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Recently it occurred to me that I didn’t understand why L5 existed. On the World Wide Web, I 

read detailed descriptions of Lagrange Points, which are special nodes in the orbits of Earth and 

other planets.  And then… I still didn’t understand.  After more reading and more thought, I found 

there is a fairly simple explanation for L5.  The answer is buried in the rather detailed math of a 

complete description of Lagrange Points.  Here I give the explanation with much less math.   

In the first section I describe why Lagrange Points are interesting to me and why they may be 

interesting to you.  The second section talks about some basics of orbital mechanics.  Finally, I 

discuss why there is an L5 and an L4.  If you already know about Lagrange Points but can’t give a 

convincing explanation of why L5 has to exist, you may want to go directly to section 3.   

1. L5 and Me 

In 1977 Princeton physicist Gerard K. O’Neill published his book The High Frontier, in which he 

proposed creating colonies in outer space.  Rather than sitting on the Moon or on other planets, 

the colonies would be inside enormous free-floating cylinders, kilometers wide, rotating so that 

centrifugal force would create artificial gravity for the inhabitants.  I was twelve years old at the 

time, which meant that I had been avidly learning everything I could about space travel for seven 

years already. 

 

01 https://en.wikipedia.org/wiki/O%27Neill_cylinder. 

O’Neill proposed putting the colonies at L5.  This was a special location in the vicinity of the Earth 

and Moon that was favorable in some way for satellites to stay for long periods of time without 

falling on to the Earth or the Moon.  I didn’t know any physics when I read The High Frontier so I 

only had a vague idea of what “L5” meant. 

http://mason.gmu.edu/~bklinger
https://en.wikipedia.org/wiki/O%27Neill_cylinder
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Soon after that I learned about forces and orbits, and went on to college where I majored in 

physics and studied astrophysics and space plasmas with professors there.  However, my interest 

in human space travel waned.  Every place in the solar system is far more hostile than virtually 

any environment on the surface of the Earth, and space colonization did not seem to be a good 

solution to any immediate problems of humanity.  Once I learned about circular orbits, the 

trajectories of objects floating in space did not seem very interesting.  My model of the solar 

system was: the sun, a planet orbiting the sun, and perhaps one or more planets orbiting the 

planet in pretty much the same way.  Repeat for other planets. 

 

2 Schematic of simple Sun-Earth-Moon system 

Since then, I’ve grown to appreciate a richer view of the solar system. When you include 

gravitational fields, space is no longer a featureless void between remote objects, but a crowded 

medium where every location has its own unique flavor.  Suppose there was only the Sun, and 

consider a circle with the Sun at its center.  Any location on the circle is at the same “height” 

above the Sun: its potential energy is the same anywhere on that circle.  Another way of saying 

that is that the entire circle is at the same potential. Then add a planet orbiting the Sun along 

that circle.  Now the space around the sun has a complex topography, something like this: 

 

3 https://space.stackexchange.com/questions/4050/is-there-a-lot-of-space-trash-at-the-earth-moon-lagrange-points 

https://space.stackexchange.com/questions/4050/is-there-a-lot-of-space-trash-at-the-earth-moon-lagrange-points
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As the Appendix below describes, the surface represents the force field due to gravity. You may 

notice that there are five points where the topography flattens out.  These are the Lagrange 

Points, L1 through L5, named after the mathematician who discovered two of them in the 1700s.  

Where the topography is flat, there is no net force on an object to move it from the location. 

Lagrange Points have been in the news recently. NASA just launched a satellite to be parked at 

L2 of the Earth-Sun system.  The satellite is the James Webb Space Telescope, which will be kept 

at an especially low temperature in order to take accurate measurements of infrared light. To 

stay cold enough, it will have a kind of space parasol to block out the burning light of the Sun as 

well as dimmer infrared light radiated from the dark side of the Earth.  To do this, the Earth and 

Sun must be in about the same direction (from the satellite) all the time, which is the case for L2.   

Other planets can have Lagrange Points.  The most 

prominent ones belong to Jupiter, which has over 300 

times the mass of the Earth.  Its strong gravity has kept 

large numbers of asteroids at L5 and L4.  The asteroids 

are named after Homeric heroes, Trojans at L5 and 

Greeks at L4.  Some of the largest asteroids there are 624 

Hektor (225 km diameter), 911 Agamemnon (131 km) 

and 1143 Odysseus (115 km).  Just this Fall, NASA 

launched a space probe that will tour the Jupiter Trojans.  

 

4 https://en.wikipedia.org/wiki/Jupiter_trojan 

Earth also may have some “Trojans” – asteroids that stay in the vicinity of the Earth-Sun L4 and 

L5.  The Earth-Moon system also has Lagrange Points, defined by the Moon’s orbit around Earth.  

It is the Earth-Moon L5 that Gerard O’Neill proposed for Cities in Space.  A colony there could 

stay in about the same location relative to both the Earth and the Moon in order to stay in contact 

with both.  Its solar panels would also keep a view of the sun except for an occasional eclipse. 

This got me thinking about Lagrange Points.  Why do they exist? 

2. Euler’s Lagrange Line 

Three of the Lagrange Points are easy to understand.  First, think about a smaller body of mass  

𝑚 (such as the Earth) that has a circular orbit around a larger body of mass 𝑀 such as the Sun.  

Since the same reasoning applies to different pairs of bodies (Sun-Earth, Earth-Moon, Sun-

Jupiter, etc.), let’s just refer to the objects as 𝑀 and 𝑚.  Any object moving in a circle has its 

velocity changing direction at a constant rate all the time. The rate of change of velocity is known 

as the acceleration.  If an object takes a time 𝑇 to go around a circle of radius 𝑅, the acceleration 

is 𝑎𝑐 = (2𝜋/𝑇)2𝑅.  The acceleration caused by gravity from 𝑀 is given by 𝑎𝐺 = 𝐺𝑀/𝑅2, where 

𝐺 is a constant of nature.  If you want the object to have an orbit of radius 𝑅, you have to adjust 

https://www.cnn.com/2021/12/25/world/james-webb-space-telescope-launch-scn/index.html
https://www.nasa.gov/topics/universe/features/webb-l2.html
https://www.nasa.gov/mission_pages/lucy/overview/index
https://www.jpl.nasa.gov/news/nasas-wise-finds-earths-first-trojan-asteroid
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the orbital period (by adjusting its speed) so that the 𝑎𝑐 = 𝑎𝐺.  Or if you want it to have an orbital 

period 𝑇, then you have to adjust 𝑅.   

Now suppose you add a third object and try to make it orbit 𝑀 with the same 𝑅 and 𝑇 of 𝑚.  

Gravity from 𝑀 will make it accelerate at just the right rate to maintain the orbit, but a tug from 

the smaller mass 𝑚 will slowly move it from its original path.  The simple orbit doesn’t work for 

the third object, which will take some other trajectory, the shape of which is more complicated 

than a circular orbit and harder to figure out. 

If an object is circling 𝑀, by definition it is accelerating. There is an alternative way of looking at 

the object’s motion that is often convenient.  Consider everything from a frame of reference 

which itself is rotating around 𝑀 with the same period as 𝑚.  In this frame of reference, 𝑚 is not 

moving, and of course not accelerating, nor is anything else taking a circular path with period 𝑇 

around 𝑀.  There is an apparent contradiction in this reference frame because 𝑀’s gravity is 

pulling 𝑚 inward, yet it does not accelerate towards 𝑀.  The solution is to pretend that there is 

an outward centrifugal force associated with the moving frame.  The acceleration caused by the 

centrifugal force is exactly the same magnitude as the acceleration shown above for circular 

motion: 𝑎𝑐 = (2𝜋/𝑇)2𝑟 – here I use 𝑟 to mean any distance from 𝑀, not just the orbital distance 

of 𝑚. At a distance 𝑟 = 𝑅 from 𝑀, the force is exactly equal to the gravitational force.  The 

centrifugal force is weaker than 𝑀’s gravity if you are closer than 𝑚  (that is, 𝑟 < 𝑅) and greater 

than 𝑀’s gravity if you are further. 

Suppose we put a satellite between 𝑀 and 𝑚.  Because it is closer to 𝑀 than 𝑚 is, 𝑀 will exert a 

stronger force on it, which necessitates a faster (shorter period) orbit.  But remember, 𝑚 is 

tugging on it in the opposite direction.  If you add the two opposing forces, the total force towards 

𝑀 may be weaker, or (if the object is close enough to 𝑚) may even be pointing away from 𝑀.  

There is a location between 𝑀 and 𝑚 where the centrifugal force balances gravity.  That location 

is Lagrange Point #1, L1.   

 

5 Examples of force balance for locations between m and M, in rotating frame of reference.  Distances and force vectors are not 

to scale.  

For over twenty-five years, a NASA satellite named SOHO (Solar and Heliospheric Observatory) 

has been sitting at the Earth-Sun L1 (https://soho.nascom.nasa.gov/home.html).  This is an ideal 

location for a perpetually unobstructed view of the Sun (see figure below). Since 2015, NOAA’s 

DSCOVR (Deep Space Climate Observatory) has been taking advantage of L1’s continuous view 

of the daylight side of the Earth (http://www.nesdis.noaa.gov/news/noaas-dscovr-satellite-

celebrates-its-sixth-launch-iversary), including times when the Moon passes in front of the Earth 

(see figure).  

https://soho.nascom.nasa.gov/home.html
http://www.nesdis.noaa.gov/news/noaas-dscovr-satellite-celebrates-its-sixth-launch-iversary
http://www.nesdis.noaa.gov/news/noaas-dscovr-satellite-celebrates-its-sixth-launch-iversary
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For the next Lagrange Point, go along the line from 𝑀 to 𝑚 till 𝑚 is between 𝑀 and you. In other 

words, your distance 𝑟 from 𝑀 is greater than 𝑚’s distance.   𝑀 and 𝑚 are both tugging you in 

the same direction, so the combined force is greater than that of 𝑀 alone.  You can adjust 𝑟 so 

that the same 𝑇 as 𝑚’s period gives you just the right acceleration to balance the force from 𝑀 

and 𝑚.  That is L2. 

 

7 Schematic of L2. 

Finally, there is the mysterious L3, the “mirror Earth” location on the opposite side of 𝑚.  As with 

L2, an object at L3 is tugged by both 𝑀 and 𝑚, but in this case 𝑚 is much further away and so 

makes a much smaller contribution to the force.  For this reason, L3’s orbital radius 𝑅 only has to 

be slightly larger than 𝑚’s orbital radius in order to have the same 𝑇.   

 

8 Schematic of L3. 

The 3 Lagrange points on the same line as 𝑀 and 𝑚 were all discovered by Leonard Euler.  

Lagrange studied them afterwards, but Euler already has so many things named after him 

(including the number 𝑒 = 2.718281828…) that some of the things he studied are named after 

the next person that wrote about them. 

All these balances are easy to picture, but how can the forces balance if 𝑀, 𝑚, and our third 

object are not all in a straight line?  These are the ones that Lagrange actually discovered. 

6 Four pictures of the Sun taken over 2 days ( https://soho.nascom.nasa.gov/gallery/images/eit003.html) and an image 
of the Earth and the far side (but not the dark side) of the moon, both taken from the vicinity of the Earth-Sun L1.  

https://soho.nascom.nasa.gov/gallery/images/eit003.html
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3. The Lagrange Triangles 

When we come to L4 and L5 and try the game of balancing the forces so that they are just right, 

we run into a little problem: it doesn’t work. 

Any object standing still in the frame of reference rotating around 𝑀 has its centrifugal force 

pointing in the opposite direction to the force from 𝑀’s gravity.  If the object is not somewhere 

on the line that includes 𝑀 and 𝑚, then the gravitational force from 𝑚 does not line up with 

either of the other forces (see Figure), no matter how far from 𝑀 you stay.  That’s a problem, 

because there is no way for forces to cancel each other if they are not parallel. 

 

9 Schematic showing apparent contradiction in defining L4. 

 

This is quite a conundrum.  The force diagram is simple and the problem is obvious, and yet 

astronomers insist there really is an L4 and an L5.  If the astronomers are right about L4 and L5, 

there must be an error in least one of our assumptions.  What is it? 

The incorrect assumption is that the Earth orbits the Sun. 

That assumption is almost correct.  It does go around the Sun.  But, 𝑚 does not orbit the center 

of 𝑀, but the center of mass (barycenter) of the system.  In fact, both objects orbit the 

barycenter.  The line between the centers of 𝑀 and 𝑚 always passes through the barycenter, 

which is always between the centers of the two objects.  Where is the center of mass?  If we call 

the distance between each mass and the barycenter 𝑟𝑀 and 𝑟𝑚, then 𝑀𝑟𝑀 = 𝑚𝑟𝑚, and so 

𝑟𝑀/𝑟𝑚 = 𝑚/𝑀.  If 𝑀 is much more massive then 𝑚, then 𝑀 is much closer to the center of mass 
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than 𝑚 is.  In fact, for the Earth-Moon system, and the Earth-Sun system, the barycenter is inside 

𝑀.  The Sun’s “orbit” around the Sun-Earth barycenter looks like a kind of wobble. 

Separating the center of the Sun from the center of mass fixes our problem with L4/L5.  In order 

to show the effect more clearly, the figure exaggerates the distance to the barycenter and puts 

it outside the Sun.  Because the orbits are around the barycenter, the centrifugal force points 

away from the barycenter rather than from the center of the Sun.  The Sun’s gravitational pull on 

the object still points to the Sun center.  This slight difference in alignment is enough that there 

are two additional locations around the Earth’s orbit (and slightly outside of it) where the pull of 

the Earth balances the force from the slight mismatch in centrifugal force and the Sun’s gravity.  

The two locations are L4 and L5.  L5 trails behind 𝑚 in its orbit, and L4 stays ahead. 

 

10 Schematic showing importance of centroid in establishing L4 and L5. 

4. Lesson: Don’t Ignore the Wobbles 

To understand many things about orbits we can ignore the wobble - the relatively small motion 

of the heavier object at the [near] center of the system - but L4/L5 depend critically on this 

feature.  The wobbling of the central mass creates two cradles in which to let other objects rest.  

This contrasts with the “straight line” Lagrange Points which would exist even without the 

wobble.  

The heavy object’s motion is important in another phenomenon, more familiar than Lagrange 

Points: the tides.  The Earth experiences tidal forces as it orbits the Sun.  The Sun’s gravity 

balances the centrifugal force of Earth’s orbit at the center of the Earth, but the noon and 

midnight locations on the Earth’s surface, being closer and further (respectively) from the sun, 
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changes the balance and creates a tidal force.  The strongest tidal force however, does not come 

from the Sun but from the Moon.  It makes no sense to speak of balances between the Moon’s 

gravity and the centrifugal force of the Earth’s orbit around the Moon.  But the Earth does orbit 

around the Earth-Moon barycenter, which is inside the Earth about ¾ of an Earth radius from the 

Earth’s center. 

The slight motion of a star due to the tug of a planet, which is much smaller and dimmer and 

hence impossible to see directly with current astronomical tools, allows us to infer the existence 

of planets orbiting other stars. 

There is much more to say about Lagrange Points themselves.  If you park your favorite spacecraft 

at L1, L2, or L3, you have a stability problem.  Orbital perturbations, no matter how small, can 

make the object drift far from the placidity of the Lagrange Point into the chaos of other orbits.  

The perturbation could be as small as placing the spaceship a short distance from the exact 

Lagrange Point.  There are special orbits around these Lagrange Points that will keep an object 

close to them, which is what the L1 and L2 satellites mentioned in Section 3 do.   Rockets near 

these points need to expend a small amount of fuel to maintain their orbit.  In contrast, what 

starts near L4 and L5 tends to stay near L4 and L5, which is why scientists think the Jupiter Trojans 

have been there for millions or even billions of years.  Why all this occurs is a bit more 

complicated than what I’ve demonstrated here. 

Lagrange Points and the orbit of a body pulled by a much smaller orbiting body are just the 

beginning of the complications which lie beyond simple circular orbits around an unmoving 

central mass.  The planets’ orbits are circular, but not exactly circular: they are slightly elliptical.  

They are generally in about the same plane, but the plane of each differs by a little bit as well.  

The Moon’s own orbit around the Earth is not exactly in the same plane as the Earth’s orbit 

around the Sun, which is why there isn’t an eclipse once a month.  The Earth-Moon tides are 

causing the Earth to shove the Moon, slowly but inexorably, into a bigger orbit.  Gravity from 

other planets makes the Earth’s orbit cycle through changes over thousands of years, which 

makes giant changes in climate.  Jupiter and Saturn have their own mini-solar systems of moons 

orbiting them.  And all that is before we start looking at the trajectories of space ships we toss 

out into the solar system, or start imagining what other planetary systems may look like.   

Appendix: Gravitational Potential, Rotating Reference Frame 

What is actually going on in Figure 3?  The surface shown in the figure (reproduced below) is an 

abstraction representing the gravitational potential around the Sun and Earth in the imaginary 

case that there are no moons or other planets. To understand that abstraction, first imagine 

that it represents something else: an actual topographic surface on the Earth, maybe 50 meters 

wide, with a couple of holes.  Call the height of the surface at each location ℎ. As everyone 

knows, if the surface is smooth and you place a marble on it, Earth’s gravity will tend to pull the 

marble down the slope.  As  the marble rolls down, it picks up speed 𝑉 in a particular way: the 
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quantity ½𝑚𝑉2 (𝑚 is the marble’s mass) increases by exactly the same amount as the quantity 

𝑚𝑔ℎ decreases (𝑔 is the acceleration caused by gravity, 9.8 m/s2 at the surface of the Earth).  

The first quantity is the kinetic energy, the second is the potential energy, and since the motion 

due to gravity of any object doesn’t depend on the object’s mass, it is convenient to talk about 

the gravitational potential 𝑔ℎ of each point on the Earth’s surface.1

 

Let’s go back to outer space.  Now we are only talking about the horizontal plane that contains 

the Earth’s orbit.  The vertical coordinate shown in the figure is not height above this plane, it’s 

the strength of the gravitational potential due to the Earth and the Sun.  If the surface were an 

actual solid surface on Earth, objects would be pushed downward and in some horizontal 

direction as they roll down (upper right panel of figure).  But if the surface just represents 

potential in space, the force is only in the horizontal direction and there is no force pushing 

objects “downward” below the plane (lower right panel).  The Earth is in the center of a steep 

bowl representing the pull towards the Earth and the Sun is in the center of an even steeper 

bowl due to its stronger gravity.  In each case, the bowl tells you that an object placed there 

would be pulled towards the center of the bowl. 

The formula 𝑔ℎ we use for gravitational potential for objects on Earth is just an approximation 

that is accurate if ℎ is much smaller than the distance to the center of the Earth.  In general, the 

potential, at each point, from each object depends on the distance 𝑟 to the object in a more 

complicated way.  If gravity is due to more than one object (such as the Sun and Earth in this 

example), you just calculate the potential from each object and add them all up.   

If the potential represents the effect of gravity, why is there a downward slope away from the 

sun outside Earth’s orbit?  It’s because we are viewing the arrangement as static: The Earth 

appears to be stationary even though we know it is orbiting.  That is because we are viewing 

this in a rotating frame, as if we were sitting above the Sun and turning around so that we are 

always facing the Earth.  When we use a rotating frame to describe the motion, we have to 

                                                           
1 I am ignoring some details such as the kinetic energy associated with the spin of the marble as it rolls. 
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include centrifugal force (see Section 2).  It turns out there is also a potential due to this force, 

and we just add that to the gravitational potential of the Earth and Sun.  The centrifugal 

potential has the shape of a hill with its peak in the center of the orbit (at the Sun).  It’s a hill 

because that way “rolling down the hill” pushes an object away from the Sun, which is the 

direction the centrifugal force points.   Inside the Earth’s orbit, the centrifugal hill is “steeper” 

than the gravitational bowl due to the Sun, so the net effect is still a bowl (objects are pulled 

towards the Sun).  Outside the orbit, the hill is steeper than the bowl, and so the net force is 

away from the Sun – an object travelling fast enough to go once around the Sun in a single 

Earth year will be pushed away from the Sun by centrifugal force. 

Potential surfaces are a cool way to illustrate the Lagrange points.  Simple rules explain why the 

Sun and the Earth are each sitting in a gravity bowl imbedded in a centrifugal hill.  But these 

rules don’t explain why there are separate gravity hills around L4 and L5.  For that you need the 

extra factor that Section 5 discusses. 

 


