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ABSTRACT. The Eden cell growth model is a simple discrete stochastic process which
produces a “blob” in Rd : start with one cube in the regular grid, and at each time
step add a neighboring cube uniformly at random. This process has been used as a
model for the growth of aggregations, tumors, and bacterial colonies and the healing
of wounds, among other natural processes. Here, we study the topology and local ge-
ometry of the resulting structure, establishing asymptotic bounds for Betti numbers.
Our main result is that the Betti numbers grow at a rate between the conjectured rate of
growth of the site perimeter and the actual rate of growth of the site perimeter. We also
present the results of computational experiments on finer aspects of the geometry and
topology, such as persistent homology and the distribution of shapes of holes.

1. INTRODUCTION

In this paper, we apply the viewpoint of stochastic topology and topological and geo-
metric data analysis to a discrete geometric model from probability theory: the d-
dimensional Eden cell growth model (EGM). The 2-dimensional EGM was first intro-
duced and simulated by Murray Eden [17, 18] as a model for the growth of colonies of
non-motile bacteria on flat surfaces [19]. It is defined on R2, using the regular square
tessellation of the plane, as follows. Start at time one with one square tile at the ori-
gin. At each time step, add a new square tile selected uniformly from among all tiles
adjacent to the structure but not yet contained in it (this set of tiles is called the site
perimeter). This process produces a shape that is well-approximated by a convex set
but has interesting geometry at the boundary—see Figure 2. Here we study the natural
higher-dimensional generalization of the EGM to the regular cubical lattice inRd .

In the probability literature, the EGM is studied as an example of first-passage perco-
lation [3, Ch. 6], a process which models the spread of a fluid or an infection in a non-
homogeneous medium. This literature mainly focuses on the large-scale structure and
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(a) (b)

Figure 1. (a) A simulation of the two-dimenional Eden model with 100,000 tiles
shown in light gray and (b) the lichen Phlyctis argena. Many natural processes
result in “Eden-like” growth.

statistics of this process, about which a fair amount is known; one of the most important
results is the Cox–Durrett shape theorem [12], which shows that under mild assump-
tions, growth is generally ball-like, rather than fractal as one might initially expect. That
is, over time, the shape of the resulting structure looks more and more like a rescaling
of a certain convex set which depends only on the model parameters—so, in the case of
the Eden model, only on the dimension.1

The shape theorem restricts all “random” behavior to a collar near the boundary of
this convex set which is vanishingly small compared to the whole structure, but whose
thickness measured in tiles tends to infinity. As far as we know, not much previous
attention has been dedicated to the local geometry in this region for any first-passage
percolation model. This local geometry naturally includes the topology: although holes
of any arbitrarily large size eventually appear with probability 1 at the boundary of the
Eden model, those holes and other nontrivial cycles get smaller and smaller in compari-
son to the overall shape with high probability. Moreover, most of the nontrivial topology
occurs at the smallest scales—that is, most of the homology is generated by very small
cycles. In short, by exploring the topology of the Eden model, we quantify small-scale
perturbations of the boundary.

Stochastic growth models have been applied to study the temporal and spatial dynam-
ics of a wide range of processes including the growth of bacterial cell colonies [41] and

1While this convex set looks round in simulations in dimension d = 2, it is known not to be a Euclidean
ball for d > 34 [24, 11].
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Figure 2. Simulation of the 2D and 3D Eden growth models up to time 10,000
and 30,000 respectively. We zoom in to a portion of the boundary of each model
to showcase some local topology generated by one-dimensional holes. The 3D
example is available for online interactive exploration at the webpage https:
//skfb.ly/6SnT9.

https://skfb.ly/6SnT9
https://skfb.ly/6SnT9
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tumors [42] in biology, the spread of diseases in epidemiology [36], gelation and crys-
tallization in materials science and physics [20], and urban growth [40] in the social
sciences. The Eden model is an example of such a model that is simple enough to study
analytically yet complex enough to capture important scaling behavior. Its surface is
a prototypical model for the growth of interfaces and rough surfaces [5, 21, 32]. For
a modified version on a flat substrate, this surface is believed to fall into the Kardar–
Parisi–Zhang universality class [23, 10, 21], a large class of random interfaces character-
ized by the scaling behavior of the height function. Other systems believed to fall into
this class include ballistic deposition and anisotropy-corrected versions of the Eden
model in Zd [2], while statistics consistent with it have been observed in experiments
of paper wetting [29] and turbulent liquid crystals [39].

The EGM itself has specifically been proposed as a model for wound regeneration [1]
and the growth of bacterial colonies [41]. Similar systems with additional parameters
or modified rules for the addition (or subtraction) of tiles have been proposed to model
a wide variety of phenomena, such as the magnetic Eden model for aggregations of
particles with a fixed spin in a medium2 [4, 8, 25]; cellular automata [14]; tumor growth
[42]; and urban growth [26, 40], among others.

Our results show, informally, that the amount of topology in the Eden model scales
roughly with the perimeter. This topology provides a method to characterize the be-
havior below the interface and distinguishes it from other models which produce sim-
ilar interfaces on the large scale, but may be topologically trivial or (as in the case of
ballistic deposition) have topology which scales with the volume. Computing the Betti
numbers may therefore give additional evidence for or against certain mechanisms of
growth. To give a toy example, suppose we locate an interface between populations of
two competing species A and B, and we want to understand, based on the synchronic
picture, the extent to which one is outcompeting the other. If species A is not growing
its range, we would expect species B to occupy a connected region. On the other hand,
our results indicate that Eden-type growth of species A will reliably leave “voids”, that
is, disconnected regions where species B predominates. If both are growing, then the
number of voids on each side will be roughly proportional to the relative growth rate.
Thus the topology of the interface leaves clues about the process of its formation.

Such techniques can perhaps be applied to more complex models found in the litera-
ture. In [28], an Eden model with mutations is used to simulate the growth of two pop-
ulations: a “wild-type” population and a mutant form spreading within it. The holes
in the wild-type and mutant populations exhibit qualitatively different behavior—in
both their frequencies and shapes—which depends on the parameters controlling the

2Constrast with the Ising model, in which the spins of the particles are allowed to change over time.
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spread of the mutation (see Figure 3 of [28]). Topological information could be used to
determine such parameters from data.

Furthermore, in applications of stochastic growth models, the geometry of the perime-
ter strongly influences the interaction with the ambient environment. For example, in
materials science, the roughness and porosity are important in a wide variety of con-
texts, and in marine biology the shape of a coral colony is related to resource acquisition
[30]. This interaction might depend on the local topology of the structure. For example,
for a three-dimensional aggregation, the two-dimensional homology corresponds to
voids that do not connect to the outside; cells on the surface of these voids do not have
the same access to external resources. The one-dimensional homology concentrated
on the surface of an aggregation provides a measure of the complexity of that surface;
the cells forming a 1-dimensional homology class could be thought of as a filter in the
sense that the medium can flow through them.

2. MAIN RESULTS

Our main results concern the rate of growth of the i -dimensional homology groups of
the Eden growth model. Let A(t ) be the d-dimensional Eden model at time t , for d ≥ 2,
and let βi (t ) denote the rank of the i -dimensional homology (the i th Betti number) of
A(t ). Roughly speaking, βi (t ) measures the number of “i -dimensional holes” in A(t ).
For example, if d = 3, β1(t ) gives the number of tubes through A(t ) (for a solid donut,
this is one) and β2(t ) gives the number of voids of A(t ), or bounded components of the
complement of A(t ) (for a sphere, this is one). See Section 3.1 for a technical defini-
tion.

The first result relates the growth of βi (t ) with that of the site perimeter of A(t ), the set
of tiles adjacent to but not contained in A(t ). Write Pd (t ) for the volume of the site
perimeter.

Theorem 1. For each d and 1 ≤ i ≤ d −1, there is a constant c = c(d , i ) > 0 such that

ct (d−1)/d ≤βi (t ) ≤ 2d−i

(
d

i

)
Pd (t ), i ≤ d −2,(1)

cPd (t ) ≤βi (t ) ≤ Pd (t ), i = d −1,(2)

with high probability as t →∞.

In particular, the rank of the top-dimensional homology (the number of “voids”) scales
with the volume of the perimeter.

Heuristics used in the physics literature [31] suggest that the volume Pd (t ) of the site
perimeter of the d-dimensional EGM scales as t (d−1)/d . This has been proven to be
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true “on average” and “most of the time” by Damron, Hanson, and Lam [13], but the
stronger conjecture that it is true with high probability is wide open. Assuming this
conjecture, our theorem shows that the ranks of all homology groups scale with the
volume of the perimeter, up to a linear factor. This makes sense on an intuitive level, as
any connected local configuration, including those that create topology locally, should
occur with some non-zero probability anywhere on the boundary.

The lower bound of Theorem 1 is a corollary of a more general result (Theorem 8 below):
every local configuration (in a cube of sidelength R) of filled and empty tiles occurs, with
high probability, at least c(R,d)t (d−1)/d times at the boundary of the time-t polyomino.
Thus, for example, cycles of arbitrarily large size, while they are rarer the bigger they
are, still occur arbitrarily many times as t increases.

The results of our computational experiments (Section 6) suggest a stronger conjecture
about the growth rate:

Conjecture 2. There exists a Ci ,d > 0 so that

(3) βi (t )/t
d−1

d →Ci ,d

almost surely as t →∞.

The constants suggested by our experiments are C1,2 ≈ 1.1 and C1,3 ≈ 0.419. While
we conducted experiments for higher-dimensional homology and higher-dimensional
Eden models, we do not have sufficient evidence to provide reasonable guesses for the
other constants.

We have also investigated how the rank of the homology can change in one step, proving
another theorem:

Theorem 3. If βi (t ) is the i th Betti number of the d-dimensional EGM stochastic process
at time t , then for all t

(4) −2d−1−i

(
d −1

i

)
≤βi (t )−βi (t −1) ≤ 2d−i

(
d −1

i −1

)
,

and all the values, including the extremal values, are attained with positive probability
for all t ≥ 3 · 5d−1. Moreover, with high probability, each value is attained ≥ ct times
before time t , for some c = c(d) > 0.

Assuming the conjecture on the growth of the perimeter stated above, we can improve
the probabilistic portion of this result:
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Theorem 4. Assume that there is a C (d) > 0 so that Pd (t ) ≤C (d)t (d−1)/d with high prob-
ability. Then, for t >> 0 and for each −2d−1−i

(d−1
i

)≤ `≤ 2d−i
(d−1

i−1

)
,

P
(
βi (t )−βi (t −1) = `)≥ c(d)

for some constant c(d) > 0.

The constant c(d) in both these results is ∼ 1/exp(exp(d)), and we believe that this is
close to optimal for the rarest cases. Thus even in the 4-dimensional EGM, one cannot
expect every possibility to show up in the course of a reasonable-length simulation,
as we indeed see in our computational experiments. Proofs of Theorems 3 and 4 are
included in Section 5.

Again, our computational experiments suggest stronger regularity properties for the
distribution of these jumps:

Conjecture 5. For every −2d−1−i
(d−1

i

)≤ `≤ 2d−i
(d−1

i−1

)
,

P
(
βi (t )−βi (t −1) = `)

converges to a positive constant as t →∞.

In Section 6, we present the results of our computational experiments for the Eden
model. First, we consider the rates of growth of the perimeter (Section 6.1) and the
Betti numbers (Section 6.2), and compare the behavior of βi (t ) for different values of i .
Next, we apply persistent homology in Section 6.3 to study the amount of time between
when an i -dimensional hole first appears in the Eden model and when it is killed by the
addition of tiles. Finally, in Section 6.4 we consider the distributions of the volumes and
shapes of the d −1-dimensional holes in the Eden model, and how these holes divide
as time progresses. The software and data developed in the course of this research is
publicly available on GitHub [27].

3. DEFINITIONS AND PRELIMINARIES

To formally define the Eden model and its homology, we think of the regular cubic tiling
as endowing Rd with the structure of an infinite cubical complex whose vertices are Zd

and whose d-cells are translates of [0,1]d . We call this cubical complex CW(Zd ). A poly-
omino is a union of d-cells of this structure (a pure d-dimensional subcomplex) which
is strongly connected, that is, its interior is connected; in other words, the interiors of
any two d-cells are connected via a path which is disjoint from the (d −2)-skeleton (cf.
the definition of a pseudomanifold). In the combinatorics literature, these are known
as polyominoes in 2 dimensions and polycubes in 3 dimensions.
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Figure 3. Two polyominoes with the site perimeter highlighted. Each has one
1-dimensional hole, i.e. β1 = 1.

Given a polyomino A, its i -skeleton Ai is the union of all i -cells in A, forming a filtra-
tion

A0 ⊂ A1 ⊂ ·· · ⊂ Ad = A.

The site perimeter of a polyomino A is the set of d-cells of CW(Zd ) that are not in A but
have (d −1)-cells in common with A; in other words, d-cells Q such that A∪Q is again
a polyomino. This contrasts with the boundary of the polyomino, which is a (d − 1)-
dimensional complex defined using the usual topological notion ∂A = A∩ Ac .

The Eden cell growth model is a stochastic process which produces a polyomino A(t ). It
starts at time 1 with one d-cube at the origin, and at each time step, A(t+1) = A(t )∪Qt+1

where Qt+1 is a d-cube chosen uniformly at random from the site perimeter.

The Eden model is often equivalently defined with the cubes replaced by vertices of
the lattice Zd , thought of as a graph with neighboring vertices linked along each axial
direction. At each time step, a single unfilled vertex along the site perimeter is filled.
In this formulation, the site perimeter consists of unfilled vertices which share an edge
with a filled vertex, and the boundary consists of edges between filled and unfilled ver-
tices (the boundary of the set of filled vertices in the sense of graphs). Our definition
in terms of cubes is needed to define the homology of the Eden model; we take note
of this equivalent formulation because it is the usual way of formalizing first-passage
percolation, as we describe below.

3.1. Homology. The homology groups of a space are a sequence of abelian groups rep-
resenting the “i -dimensional holes” of the complex. For example, a solid donut has a
single 1-dimensional hole, while a 2-sphere has a single 2-dimensional void; these cor-
respond to the ranks of the homology groups H1 and H2, respectively. A “0-dimensional
hole” is a disconnection, and the rank of H0 is the number of connected components
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of the space. Homology groups of cubical complexes are most easily defined combina-
torially, but are topological invariants. The reader is referred to an algebraic topology
textbook such as [22] for more information.

In this paper we use homology with coefficients in the field F2 = {0,1}; we suppress
this in our notation. Given a cubical complex A, let Ci (A) be the vector space of i -
chains, that is, formal F2-linear combinations of i -cells. The boundary homomorphism
∂i : Ci (A) →Ci−1(A) sends each cell to the formal sum of the (i −1)-cells on its bound-
ary. Then the i th homology is the vector space of i -cycles, which have zero boundary,
modulo the i -dimensional boundaries of (i +1)-chains:

Hi (A) = ker(∂i )/∂i+1(Ci+1(A)).

The i th Betti number βi (A) is the dimension of Hi (A). Thusβ0(A) is the number of con-
nected components—always 1 for a polyomino. Moreover, for a d-dimensional poly-
omino, βi (A) = 0 for all i ≥ d . This is obvious for i > d and true for all subsets of Rd in
the case i = d . This leaves the cases 1 ≤ i ≤ d −1 as the interesting ones to measure for
the Eden model.

3.2. First-passage percolation and the Eden model. First-passage percolation (FPP) is
a well-studied family of stochastic processes on the latticeZd , thought of as a graph; see
[3] for an extensive survey. Here we describe how the Eden model can be thought of as
a special case of FPP, which will be useful in several of our proofs.

We first define two types of stochastic processes. In bond FPP, the lattice is given by
a graph metric with edge lengths pulled i.i.d. from some probability distribution, and
the process of interest is the growth of the t-ball around the origin in this metric. Site
FPP is similar but a bit harder to define; here every vertex of the graph (called a site) is
assigned an i.i.d. number called a passage time. The passage time of a site p governs
the time from when a site adjacent to p first gets “infected” to when p gets infected. We
again start with the origin infected at time 0 and study the set of infected sites at time
t .

Now consider site FPP where the passage times are distributed exponentially with mean
1. The exponential distribution is important because it is “memoryless” in the sense
that

P (X > t + s | X > s) = P (X > t ).

Thus, conditioning on the event that the ball at time t is a polyomino A, the additional
time required to add a specific adjacent site is again exponential with mean 1, and is
independent from when other adjacent sites are added and from the passage times of
non-adjacent unfilled sites. In particular, every site in the perimeter has the same prob-
ability of being infected next. But this is exactly how the Eden model works, except that
in the Eden model the time to add the next tile is fixed. Consequently, the Eden model
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can be thought of as a (variable) time rescaling of this FPP model. This was first ob-
served by Richardson [37].

3.3. Variations on the model. Our results are stable with respect to certain variations
on the setup described above.

First, instead of uniformly selecting a tile in the site perimeter, one could uniformly se-
lect an face on the boundary and add the adjacent tile along the face. In other words,
the probability that an element of the site perimeter is selected is weighted by the num-
ber of connections between it and the polyomino at time t . This can be modeled using
first-passage percolation like the usual Eden model, but using bond FPP rather than
site FPP. All of our proofs can easily be modified to produce analogous results for this
model.

Another potential variation relates to how the topology of the Eden model is defined;
rather than connecting cubes that touch at corners, one could consider two cubes to be
connected only if they share a face. The advantage of this idea is that this aligns with the
notion of adjacency used in defining growth. There are several ways of formalizing this
idea. One is to consider the interior of the cubical complex constructed above. Alter-
natively, one can build a new cubical tessellation by placing grid points at the centers
of cubes of the polyomino; the intersection of this tessellation with our polyomino is a
deformation retract of its interior, and this gives a combinatorial characterization. The
proof of Theorem 1 works without modification with this redefinition. One can also get
an analogue of Theorems 3 and 4, though with different constants: to understand the
effect of adding a cube one has to work with the geometry of its dual cross polytope,
rather than of the cube itself. In the end, though, this variation simply switches the role
of the Eden ball and its complement: Alexander duality tells us that a sufficiently nice
domain gives the same topological information as the closure of its complement, and
we can obtain such a domain either by slightly thickening the Eden ball or by slightly
thickening its complement.

Finally, our results can easily be extended to other regular tessellations of Rd besides
the cubical one. In fact, much of what we say seems to depend only on the large-scale
geometry of the contractible cell complex CW(Zd ). One direction for further research
would be to understand similar models on tessellations of hyperbolic space, nilpotent
Lie groups, other symmetric spaces, CAT(0) cube complexes, and other contractible
spaces on which a group acts geometrically. For what little is known about first-passage
percolation on spaces of interest in geometric group theory, see [6].

3.4. Combinatorics of cubes and polyominoes. The following is easy to see:

Lemma 6. The number of i -dimensional faces of the d-dimensional cube is 2d−i
(d

i

)
.
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In the proof of Theorem 1 we require the following combinatorial fact about polyomi-
noes in general.

Lemma 7. Let A be any polyomino in Rd . Then for some 1 ≤ i ≤ d, the projection of A to
the i th coordinate hyperplane (denoted πi (A)) has

vold−1(πi (A)) ≥ vold (A)(d−1)/d .

Proof. The isoperimetric inequality for polyominoes [7], attained by cubes, is

vold−1(∂A) ≥ 2d vold (A)(d−1)/d .

Suppose first that A is convex, that is the intersection of A with any line parallel to any
coordinate axis is connected. (Note that a convex polyomino is not a convex set!) This
is equivalent to saying that every (d −1)-cube in ∂A is visible from infinitely far in some
coordinate direction. In that case,

vold−1(∂A) =
d∑

i=1
2vold−1(πi (A)),

which completes the proof.

Now take a general polyomino A. We will construct a convex polyomino Ad with the
following properties:

(i) vold (Ad ) = vold (A).

(ii) For each i , vold−1(πi (Ad )) ≤ vold−1(πi (A)).

This comparison proves the lemma for A.

We construct Ad by “lining up” the columns of A in each coordinate direction. That is,
let A0 = A. Once we have built Ai−1, we make it into Ai by turning on gravity in the
i th direction and “shaking”, that is, letting all the cubes fall down to some hyperplane
below the polyomino.

Clearly condition (i) holds. We need to show that (ii) holds and that Ad is column con-
vex. We show both of these by analyzing each shake, that is, each transition from A j−1

to A j .

During the i th shake, the polyomino becomes column convex in the i th coordinate di-
rection, that is, its intersection with any line in that direction is connected. It remains
to show that during subsequent shakes, j > i , this convexity is preserved. Since what
happens to a cube depends only on its column, we look at the intersection of the poly-
omino with each plane in the i j -direction. If we start with connected columns lined up
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on one side, then the j th shake sorts those columns by height, without changing their
convexity.

Finally, we show that each j th shake does not increase the volume of πi (A). Certainly
if i = j the projection doesn’t change. Otherwise we again look at the intersection with
each plane in the i j -direction. After the shake, what we see from the i th coordinate
direction is the height of the largest column. Previously, every cube in that column
was either visible or obstructed by something, so the volume of the projection can only
decrease. �

4. PROOF OF THEOREM 1

We start with the (easy) upper bound. Write A(t ) for the polyomino at time t . Applying
the Mayer–Vietoris sequence to A(t )∪ A(t )c =Rd , we see that

Hi (∂A(t )) ∼= Hi (A(t ))⊕Hi (A(t )c ).

The rank of the left side is bounded by the number of i -cells in the boundary, giving the
bound βi (t ) ≤ 2d−i

(d
i

)
Pd (t ) since 2d−i

(d
i

)
is the number of i -cells in a d-cube.

In the case i = d −1, we can get a stronger bound since βd−1(t ) is the number of voids
in A(t ), in other words, the number of bounded connected components of its comple-
ment. Since every connected component of the complement must include a cell of the
site perimeter, βd−1(t ) ≤ Pd (t ).

We now prove the lower bound. Here is the basic outline. Given a time t , we find
Ω(t (d−1)/d ) disjoint empty boxes of side length R at the perimeter of a somewhat ear-
lier stage A(t0). Then we show that once we reach time t , at least a constant propor-
tion of these boxes end up containing a structure which adds one to the i th Betti num-
ber.

The boxes are obtained as follows. By Lemma 7, the projection of A(t0) in some coor-
dinate direction has volume at least t (d−1)/d

0 . Thus (thinking of that direction as “up”)

we can drop Ω(t (d−1)/d
0 ) boxes from overhead so that they land in different places on

top of the polyomino A(t0). We formalize this in proving the following more general
result.

Theorem 8. Let S be any d-dimensional polyomino which is contained in the cube [0,R]d

and includes the entire base of that cube (i.e. [0,R]d−1 × [0,1]). There is a constant c =
c(R,d) > 0 so that S occurs (perhaps in rotated form) as the intersection of A(t ) with at
least ct (d−1)/d different cubes of width R, with high probability as t →∞.
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Before proving Theorem 8, we use it to finish the proof of Theorem 1. Let 1 ≤ i ≤ d −1
and set

S = ([0,5]d−1 × [0,1])∪ ([2,3]d−i−1 × [1,4]i+1) \ [2,3]d ⊂ [0,5]d .

That is, S is the base together with a “handle” homotopy equivalent to Si . The theorem
guarantees ct (d−1)/d copies of S whose intersection with the remainder of A(t ) is con-
tained in the base. Thus A(t ) is the union of two pieces: all the copies of S on one side,
and the rest of A(t ) together with the bases of the copies of S on the other; the intersec-
tion is a disjoint union of contractible components, one for each copy of S. Thus by the
Mayer–Vietoris theorem, βi (t ) ≥ ct (d−1)/d .

4.1. Proof of Theorem 8. To prove Theorem 8 we will use the reformulation of the Eden
model in terms of first-passage percolation, as described in §3.2. We now keep track of
time in the FPP model, which we indicate by r to contrast with t for Eden time and to
suggest that it is roughly the radius of the polyomino; the notation A(r ) and Pd (r ) indi-
cates the Eden model in FPP time and the volume of its site perimeter for the rest of the
section. We also write |A(r )| for the volume of A(r ), i.e. t . Finally we define the passage
time from r to be the passage time of a site if it is not in the site perimeter of A(r ), and
the time from r to infection if it is. The memorylessness of the exponential distribu-
tion implies that, given A(r ) = A, the passage times from r to sites not in A are are i.i.d.
exponential, with no difference between sites in and outside the site perimeter.

Our approach is to find at least c(d)|A(r −2)|(d−1)/d copies of S in A(r ) with high prob-
ability. Thus, to prove the theorem, we also need to know that |A(r )| ≤ C (d)|A(r −2)|.
This follows from the Cox–Durrett shape theorem [12], which shows in particular that
there is a constant V0 such that for every ε> 0, with high probability

(1−ε)V0r d < |A(r )| < (1+ε)V0r d .

However, in the interest of keeping the overall argument elementary we also provide
the following much cruder estimate. Since this estimate is stated in terms of the site
perimeter, it is also useful for our later argument about βd−1(t ).

Lemma 9. With high probability as r →∞,

|A(r )| ≤ |A(r −2)|+C Pd (r −2) ≤ (1+2dC )|A(r −2)|,
where C =C (d) is a constant. In particular, Pd (r ) ≤ (1+2dC )Pd (r −2).

Proof. We will show that there is an ε= ε(d) > 0 such that with high probability, |A(r +
ε)| ≤ |A(r )|+Pd (r ), and in particular Pd (r +ε) ≤ 2Pd (r ). This will imply the lemma with
C = 2d2/εe.

Let ε be so that P(ρp < ε) = 1
2d+1 , where ρp is the passage time from r at any site p ∉

A(r ). Consider a rooted infinite (2d −1)-ary tree equipped with passage times on the
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nodes distributed via the same exponential distribution. The expected size E of the
maximal subtree containing the root (if nonempty) whose nodes all have passage times
< ε satisfies the recurrence relation

E = 1

2d +1
(1+ (2d −1)E);

thus E = 1
2 . This bounds the expected size of the subtree reached in time ε.

Now we show that V (r +ε) is bounded above by the total size of all these subtrees for
a collection of Pd (r ) independent such trees. We associate the roots of the trees to the
cubes of the site perimeter of A(r ), and then map each tree toZd via a graph homomor-
phism by thinking of paths in the tree as corresponding to reduced words on d letters
and their inverses, with one letter missing from the initial position corresponding to a
neighbor of the root site which is in A(r ).

We give a coupling between the weight distribution on the collection of trees and the
passage times from r for sites outside A(r ), in which each site is coupled to some node
which maps to it. Namely, the nodes in the site perimeter are associated to the corre-
sponding tree. Then we couple each subsequent site to a neighbor of the node cou-
pled to the neighboring site reached at the earliest time. Thus the coupling between
the probability spaces depends on the values pulled from preceding distributions; this
doesn’t affect any probabilities since all that changes is which i.i.d. exponentially dis-
tributed weight corresponds to a given site.

In the end, every site in A(r +ε) is coupled to a node which is reached at time < ε. Since
the expected number of nodes in each tree attained after time ε is less than 1, with high
probability, |A(r +ε)| < |A(r )|+Pd (r ). �

By Lemma 7, the projection of A(r − 2) in some coordinate direction (without loss of
generality, the xd direction) has volume ≥ |A(r −2)|(d−1)/d . In particular, if we partition
the plane xd = 0 into coordinate cubes of side length R, some number N ≥ R−(d−1)|A(r−
2)|(d−1)/d of those cubes intersect this projection. For each such cube K j , let h(K j ) be
the maximal xd -coordinate of a point of A(r −2) whose dth projection lies in K . Thus
the d-dimensional cube K̃ j = K j × [h(K j ),h(K j ) + R] touches, but does not intersect
A(r −2).

We finish by showing:

Lemma 10. There is a c(R) > 0 such that with high probability, for at least c(R)N values
of j , 1 ≤ j ≤ N , we have K̃ j ∩ A(r ) = S + y j , where y j is defined so that K̃ j = [0,R]d + y j .

Proof of lemma. For a site p ∉ A(r − 2), let ρp denote its passage time from r − 2. As
outlined above, the ρp are i.i.d. for all points outside A(r −2). Let X j be the event that
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for all p ∈ K̃ j ,

ρp ≤ R−d if p ∈ S + y j

ρp ≥ 3 if p ∉ S + y j .

Clearly, the X j are i.i.d. and each X j occurs with positive probability. Therefore there is
a constant c(R) > 0 such that with high probability at least c(R)N of the X j occur.

Now notice that if X j occurs, then for some p in the base of K̃ j , A(r −2+R−d ) contains
p. Every point in S + y j is connected to that point by a path through S + y j of length
certainly ≤ Rd −1. Therefore, for r −1 < s < r +1, A(s) contains all the points of S + y j

and none of the points of K̃ j \ (S + y j ). This proves the lemma. �

4.2. Proof of the lower bound for top-dimensional holes. Finally, we prove the stronger
lower bound βd−1(t ) ≥ cPd (t ). We will show the following:

Lemma 11. There is a c > 0 such that with high probability, there are at least cPd (r −2)
voids of volume 1 in A(r ).

Since by Lemma 9, Pd (r ) ≤C (d)Pd (r −2), this suffices.

Proof. For σ ∈ Zd , let Ψσ be the set of sites in the intersection of σ+3Zd with the site
perimeter of A(r − 2). We can choose σ so that Ψσ contains at least 1/3d of the site
perimeter.

Given a site p ∈ Ψσ, let Xp be the event that the passage time from r − 2 is > 2 for p
and ≤ 1/2 for all sites that share a (d − 2)-face with p. The Xp are i.i.d. and each Xp

occurs with positive probability. Therefore there is a constant c > 0 such that with high
probability, at least c ·3d |Ψσ| of the Xp occur.

It is easy to see that if Xp occurs, then A(r ) contains all the neighbors of p, but not p. �

5. PROOF OF THEOREMS 3 AND 4

We now endeavor to understand the possible changes in βi at a single timestep. Let
A(t ) be the polyomino at time t , and Q be the tile added at time t +1. Then by excision
and the long exact sequence of a pair, we have

Hi (A(t +1), A(t )) ∼= Hi (Q,Q ∩ A(t )) ∼= H̃i−1(Q ∩ A(t )),

where H̃i indicates reduced homology. The long exact sequence of the pair (A(t +
1), A(t )) then indicates that

−maxrank Hi (Q ∩ A(t )) ≤βi (t +1)−βi (t ) ≤ maxrank Hi−1(Q ∩ A(t )),
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where the maximum is taken over possible subcomplexes of the d-dimensional cube
which could be Q ∩ A(t ).

We now compute this maximal rank. Notice that Q ∩ A(t ) has to include at least one
(d − 1)-dimensional face in order for us to be able to add the tile Q. Without loss of
generality, we assume this is the base of the cube. Since adding i -cells can only increase
it and adding (i+1)-cells can only decrease it, rank Hi (Q∩A(t )) is maximized when A(t )
includes the entire i -skeleton of the cube but no (i +1)-cells outside the base.

Write Qr = [0,1]r ⊂ Rd equipped with the standard cell structure. Then it is enough to
compute

rank H̃i (Qd−1 ∪Q(i )
d )

where Q(i )
d is the i -skeleton of Qd . Notice that Qd−1 ∪

(
Q(i )

d−1 × [0,1]
)

is contractible and

obtained by adding (i + 1)-cells to Qd−1 ∪Q(i )
d ; the number of these (i + 1)-cells is the

same as the number J (d −1, i ) of i -cells in the (d −1)-cube. Therefore

rank H̃i (Qd−1 ∪Q(i )
d ) = J (d −1, i ) = 2d−1−i

(
d −1

i

)
.

This demonstrates equation (4).

It remains to show that every change in βi within this range is attained by some con-
figuration. The Eden model produces any polyomino with positive probability, so it is
enough to demonstrate:

Lemma 12. (a) For each 1 ≤ i ≤ d−1 and each 0 ≤ k ≤ J (d−1, i ), there is a polyomino
in which adding a tile decreases βi by k and increases βi+1 by J (d −1, i )−k.

(b) For each 1 ≤ k ≤ J (d −1,0) = 2d−1, there is a configuration in which adding a tile
increases β1 by k.

Proof. Given subcomplexes R ⊆ S ⊆ Q(d−1)
d , we will construct a set AR,S of tiles in the

5×·· ·×5 grid centered at Qd that is homotopy equivalent to S and intersects Qd in R.
A tile Q ′ adjacent to Qd is included if and only if Q ′∩Qd is contained in R. The tiles in
the boundary of the 5×·· ·×5 grid are included according to the following criterion. The
planes containing the d −1-faces of Qd partition Rd into 3d regions. The intersection of
the closure of such a region with Qd consists of exactly one face of Qd . A boundary tile
not in the top or bottom layer is included if and only if the region containing it intersects
Qd in a face of S.

AR,S is homotopy equivalent to S, and AR,S ∩Qd = R; thus using the Mayer–Vietoris
theorem one sees that

Hi (AR,S ∪Qd ) ∼= Hi (S,R).
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Figure 4. Adding the central cube to this configuration increases β1 by 4; this is
the construction given in the proof of Lemma 12(b), altered slightly for visibility.

Then to fulfill (a) we use AR,S with R = Qd−1 ∪Q(i )
d and R ⊆ S ⊆ Qd−1 ∪Q(i )

d−1 × [0,1],
with S containing k of the extra (i +1)-dimensional faces. To fulfill (b) we use AR,S with
R comprising Qd−1 and k vertices of the upper face of Qd , and with S adding in the
vertical edges connecting those vertices to the base. In both cases, adding in the center
tile changes the topology as desired. �

Now we show that with high probability, each such jump happens at least ct times be-
tween time 0 and t for some c = c(d) > 0. In particular, we show that a constant per-
centage of the time, the tile added at step s is locally configured as in Lemma 12, and
that local configuration is attached to the rest of the polyomino only by the base; hence
by the Mayer–Vietoris theorem, the change in the overall Betti numbers is the same as
the change in the local Betti numbers.

For this we use the FPP formulation of the Eden model; in fact our proof works in a wide
range of FPP models.

Theorem 13. Consider a site FPP model inZd whose probability distribution on passage
times not supported away from 0 or away from ∞. We denote the polyomino at time r in
this model by the random variable A(r ). Then there is some c(R) > 0 depending on the
distribution such that the following holds. Let K be a (strict) sub-polyomino of [0,R]d

which contains the entire boundary, and mark a tile x0 inside [0,R]d and outside but
adjacent to K . We say that x ∈ PK if the tile x is added to the polyomino at a time rx ≤ r ,
and

A(rx)∩ ([0,R]d + (x −x0)) = K ∪x + (x −x0).

Then with high probability |PK | ≥ c(R)|A(r )|.
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Applying this to the configurations in Lemma 12, framed inside a filled shell with extra
white space added so that only the base of the interior configuration touches the shell,
we get our desired statement.

The theorem holds, mutatis mutandis, for bond percolation models.

Proof. We show that for each σ ∈Zd , with high probability a constant proportion of the
tiles in A(r )∩ (RZd +σ) are in PK . Since for some σ,

|A(r )∩ (RZd +σ)| ≥ |A(r )|/Rd ,

this is sufficient.

Now we look at the disjoint R-cubes around each site x ∈ A(r )∩ (RZd +σ). Write Qx =
[0,R]d +(x−x0) and Kx = K +(x−x0). Let ρy denote the passage time of a site y , and let
Xx be the event that for all y ∈Qx ,

ρy ≤ (R +2)−d if y ∈ Kx

1 < ρy < 2 if y = x

ρy ≥ 3 otherwise.

These times may be scaled based on the passage time distribution to make sure that the
probability that ρy lands in each range is nonzero. Clearly all the Xx are i.i.d. and each
occurs with positive probability. Therefore there is a constant c(R) > 0 such that with
high probability at least c(R)|A(r )∩ (RZd +σ)| of them occur.

Now if Xx occurs, and assuming Qx does not include the origin, let rx be the time at
which x enters the polyomino. Then the path connecting the origin to x has to go
through the outermost layer of Qx , so sites in that layer enter the polyomino earlier.
Once one point in Kx is in the polyomino, the rest must join it after time < 1. The first
point adjacent to x joins at some time in (rx −2,rx −1). One sees therefore that all sites
in Kx must enter the polyomino at times in (rx −3,rx), and that all sites in Qx \(Kx ∪{x})
must enter after x does. Thus every x for which Xx occurs is in PK . �

Finally, we prove Theorem 4, which states that under the assumption that there is a
C (d) > 0 so that Pd (t ) ≤C (d)t (d−1)/d with high probability, the probability of each spe-
cific change in βi occuring at time t is asymptotically bounded away from zero, again
with high probability.

By Theorem 8 the perimeter contains ≥ c(d)t (d−1)/d sites at time t whose neighbor-
hood looks like a given one of the configurations from Lemma 12 with high probability.
Therefore, whenever Pd (t ) ≤ C (d)t (d−1)/d , the probability that the next tile is added in
the center of such a configuration is at least c(d)/C (d).
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6. COMPUTATIONAL EXPERIMENTS AND OPEN PROBLEMS

Theorem 1 shows a rigorous asymptotic bound for the Betti numbers of the Eden growth
model in d dimensions. However, many finer questions about the associated geometry
and topology remain open. In this section, we investigate several of these questions
via computational experiments for the Eden model in dimensions 2 through 5, giving
evidence for Conjectures 2 and 5 as stated in Section 2 and suggesting further conjec-
tures.

The Eden Growth Model was implemented in Python, together with an algorithm that
tracks the behavior of the d −1-dimensional homology at each timestep. We find a ba-
sis for Hd−1 (A (t )) via Alexander duality by identifying the bounded components of the
complement and tracking how they change over time. This implementation allows us
to study fine questions about the distribution of shapes and area of the holes in the
EGM in Section 6.4. In Section 6.1, we also compute the proportion of the site perime-
ter contained in the unbounded component of the complement (the outer perimeter)
for clusters of sizes 1 and 2 million for the EGM in dimension two and clusters of size
1.5 million for the EGM in dimensions 2 through 5. The data analyzed in Tables 1, 3,
and 4, and Figures 9, and 10 comes from a single set of 10 two-dimensional clusters of
size 1 million. This dataset has been made publicly available at the GitHub repository
[27].

The algorithm described in the previous paragraph cannot easily be modified to mea-
sure the local geometry associated with the lower-dimensional homology.3 Instead, we
use the Perseus software package [33, 34] to compute the Betti numbers and persistent
homology in all dimensions. These computations are discussed in Sections 6.2 and 6.3.
Unsurprisingly, this was slower than our other computations, and we include data from
a single cluster of one million tiles for the two-dimensional EGM, and data from sin-
gle clusters of size five hundred thousand for the EGM in dimensions three, four, and
five.

6.1. Total, inner, and outer perimeter. In applications of stochastic growth models
(e.g. to modeling a bacterial cell colony), the interaction with the medium takes place
along the perimeter. These interactions may be qualitatively different for sites in the
outer perimeter (those that are contained in the unbounded component of the com-
plement, where resources are unlimited) and sites in the inner perimeter (those that
are contained in the holes of the EGM). Top-dimensional holes can be thought of as
capsules whose contents cannot interact with the outside medium. In what follows, we

3In this setting, the representative cycles of homology group elements are no longer unique, but intu-
itively one would like to choose and measure the “smallest” or “tightest” representative of each hole. This
problem was recently studied for simplicial complexes in [35] and similar tools and techniques could be
adapted and implemented for measuring the geometry associated to the homology of cubical complexes.
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At time 105: At time 106:
Sample SD Mean Sample SD Mean

Total (site) perimeter 29 2353 77 7594
As fraction Outer perimeter 0.0114 0.7931 0.0068 0.7839

of total Inner perimeter 0.0114 0.2068 0.0068 0.2110

Table 1. Statistics of the total, inner, and outer site perimeters of a sample of
10 simulations of the two-dimensional Eden growth model up to times 105 and
106.

analyze the total, inner and outer site perimeter of simulations of the Eden model in
dimensions 2 through 5.

We remind the reader that the site perimeter of a d-dimensional polyomino A is the set
of d-cells that are not in A but that have (d −1)-cells in common with A.

Table 1 shows the mean and sample standard deviation of the sizes of the total, inner,
and outer site perimeter for a sample of 10 simulations of the two-dimensional EGM,
at sizes 105 and 106. From this data, we observe that the relative proportions of the
inner and outer perimeters already appear to have stabilized by time 106. This is further
supported by data from two larger single cluster simulations of sizes 1.5 million and 2
million, for which OutP2(t )/P2(t ) remains between 0.77 and 0.80 in all measurements
taken once every 105 timesteps. Thus, we conjecture that

(5) 0.77 ≤ OutP2(t )

P2(t )
≤ 0.80

with high probability as t →∞.

For the Eden model in dimensions 3 through 5, we performed the same computations
for single clusters of size 1.5 million. Unlike the two-dimensional EGM, OutPd (t )/Pd (t )
was strictly decreasing for observations taken at evenly spaced intervals of 105 timesteps.
As such, we do not think that OutPd (t )/Pd (t ) has stabilized at time t ≤ 1.5×106 for d = 3,
4, or 5 (see Table 2). This is unsurprising given that the diameter of the clusters, in any
sense, is proportional to t 1/d . Thus it is computationally infeasible to collect enough
data to make reasonable conjectures about the limiting value of OutPd (t )/Pd (t ). Nev-
ertheless, we make the following conjecture:

Conjecture 14. For each d > 1, there is a number perd > 0 so that

(6)
OutPd (t )

Pd (t )
→ perd

almost surely as t →∞. Moreover, limd→∞ perd = 1.
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2D 3D 4D 5D

Total (site) perimeter 9,287 200,401 986,603 2,573,547
As fraction Outer perimeter 0.7811 0.8150 0.9311 0.9950

of total Inner perimeter 0.2188 0.1850 0.0689 0.005
Diameter 1424 165 64 40

Table 2. The total, inner, and outer perimeter and the diameter of one simula-
tion in each dimension between 2 and 5 up to time 1.5 million. The diameter
given here is the sidelength of the smallest cube containing the polyomino; this
behaves similarly to other possible notions of diameter.

6.2. Betti numbers. In this section, we examine the asymptotics of the Betti numbers
as well as the change in each Betti number at a single timestep. As mentioned before,
the computations of the Betti numbers contained in this section were performed using
the Perseus software package [33, 34]. Data for the two-dimensional Eden model comes
from a single cluster of size one million, and data for dimensions three, four, and five
are from single clusters of size 500,000.

Figure 5 shows the frequencies of the event that a Betti number changes by a given
amount in a single timestep. The frequencies of each event appear to converge quite
quickly, providing strong evidence for Conjecture 5. Unsurprisingly, small jumps are
much more frequent than large jumps. This is related to the closeness of the frequencies
of βi increasing by one and decreasing by one in Figures 5a–5e: the total Betti number
grows more slowly than the number of timesteps, so the number of positive changes
balances out the number of negative changes, with an error term growing more slowly
than t (at a rate between t d−1/d and Pd (t ), by Theorem 1). We expect this behavior
to also occur for β3 in the four-dimensional case, at larger values of t than pictured
in Figure 5f. We provide more evidence below that statistics for this case have not yet
stabilized. On the other hand, this heuristic does not explain the striking alignment in
the frequency of events where β1 changes by +i and −i in Figures 5b and 5d.

The evolution of the Betti numbers over time are shown in Figure 6, together with the
perimeter. If Pd (t ) ∼ t (d−1)/d as conjectured, Theorem 1 would imply that βi (t ) also
scales as t (d−1)/d . To test this, we fitted power laws to the Betti curves in MATLAB. Es-
timated exponents are relatively close to their conjectured values for β1 for the Eden
model in dimensions 2 through 5. Notably, β3 in the four-dimensional Eden model and
β3 and β4 in the five-dimensional Eden model are growing much faster than expected,
at a rate exceeding that of the volume. We take this as further evidence that statistics
have not stabilized in this case.



TOPOLOGY AND LOCAL GEOMETRY OF THE EDEN MODEL 22

(a) (b)

(c) (d)

(e) (f )

Figure 5. Frequency with which each change in the Betti number in one
timestep occurs in the (a) two-dimensional, (b)-(c) three-dimensional, and (d)-
(f) four-dimensional Eden model. Frequencies were averaged over bins of width
50,000 timesteps. This data provides strong evidence for Conjecture 5. Changes
that occur in only one bin (e.g. ∆β1 =+4 in (b)) are shown by a dot instead of a
line.
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(a) (b)

(c) (d)

Figure 6. The evolution of the Betti numbers and perimeter over time in the
(a) two-dimensional, (b) three-dimensional, (c) four-dimensional, and (d) five-
dimensional Eden models. Power laws were fitted in MATLAB.

Another interesting trend in three and four dimensions is that the βi for small i starts
out larger at the beginning and is overtaken by β j for large j as time goes on. Recall

from Conjecture 2 that Ci ,d is the conjectured limit of βi (t )/t
d−1

d as t → ∞. This data
suggests a further conjecture.

Conjecture 15. For 0 < i < j < d, Ci ,d >C j ,d .
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As we will see in the next section using persistent homology, a heuristic explanation
for this behavior is that while higher dimensional homology classes form more infre-
quently than lower-dimensional ones, they last for much longer.

6.3. Persistent Homology. When βi (t ) changes, one would like to associate this with a
specific geometric feature of A(t ) (an “i -dimensional hole”) that forms or disappears at
time t . In general, it is impossible to single out a specific such feature, as this requires a
choice of basis for the i -dimensional homology and there are many reasonable choices
(though the situation is clearer in codimension one, as we will see in the next section).
However, there is a well-defined pairing between the events where an i -dimensional
homology class is born andβi increases and the events where an i -dimensional homol-
ogy class dies and βi decreases. This can be found using persistent homology.

Persistent homology [16] tracks the birth and death of homology generators over time.
More precisely, if X1 ,→ X2 ,→ ··· ,→ Xn is a filtration of topological spaces (that is, a
sequence of topological spaces where each is a subset of the next), the i -dimensional
persistent homology intervals PHi (X ) are the unique set of half-open intervals {[bl ,dl )}
with endpoints in {1, . . . ,n} so that

rank
(
Hi

(
X j

)→ Hi (Xk )
)= #

{
I ∈ PHi (X ) :

[
j ,k

]⊂ I
}

.

Compatible bases can be chosen for the homology groups Hi
(
X j

)
so that an interval

[b,d) corresponds to a homology basis element that is born in Hi (Xb), is mapped for-
ward to basis elements in Hi (X j ) for b < j < d, and dies in Hi (Xd). Note that the choice
of basis elements is not unique. For a more in depth introduction to persistent homol-
ogy that describes further algebraic structure see, for example, [15, 9].

Here, we compute the persistent homology of the natural filtration of the Eden growth
model through time A(1) ,→ A(2) ,→ ··· ,→ A(t − 1) ,→ A(t ). This allows us to measure
how long a homology class persists after it is born.

We first give a heuristic estimate for the expected persistence. First, note that the per-
sistence in first-passage perolation time of an element of Hd−1(A(t )) corresponding
to a hole with one tile is exponentially distributed with mean 1. We claim the expec-
tation scales as t (d−1)/d in Eden time. To compute the expectation in Eden time, we
need to estimate the expected difference in Eden time, i.e. volume, from A(r )FPP to
A(r + s)FPP, using this notation for the polyomino at FPP time r and r + s, respectively.
For s >>p

r , known convergence estimates for the shape theorem imply that this scales
as (r + s)d −r d . For smaller s, we use a heuristic. We assume that as u goes from r to 2r ,
E(|A(u+s)FPP|−|A(u)FPP|) changes at most by a multiplicative constant independent of
r . By splitting the interval [r,2r ] into smaller intervals and using the consequence of
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the shape theorem above,

dr /se∑
n=0

E(|A(r + (n +1)s)FPP|− |A(r +ns)FPP|) ∼ (2r )d − r d .

Dividing out and using our assumption, we get E(|A(r + s)FPP| − |A(r )FPP|) ∼ sr d−1. In-
tegrating over s with respect to the exponential distribution to get the expected Eden
time, we see that the expected persistence of a hole with one tile scales as t (d−1)/d , where
t ∼ r d is the Eden time, similar to the expected perimeter. One might guess that the per-
sistence of larger holes and holes of other dimensions follows a similar law; this is also
suggested by our data.

The persistent homology data for the Eden model in dimensions 2–5 is shown in Figure
7. While persistent homology is usually plotted in a scatter plot of birth versus death,
we plot the birth versus the persistence to see how the expected persistence of a ho-
mology class changes over time. The scatter of points shows all intervals seen in the
simulation, and the solid lines give an estimate of the average persistence of an inter-
val with the given birth time. Note that the drop-off in the distribution of the deaths to
the left of the plot is an artifact of the finite size of the simulation. In all cases, higher-
dimensional homology classes persist longer on average than lower-dimensional ones.
This is unsurprising, as a homology class in Hd−1 can be killed only by adding spe-
cific tiles, but there are more ways to to kill lower-dimensional classes. On the other
hand, there are more intervals for each dimension below d − 1 (for example, for the
four-dimensional EGM there are 3.4×104, 8.7×104, and 2.2×104 intervals in dimen-
sions 1, 2, and 3, respectively). These two trends explain the behavior we observed in
Figure 6, where the higher-dimensional Betti curves start below the lower-dimensional
ones and then overtake them as time goes on: while fewer high-dimensional classes are
born, they last much longer. Furthermore, most of the curves appear linear and parallel
with Pd (b) for a wide range, suggesting they follow a power law with the same exponent
as Pd (b).

The data in Figure 7 suggests that the expected persistence of an interval born at time
b scales as the perimeter, which is believed to scale as b(d−1)/d . One might also suspect
that the distribution of the normalized quantity (d−b)/b(d−1)/d converges as the birth
time is taken to ∞. The empirical distribution of this normalized persistence is shown
for Eden models in three and four dimensions in Figure 8. The figure includes data
for intervals with birth times between t = 1×105 and t = 2×105; the upper cutoff was
chosen so only a small percentage of intervals born before that time persisted beyond
t = 5 × 105. (Computing the same histograms in a disjoint time interval results in a
similar distribution.) Notably, the normalized persistence for PH2 has a substantially
longer tail than that of PH1 for the three-dimensional Eden model, and both PH3 and
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(a) (b)

(c) (d)

Figure 7. Persistent homology scatter plots for the (a) two-dimensional, (b)
three-dimensional, (c) four-dimensional and (d) five-dimensional Eden mod-
els The dropoff on the right of the figures is due to finite size effects. We used
the Perseus software package [33, 34] to compute persistent homology.

PH2 have long tails for the four-dimensional model. For the latter case, it is somewhat
surprising that the distribution for PH2 is more similar to that for PH3 than that for
PH1.

6.4. Local geometry of holes. In this section, we explore random variables defined in
terms of the geometry associated to the d−1-dimensional homology of the EGM in d di-
mensions. These variables are: the areas, shapes, and evolution of the top-dimensional
holes.
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(a) (b)

Figure 8. Empirical distributions of the normalized persistence for the persis-
tent homology of the Eden model in (a) three dimensions and (b) four dimen-
sions. See the text for more details.

Area 1 2 3 4 5 ≥ 6

At time 106

Mean 0.812 0.117 0.039 0.014 0.008 0.010
SD 0.011 0.008 0.006 0.005 0.002 ≤ 0.002

Over all time

Mean 0.636 0.177 0.082 0.042 0.023 0.042
SD all values ≤ 0.001

Table 3. Table showing numerical data corresponding to Figure 9.

6.4.1. Areas and shapes. Betti numbers allow us to count the number of holes of each
dimension. Alas, they tell us nothing about the geometry associated with these holes.
As mentioned before, it is not easy to measure the geometric properties associated with
homology in dimensions 1 through d −2 as one cannot uniquely define representative
cycles. Fortunately, for top-dimensional holes, we can use Alexander duality to asso-
ciate generators of Hd−1 (A (t )) with components of the complement of A (t ). In what
follows, we present statistics concerning the area and shapes of top-dimensional holes
in simulations of the EGM, largely focusing on dimension 2.

Figure 9 shows a histogram of the areas of holes in the two-dimensional EGM with re-
spect to two distributions: the areas of the holes at the time they were born, taken over
all time (in orange with diagonal lines), and the areas of the holes present at time 1
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Figure 9. Histogram showing the (mean) frequency of the volumes of the holes
at time 1 million and of all holes created at any time (measured at the birth
of the corresponding persistent homology interval). The latter includes data
both from holes created from the outer perimeter and those resulting from the
division of an existing hole. Data was taken from 10 simulations of the 2D EGM
up to time 1 million. Here we show only the frequency of holes up to area 10.
More detailed statistical information is contained in Table 3.

million (in blue with spots). Unsurprisingly, the areas of holes at the time they were
born are slightly larger than the snapshot at time one million. The frequency of holes
of a given area appears to decrease somewhat sub-exponentially as a function of area,
although the relationship is less clear for the smaller sample. Table 3 shows the corre-
sponding numerical data. Data was taken from 10 simulations of the two-dimensional
EGM consisting of 1 million tiles.

Before studying the shapes of the holes in the two-dimensional EGM, we need to es-
tablish some conventions about how to count polyominoes of a given area. Two shapes
are instances of the same fixed polyomino if they are congruent after translation and of
the same free polyomino if they are congruent after rotations, reflections, and transla-
tions. For example, there are 19 fixed polyominoes of area four, and 5 free polyominoes
of area four. All free polyominoes of areas three and four are depicted in Table 4, with
the corresponding number of fixed polyominoes in the first row.

In Table 4, we show the proportion of holes in the two-dimensional EGM that take the
shape of each free polyomino of area three or four. The data was taken from 10 different
runs of the Eden model through time 1 million. In this sample, we observed an average
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Number of fixed types (R) 1 4 4 8 2 4 2

Over all time:
Mean frequency (F) 0.131 0.248 0.227 0.338 0.055 0.736 0.263

F /R 0.131 0.062 0.056 0.042 0.027 0.184 0.131
Sample SD 0.004 0.004 0.007 0.007 0.003 0.003 0.003

At time 1 million:
Mean frequency (F) 0.066 0.278 0.249 0.341 0.064 0.763 0.236

F /R 0.066 0.069 0.062 0.042 0.032 0.190 0.118
Sample SD 0.072 0.079 0.106 0.078 0.031 0.082 0.082

Table 4. The proportion of holes of areas three and four which take the shape
of each free polyomino. The statistical results summarized in this table were
obtained from 10 different simulations of the EGM in two dimensions up to time
one million.

of 147,306.5 holes of all sizes with a sample standard deviation of 152.4, of which an av-
erage of 6,113.5 holes had area four and 12,026.6 had area three at the moment of their
birth, with sample standard deviations of 97.1 and 54.8 respectively. At time 1 million,
we observed an average of 1,231.5 holes of all sizes with a sample standard deviation
of 34.2, of which an average of 17.7 holes had area four and 47.6 holes had area three,
with sample standard deviations of 6.2 and 7.4 respectively (in Table 3 these statistics
are presented as frequencies). Note that the most common birth shape of area four is
the roundest (the square) when controlling for multiplicity, and the least common is
the longest. However, at time 1 million, the T-shape just edges out the square. The dif-
ference between these frequencies is likely related to properties of the “reverse process”
we describe in the next section.

We have also recorded the extremal volumes of holes in dimension 2 through 5. In ten
simulations of the two dimensional Eden model up to time 1 million, the largest hole
created had an area of 48.7 and a standard deviation of 10.564. One of these largest
holes is depicted in Figure 10, together with the largest hole created in a simulation
of the 3D EGM up to time 1 million. In Table 5, we record the volume of the largest
top-dimensional hole created in a single simulation through time 1.5 million in each
dimension from 2 to 5.
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Figure 10. A “cast” of the largest top-dimensional holes. The polyomino on the
left has area 48 and the polycube on the right has volume 49. They were ob-
tained from a simulation of the EGM up to time one million in two and three
dimensions respectively. In the two-dimensional case, this simulation was cho-
sen randomly out of 10 runs of the experiment. The polycube is available for
interactive exploration at https://skfb.ly/6SnzN.

2D 3D 4D 5D

Largest volume at time 1.5 million 10 27 32 19
Largest volume over all time 48 64 55 30

Table 5. Volumes of the largest top-dimensional holes created in an EGM sim-
ulation up to time 1.5 million in each of dimensions 2 through 5.

6.4.2. Splitting trees. After a hole forms from the outer perimeter, it may split a number
of times before disappearing. This behavior is captured by a splitting tree [38], which
tracks the times that division occurs and the resulting polyominoes. Note that these
splitting times correspond to births of intervals in the d −1-dimensional persistent ho-
mology. In Figure 11, we show the splitting tree of the two-dimensional hole depicted
in Figure 10. We do not perform an in depth analysis of this data, but we propose that
the “reverse process” that produces this splitting tree is of interest. More precisely, P (t )
evolves by the reverse process with initial condition P (0) if P (t ) is determined from
P (t −1) by uniformly removing one of the tiles adjacent to the perimeter. This is equiv-
alent to applying the Eden growth process to the complement of P (0).

https://skfb.ly/6SnzN
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Figure 11. Splitting tree of the two-dimensional hole depicted in Figure 10. Its
birth time is tb = 586,942 and its death time is td = 618,185.
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