples. It
is based on the observation that if

{
xj
}
j∈N are samples from X ⊂ Rm and δ > 0 then the box count

Nδ (x1, . . . , xm) should converge to Nδ (X) as n→∞. For a sample {x1, . . . , xm}, we estimate the box-
counting dimension from the smallest boxes for which Nδ (x1, . . . , xm) appears to have stabilized.

For a a family of point samples xm in Rn (where the sizes of xm are logarithmically spaced as be-
fore) we rescale and translate the point samples so they are contained in a unit cube. Then, we
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Example True Dim. compPH 0
(X) compPH 1

(X) compPH 2
(X)

S log(3)
log(2) 0 log(3)

log(2) −
C × I 1 + log(2)

log(3)
log(2)
log(3) 0 −

C × C 2 log(2)
log(3)

2 log(2)
log(3)

2 log(2)
log(3) −

M log(20)
log(3) 0 log(20)

log(3)
log(20)
log(3)

Table 1. Data for the four self-similar fractals studied here. As discussed in
Section 3.2, lower values of α appear to yield better dimension estimates when
compPH i

(X) 6= 0.

True Correl. Box PH .5
0 PH 1

0 PH .5
1 PH 1

1 PH 1
2 PH 2

2

S ≈ 1.585 1.585 1.586 1.585 1.585 1.587 1.620 − −
C × I ≈ 1.631 1.633 1.618 1.629 1.623 1.634 1.642 − −
C × C ≈ 1.262 1.263 1.267 1.263 1.289 1.268 1.303 − −
M ≈ 2.727 2.716 2.703 2.705 2.706 2.878 2.773 2.945 2.881

Table 2. Dimension estimates for self-similar fractals, averaged over 10 trials of 106 samples.

compute box-counts of the form Ni/10000 (xm) for 1 ≤ i ≤ 1000. We fit a power law to the data(
i/10000, Ni/10000 (xm)

)
in the range (

⌈
j/2
⌉
, j), where j is the smallest index so that

Nj/10000 (xm) = min1≤k≤4

(
Nj/10000

(
xm−k

))
.

We used linear regression to fit the power law; non-linear regression did not produce substantially
different results. See Figure 4(c).

We tried several variations. For example fitting the power law in the range (d.9je , j) produced estimates
that converged faster with n for some examples but exhibited large oscillations in others.

3. Results for Self-similar Fractals

We compare the performance of the fractal dimension estimation procedures for four different self-
similar fractals: the Sierpinski triangle (S), the Cantor dust (C × C), the Cantor set cross an interval
(C × I), and the Menger sponge (M). The first three are subsets of R2, and M is contained in R3.
We chose these sets to illustrate the observed relationship between compPH 0

(X) and the performance
of dimension estimation techniques; see Table 1. Definitions of the sets and sampling methods are
contained in Appendix A.

For each set, we sample 50 trials of 106 points from the corresponding natural measure. We compute 100
dimension estimates for each trial, at logarithmically spaced numbers of points between 103 and 106. To
show the convergence of the dimension estimate to the true value, we plot number of points against the
dimension estimate averaged across the trials, with thinner dotted lines one standard deviation above
and below the estimate.

Dimension estimates for the four examples are plotted in Figure 7. In all examples, the PH 0 dimen-
sion and the correlation dimension perform better than the PH 1 or box-counting dimensions. The
relatively poor performance of the PH 1 dimension can be ascribed to the fact that the weighted sums
E1
α (x1, . . . , xn) are smaller and noisier than the corresponding sums E0

α (x1, . . . , xn) (see Figure 4(a)).
As mentioned previously, it was difficult to find an effective general method to produce box-counting
estimates. This is illustrated for the Sierpinski triangle in Figure 6. While the plot of box width vs.
box count looks linear for a large range on the log–log plot, only very specific choices of bounds will
produce dimension estimates with errors on the same order as the PH 0 and correlation dimensions.
These bounds vary unpredictably with the sample size and example.
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(a) (b)

(c) (d)

(e)

Figure 7. Dimension estimates for self-similar fractals. Note that (b) is a close-up of
(a). We omitted the box-counting dimension in (e) because the automated procedure
described in Section 2.4.1 did not result in stable estimates until n was larger than 105.
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(a) (b) (c)

Figure 8. Percentage error of dimension estimates for three self-similar fractals.

The convergence of the PH 0 and correlation dimensions to the true dimension is very similar in all
four examples. The correlation dimension estimates exhibit oscillations as the sample size increases, a
phenomenon often ascribed to the fractal’s lacunarity [83]. The PH 0 dimension estimate appears less
sensitive to oscillations, but this is likely due to how the power law fit is performed in the computations
(as described in Section 2.1.2); choosing a narrower range over which to fit a power law results in a more
oscillatory estimate. That said, for sizable samples, it is impractical to compute the correlation integral
over a large range. The PH 0 dimension provides a computationally practicable way to use information
from multiple lengthscales. It also has the advantage of having the parameter α which can be tuned to
give a better estimate — see Section 3.2 for a discussion on the choice of α. The variance of the correlation
dimension estimate is slightly lower, but this doesn’t mean much when oscillations are present.

3.1. Percentage Error. An interesting pattern emerges when we compare the percentage error of
the dimension estimates across the three planar examples, as in Figure 8. Both PH 0 and correlation
dimensions perform best for the Sierpinski triangle (compPH 0

(S) = 0), second best for the Cantor

set cross an interval (compPH 0
(C × I) = dim (C × I) − 1 = log(2)

log(3) ), and worst for the Cantor dust

(compPH 0
(C × C) = dim (C × C) = 2 log(2)

log(3) ). That is, dimension estimation appears to be more

difficult when the connectivity of the underlying set is more complex. Note that compPH 0
(X) can be

computed (see [56]), and could be used as an indicator of whether additional caution is warranted when
discussing dimension estimation results.

For the PH 1 dimension, the situation is different and the difficulty of dimension estimation appears to
(unsurprisingly) be related to compPH 1

rather than compPH 0
. The rate of convergence was fastest for the

Cantor set cross an interval (compPH 1
(C× I) = 0), but slower for the Cantor dust (compPH 1

(C×C) =

dim (C × C) = 2 log(2)
log(3) ) and Sierpinski triangle (compPH 1

(S) = dim (S) = log(3)
log(2) ).

We exclude the Menger sponge from these figures, as the ambient dimension likely influences the diffi-
culty of dimension estimation.

3.2. Dependence on α. Estimates of the PH α
0 and PH α

1 dimensions for various choices of α are
shown in Figures 9. In the cases where compPH i

(X) = 0, there are only small differences between
dimension estimates for different choices of α, with perhaps a slight advantage for higher values of α
(Figures 9(a) and 9(d)). However, when compPH i

(X) > 0, dimension estimates for different values of
α are substantially different. Lower values of α yield better estimates when compPH i

(X) > 0 for planar
examples, and middle values of α (i.e. equal to about half the true dimension) seem to provide the best
convergence for i = 1, 2 (but convergence is slow, especially for i = 2.) Lower values of α appear to give
dimension estimates that have a higher variance between samples — see Figures 9(g) and 9(g) for the
Sierpinski triangle, which is representative.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. PH i dimension estimates for various choices of α. (g) and (h) show the
standard deviation of the dimension estimate between trials.
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Figure 10. To estimate compPH 1
of the Ikeda attractor, we fit a power law in the

range marked by the arrows. Note that PH 1 exhibits two regimes: noise from the point
sample and persistent features of the attractor itself. PH 0 is only noise, as the Ikeda
attractor is connected.

Correlation Box-counting PH .5
0 PH 1

0 PH .5
1 PH 1

1

Hénon 1.21 1.22 1.28 1.28 1.52 1.36
Ikeda 1.68 1.72 1.71 1.72 1.71 1.72
Rulkov 1.01 1.52 1.62 1.87 2.02 < 2.13
Lorenz 2.04 > 1.90 2.06 2.05 < 2.14 < 2.12
MG 3.04 > 2.45 3.59 3.70 − −

Table 3. Dimension estimates for chaotic attractors, averaged over 10 trials of 106 samples.

4. Results for Attractors

For each chaotic attractor we sample 50 randomly selected initial conditions, and generate a time series
of 106 points after discarding an initial transient trajectory (except the Mackey-Glass attractor, where
we sample 25 initial conditions). For each time series, we compute 100 dimension estimates for each
trial, at logarithmically spaced numbers of points between 103 and 106. The various dynamical systems
we studied are described in Appendix B and the dimension estimates we obtained for N = 106 are
summarized in Table 3 and Figure 11.

In all cases, we are skeptical that the box-counting dimension has approached a limiting value. The
upper box dimension is known to be an upper bound for the PH α

0 [77] and correlation dimensions, but
most of our estimates of these dimensions tend to be higher than our estimates of the box-counting
dimension. This comports with previous observations that box-counting estimates do not seem to
converge well for strange attractors [36].

Of the two-dimensional maps we studied, the Ikeda map appears to be most well-behaved. The box-
counting, PH 0, and even the PH 1 dimension all seem to converge to a common value of 1.71, with
a correlation dimension of 1.68 not that far off. The Ikeda attractor I was the only chaotic attractor
we studied with non-trivial persistent homology at multiple lengthscales (rather than the persistent
homology “noise” of point samples). Here, we compute its PH 1 complexity, compPH 1

(I) . Figure 10

shows the cumulative interval count function defined in 2.1.3, for a sample of 106 points from the Ikeda
attractor. The PH 0 curve only shows very small intervals, which come from the noise of point samples.
This is as expected, because the Ikeda attractor is connected. However, the PH 1 curve shows two
different regimes, one that corresponds to noise and one that appears to be picking up on the elongated
holes visible in Figure 1(e). The cumulative length plot appears to follow a power law in the range
ε = .0005 to ε = .005. Fitting a power law to this range gives an estimate of compPH 1

(I) = .95. This is
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(a) (b)

(c) (d)

(e)

Figure 11. Average dimension estimates for various attractors, with dashed lines
denoting ±1 sample standard deviation. Note the different scales.
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(a) (b)

Figure 12. Attractor PH i dimension estimates for various choices of α.

lower than the dimension estimates for the Ikeda attractor, indicating that the elongated holes in that
set scale at a different rate than its other properties.

For the Hénon attractor, both PH 0 and PH 1 dimension estimates had large oscillations which make it
hard to say whether they will converge to values different from either the box-counting or correlation
dimensions. The correlation dimension exhibited smaller oscillations, which comports with previous
observations by Theiler [85], who also warns of the danger of estimating the dimension of attractors
with long-period oscillations. Previous studies [4] have claimed that the Hénon attractor is multifractal
for the parameters chosen here, but we are not confident enough in our dimension estimates to make
such an assertion.

The Rulkov attractor is non-homogeneous, as easily evidenced by Figure 1(f), and not surprisingly our
fractal dimension estimates differed from each other, ranging from 1.00 (correlation dimension) to 2.13
(PH 1

1 dimension). The PH α
1 estimates began above 2 for small samples sizes and decreased toward 2

as the number of samples increased. For various values of α, the PH α
0 dimension estimates ranged from

1.38 for α = 1 to 1.88 for α = 1.25 (see Figure 12). As one may see in Figure 11(c), the variance of the
correlation dimension estimate increases with sample size, suggesting the heuristic we chose for fitting
the correlation integral requires further fine-tuning for this example. The Rulkov map is noninvertible,
so it does not belong to the class of 2D maps considered in [90] where many of the fractal dimensions are
known to coincide. While it is difficult to determine if numerical dimension estimates have converged,
our results certainly suggest that the various fractal dimension definitions may not agree for the Rulkov
attractor.

For the Lorenz attractor, the PH 0 and the correlation dimensions performed well and both appear
to converge toward 2.05. However, neither the PH 1 nor the PH 2 dimensions perform well. In fact,
nearly 105 are needed before the PH 2 dimension estimate less than 3, the ambient dimension in which
the points reside! As in other cases, this is likely due to the fact that higher dimensional persistent
homology contains less information — see Figure 4. The sum of the lengths of the PH 1 and PH 2

intervals of a point sample of 106 points are 10 and 400 times smaller than the sum of the lengths of
the PH 0 intervals, respectively. Also, the plot of n versus Ei1 (x1, . . . , xn) is much noisier for PH 2 than
PH 0.

Lastly we consider the Mackey-Glass equation, a delay differential equation for which it is still an open
conjecture whether there exist parameters for which the system exhibits mathematically provable chaos.
The phase space for this system is infinite dimensional, and we use a projection into R8 for our fractal
dimension calculations. In [26] Farmer reports the attractor’s Lyapunov dimension to be 3.58, and
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(a) (b) (c)

Figure 13. Dimension estimation for the earthquake hypocenter data set. Power laws
were fitted in the ranges marked by the arrows.

we obtain a PH .5
0 dimension estimate close to this value. However, the spectrum of PH α

0 dimension
for various α had the largest spread of any of the fractals we studied, except the Rulkov attractor,
ranging between 3.59 for α = .5 and 4.06 for α = 3.5 (see Figure 12). While none of our dimension
estimates appear to oscillate, all appear to converge slowly. The box-counting dimension estimation
method described in Section 2.4.1 performed particularly poorly for this example, perhaps due to the
high dimension and co-dimension. The estimate in Table 3 was computed by fitting a power law by
hand. We did not attempt to compute either the PH i dimensions for 1 ≤ i ≤ 7, because the algorithm
we use is impractical if the ambient dimension is greater than 3.

5. Earthquake Data

We estimate the dimension of the Hauksson–Shearer Waveform Relocated Southern California earth-
quake catalog [40,51]. The hypocenter of an earthquake is the location beneath the earth’s surface where
the earthquake originates. One can use the dimension estimate to study the geometry of earthquakes,
i.e. by comparison to dimension estimates for fractures in rock surfaces or dislocations in crystals (see
Section 6 of [47]). Previously, Harte [39] estimated the correlation dimension of earthquake hypocenters
in New Zealand and Japan, and Kagan [47] studied the correlation dimension of earthquakes in southern
California and developed extensive heuristics to correct for errors in that computation.

We downloaded the coordinates of the hypocenters of the earthquakes in the catalogue from the Southern
California Earthquake Data Center Website [76], and selected the waveform-relocated earthquakes of
magnitude greater than 2.0. This gave a data set of 74,929 earthquakes. The deepest earthquake in
the data set is 33 kilometers below sea level and the depth distribution has a single peak, so we did not
split the data set into multiple samples as Harte did. The data set had small relocation errors, with
the error in distance between nearby hypocenters estimated to be less than .1 kilometer for 90% of such
distances [40].

The presence of location errors means that a different methodology is required to estimate the correla-
tion dimension than from the previously considered examples, where estimates at shorter lengthscales
produce better results. To estimate the correlation dimension we plotted the correlation integral (Fig-
ure 13(a)) and determined that the best range to fit a power law was between 2 and 8.5 kilometers.
This yields a correlation estimate of about 1.66. This can be compared to Kagan’s estimate of 1.5 for
earthquakes from an earlier version of the same earthquake catalog that was processed with different
methodology (Figure 8 of [47]), and to Harte’s estimates of 1.8 and 1.5 for shallow earthquakes in Kanto,
Japan and Wellington, New Zealand, respectively.

Figure 13(b) shows the plot of n versus E1
0 (x1, . . . , xn) used to estimate the PH 0 dimension. We

estimated that the PH 1
0 dimension is approximately 1.76 when α = 1. Similar computations for α = .5

and α = 1.5 yielded dimension estimates of 1.75 and 1.83, respectively. From this, and the comparison
with the correlation dimension, we have evidence that the earthquake probability distribution is not
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regular. Also, note that the PH 1
0 dimension plot (Figure 13(b)) appears to follow a power law in a large

range, and the dimension can be estimated without fiddling with example-specific parameters. This
precludes difficulties that arose in Harte’s analysis where the correlation dimension estimate was very
sensitive to the scale at which it was measured(Figure 20 in [39]). Of course, the correlation dimension
has an advantage of interpretability at different lengthscales — the x-axis in Figure 13(a) is kilometers,
while it is number of samples in Figure 13(b).

The box-counting, PH 1, and PH 2 dimensions did not produce good results. In the former case, it
is unclear whether the plot of box width versus box count (Figure 13(c)) follows a power law at any
range, but certainly no range shorter than 5 kilometers. Fitting between 5 and 10 kilometers yielded
an estimate of .91, which is very different than the estimates computed with other methods. Fitting
at larger length scales, between 20 and 50 kilometers produced an estimate of 1.22. It is not surprising
that the PH 1 and PH 2 dimensions produced poor results, given the small sample size.

We also estimated that compPH i
(X) likely equals zero for the earthquake data, for i = 0, 1, 2.

6. Conclusion

Overall the performance of our PH 0 dimension calculations is comparable to the correlation dimension,
and gives dimension estimates that are often greater for non-regular sets. Both the PH 0 and correlation
dimensions were more reliable than either the box-counting, PH 1, or PH 2 dimensions. The correlation
dimension and the PH 0 dimension are easy to implement and quick to compute. The PH 0 dimension
may be more user-friendly in the sense that a single choice of power law range worked well for all
examples. Of these two, we do not view one dimension estimation technique as “better” than the other.
Rather, they are complementary methods that — if the underlying set is not regular — can provide
complementary information.

In many applications of persistent homology, small intervals are often ignored in favor of larger features
and discarded as “noise”. However, as we have demonstrated here, there is sometimes signal in that
noise. Adding the PH dimension to the current suite of PH -based techniques used in applications such
as machine learning will offer an orthogonal data descriptor.
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[58] Benôıt Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and Co., 1982.
[59] William B. March, Parikshit Ram, and Alexander G. Gray. Fast Euclidean minimum spanning tree: Algorithm,

analysis, and applications. KDD ’10 Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2010.

[60] Clément Maria. Persistent cohomology. In GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.

[61] Vicent J. Martinez, R. Dominguez-Tenreiro, and L. J. Roy. Hausdorff dimension from the minimal spanning tree.
Physical Review E, 1992.

[62] Konstantin Mischaikow, Marian Mrozek, J Reiss, and Andrzej Szymczak. Construction of symbolic dynamics from

experimental time series. Physical Review Letters, 82(6):1144, 1999.
[63] Dengyao Mo and Samuel H. Huang. Fractal-based intrinsic dimension estimation and its application in dimensionality

reduction. IEEE Transactions on Knowledge and Data Engineering, 2012.

[64] Audun Myers, Elizabeth Munch, and Firas A Khasawneh. Persistent homology of complex networks for dynamic
state detection. arXiv preprint arXiv:1904.07403, 2019.

[65] M. A. H. Nerenberg and Christopher Essex. Correlation dimension and systematic geometric effects. Physical Review

A, 1990.
[66] Xin Peng, Wei Qi, Mengfan Wang, Rongxin Su, and Zhimin He. Backbone fractal dimension and fractal hybrid

orbital of protein structure. Communications in Nonlinear Science and Numerical Simulation, 2013.
[67] Alfred Renyi. Probability Theory. North Holland Publishing Company, 1970.

[68] Michel Rieu and Garrison Sposito. Fractal fragmentation, soil porosity, and soil water properties: I. theory. Soil

Science Society of America Journal, 1991.
[69] Vanessa Robins. Computational topology at multiple resolutions: foundations and applications to fractals and dy-

namics. PhD thesis, University of Colorado at Boulder, 2000.

[70] Eric Rosenberg. A Survey of Fractal Dimensions of Networks. Springer, 2018.
[71] Vincent Rouvreau. Alpha complex. In GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.

[72] Nikolai F Rulkov. Regularization of synchronized chaotic bursts. Physical Review Letters, 86(1):183, 2001.

[73] Mohammad Saadatfar, Hiroshi Takeuchi, Vanessa Robins, Nicolas Francois, and Yasuaki Hiraoka. Pore configuration
landscape of granular crystallization. Nature Communications, 8, 2017.

[74] N. Sarkar and B.B. Chaudhuri. An efficient differential box-counting approach to compute fractal dimension of image.

IEEE Transactions on Systems, Man, and Cybernetics, 1994.
[75] Tim Sauer, James A Yorke, and Martin Casdagli. Embedology. Journal of statistical Physics, 65(3-4):579–616, 1991.

[76] SCEDC. Southern california earthquake center., 2013. Caltech.Dataset.
[77] B. Schweinhart. The persistent homology of random geometric complexes on fractals. arXiv:1808.02196.

[78] Benjamin Schweinhart. Persistent homology and the upper box dimension. arXiv:1802.00533, 2018.

[79] Julien Clinton Sprott and George Rowlands. Improved correlation dimension calculation. International Journal of
Bifurcation and Chaos, 11(07):1865–1880, 2001.

[80] J. Michael Steele. Growth rates of Euclidean minimal spanning trees with power weighted edges. Annals of Probability,

1988.
[81] Floris Takens. Dynamical Systems and Turbulence, chapter Detecting Strange Attractors in Turbulence, pages 366–

381. Springer, 1980.

[82] Charles C. Taylor and James Taylor. Estimating the dimension of a fractal. Journal of the Royal Statistical Society.
Series B (Methodological), 1991.

[83] James Theiler. Estimating fractal dimension. Journal of the Optical Society of America A, 1990.

[84] James Theiler. Statistical precision of dimension estimators. Physical Review A, 1990.
[85] James Patrick Theiler. Quantifying Chaos: Practical Estimation of the Correlation Dimension. PhD thesis, California

Institute of Technology, 1988.



FRACTAL DIMENSION ESTIMATION WITH PERSISTENT HOMOLOGY 22

[86] Caetano Traina, Agma Traina, Leejay Wu, and Christos Faloutsos. Fast feature selection using fractal dimension.

Journal of Information and Data Management, 2010.

[87] Rien van de Weygaert, Bernard J.T. Jones, and Vincent J. Martinez. The minimal spanning tree as an estimator for
generalized dimensions. Physics Letters A, 1992.
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Appendix A. Self-Similar Fractals

A.1. The Sierpinski Triangle. The Sierpinski triangle (Figure 1(a)) is defined by iteratively removing
equilateral triangles from a larger equilateral triangle. Begin by sub-dividing the equilateral triangle
formed by (0, 0), (1, 0), and (

√
3/2, 1/2) into four congruent triangles, and removing the center triangle.

Repeat this process on the remaining three triangles, and continue ad infinitum. The Sierpinski triangle

equals three copies of itself rescaled by the factor 1/2 so the dimension of the resulting set is log(3)
log(2) (for

a self-similar set equal to m copies of itself rescaled by a factor r, the self-similarity dimension equals
log(m)

log(1/r)
.

We sampled points from the natural measure on the Sierpinski Triangle by sampling random integers
{a1, a2, . . .} ∈ {0, 1, 2} and computing

(x, y) =

 ∑
i:ai=1

2−i +
∑
i:ai=2

2−i−1,
∑
i:ai=2

√
3 2−i−1

 .

In practice, we end this procedure at i = 64.

A.2. The Cantor Dust. The standard middle-thirds Cantor set C is the set formed by removing
the interval

(
1/3, 2/3

)
from the closed interval [0, 1] , and iteratively removing the middle third of the

remaining intervals. The dimension of C is log(2)
log(3) . The Cantor dust (Figure 1(b)) is the product C ×C;

its dimension is 2 log(2)
log(3) .

We sampled points from the natural measure on C by sampling random integers {a1, a2, . . .} ∈ {0, 1}
and computing

x = 2

∞∑
i=1

ai3
−i .

In practice, we truncated the summation at i = 64. A point (x1, x2) from the natural measure on the
Cantor dust can then be sampled by independently sampling x1 and x2 as above.

A.3. The Cantor Set Cross an Interval. Consider the set C × [0, 1] , where C is the Cantor set

defined in the previous section. The dimension of this set is 1 + log(2)
log(3) , one greater than the dimension

of the Cantor set.

We sampled points (x, y) from the natural measure on the Cantor set cross an interval by sampling a
random point x on the Cantor set by the procedure described in the previous section, and a random
real number y from the uniform distribution on [0, 1] .
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A.4. The Menger Sponge. The Menger sponge is defined by iteratively removing cubes from a larger
cube. Begin by sub-dividing the unit cube in R3 into nine smaller sub-cubes, and remove nine of them:
one from the center of the original cube one from the center of each of the eight faces. Repeat this
process on each of the 20 remaining sub-cubes and continue ad infinitum. The resulting structure is

equal to 20 copies of itself rescaled by a factor 1/3 so the dimension of the resulting set is log(3)
log(20) .

For j ∈ n we sample a uniform three-tuple of integers (xi, yi, zi) ∈ {0, 1, 2} throwing out and re-
sampling any three-tuple for which two or more of the coordinates equals one. To sample a point from
the natural measure on the Menger sponge, we form the sum

(x, y, z) =

∞∑
i=0

3−i (xi, yi, zi) .

In practice, we end this procedure at i = 64.

Appendix B. Chaotic Attractors

B.1. Hénon Map. The Hénon map [42] is given by (xn, yn) 7→ (xn+1, yn+1) where:

xn+1 = 1− ax2n + yn

yn+1 = bxn.

We used the parameters of a = 1.4 and b = 0.3. We generated 50 time series using randomly chosen
initial conditions, computing a trajectory of length 1.1 · 107 and discarding the initial 106 points in the
series.

B.2. Ikeda Map. The complex Ikeda map [38] is given by zn 7→ zn+1 where:

zn+1 = a+R exp

i(φ− p

1 + |zn|2

) zn.
We used the parameters:

a = 1 R = 0.9 φ = 0.4 p = 6.

We generated 50 time series using randomly chosen initial conditions, computing a trajectory of length
1.1 · 106 and discarding the initial 105 points in the series.

B.3. Rulkov Map. The chaotic Rulkov map [45,72] is given by (xn, yn) 7→ (xn+1, yn+1) where:

xn+1 =
α

1 + x2n
+ yn

yn+1 = yn − µ(xn − σ)

We use the parameters

µ = 0.0001 α = 3.75 σ = −1 I = 0

We generated 50 time series using randomly chosen initial conditions, computing a trajectory of length
1.1 · 106 and discarding the initial 105 points in the series.

B.4. Lorenz System. The Lorenz system [53] given by the system of ordinary differential equations
below:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

We use the parameters:

ρ = 28 σ = 10 β = 8/3.
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We generated 50 time series using randomly chosen initial conditions, integrating forward for 1.01×105

units of time, and discarding the initial 103 units of time. We used MATLAB’s ode45 integrator with
a relative error tolerance of 10−9 and an absolute error tolerance of 10−9. We sampled our trajectories
at a rate of 10Hz, producing time series with 106 points each.

B.5. Mackey-Glass. The Mackey-Glass equation [55] is given by the scalar delay differential equation
below:

y′(t) = −ay(t) + b
y(t− τ)

1 + y(t− τ)n
.(1)

We take parameters:

a = 1 b = 2 τ = 3 n = 10.

A natural phase space for this dynamical system is the Banach space of continuous functions C =
C0([−τ, 0],R). For our dimension calculations we discretize this space using a projection map πm :
C → Rm (for m = 8) which evaluates a function y ∈ C at m maximally spaced points on the interval
[−τ, 0].

We generated 25 time series using randomly chosen initial conditions and integrating forward for τ
m−1 ·

106 + 104 units of time. We used MATLAB’s dde23 integrator with the default error tolerances for the
first 5, 000 units of time, and the remainders of each trajectory were computed using a relative error
tolerance of 10−5 and an absolute error tolerance of 10−9. The initial transient periods of 104 units of
time were discarded, and the remainders were sampled at a rate of τ

m−1Hz, producing time series with

106 points each.
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