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ABSTRACT OF THE THESIS

Stochastic Maze Solving Under the Geometric Amoebot Model

By AAYUSH YADAV

Thesis Director:

Dr. Sunil Shende

A self-organizing particle system (SOPS) is a collection of programmable units called par-

ticles with fixed computational capabilities. Within a particle system, individual particles

execute fully distributed, local, asynchronous algorithms to achieve collective movement,

configuration and co-ordination.

Leveraging recent developments in stochastic algorithm design for such systems, we

propose a Markov chain based algorithm for collective maze-solving under the geometric

amoebot model of SOPS for certain types of mazes. The inspiration for our algorithm comes

from the algorithm for phototaxing, which uses external stimuli to create asymmetries in

particle activity levels, thereby causing displacement of the particle system away from the

stimuli.

Phototaxing has been proven for systems of two and three particles. We give an algo-

rithm to verify phototaxing in arbitrarily large systems given the set of possible configu-

rations are known. Using this algorithm, we verify that phototaxing also occurs in particle

systems of size four.
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Chapter 1

Introduction

Systems of programmable matter find use in several areas including, but not limited to,

swarm-robotics, bio-mimicry, synthetic biology and smart materials. A shared goal in this

field is to realise computational (and eventually physical) models for artificial matter that

can be applied to a variety of physical domains. One could envision a self-repairing paint

material (see, for example, [12]) or a drug-delivery system involving safe transportation of

pharmaceutical compounds as possible applications of programmable matter.

Abstracting away the details of area-specific application, we study the self-organization

properties of such systems under the geometric amoebot model that was first theorised by

Dolev et al. [17] as an “ameba-inspired [sic] system” of programmable particles and later

introduced in an updated form by Derakhshandeh et al. [16]. The model is comprised

of a system of particles, referred to as amoebots, that occupy the vertices of a triangu-

lar lattice G∆, and move along its edges. Individual amoebots execute distributed, local,

asynchronous algorithms to achieve the broader goals of collective movement, configura-

tion and co-ordination. Further, since amoebot decisions are made locally, the algorithms

under this model can be viewed as emergent properties of the system and are performed

with bounded memory related assumptions.

1.1 Contributions

Phototaxing [29] refers to the collective displacement of particles1 away from (or towards)

an external source of light. The algorithm for phototaxing forces asymmetries in parti-

cle activity levels via an external stimulus, thereby causing displacement of the particle

1we will often use the terms “particles” and “amoebots” interchangeably since all references to particles or
particle-systems are made in the context of the amoebot model.
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system. In this work, we study phototaxing in the amoebot model and propose an algo-

rithm to verify whether phototaxing “provably occurs” in a system of amoebots. It has

been shown that phototaxing “provably occurs”, ie., occurs in expectation, for systems of

two and three particles [29], but a general proof is not yet known. Our algorithm verifies

expected phototaxing given that the set of all possible configurations up to rotation and

translation are known in advance. This is a non-trivial requirement as the number of such

configurations is exponential in the number of particles in the system [31], also referred to

as its size. Using this algorithm we verify that phototaxing “provably occurs” in systems

of size four.

We then consider the problem of maze-solving – i.e., the discovery of a path to the exit

of a maze by a system of amoebots – and present a stochastic algorithm for collective maze-

solving under the geometric amoebot model. Specifically, we introduce modifications in

the amoebot design that allow for variable movement probabilities as a function of an

individual amoebot’s distance from the maze. This leads to a memory-less Markovian

random-walk by the particle system that eventually leads to a path to the exit in specific

types of mazes. This algorithm is similar to the algorithm for phototaxing, from which it

is inspired, but with new parameters that allow the particles to adapt according to their

position in the maze. We also analyse instances where this algorithm fails, leading to

valuable insight into possible future work in this direction.

1.2 Related work

Systems of programmable matter can be classified as passive or active. Particles in pas-

sive systems lack autonomy, instead particle movement is determined by external factors

such as environmental input and the system’s structural configuration. Algorithms for tile

based self-assembly [18, 27] and DNA computing [1, 3] are examples of passive systems.

In contrast, particles in active systems possess the ability to make decisions about their ac-

tions, although it is possible that these decisions are partially guided by external factors.

The amoebot model [17, 16, 10] and the nubot model [32], another model of self-assembly

systems, both fall under the latter category of programmable matter systems.
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Much of the early motivation behind the geometric amoebot model can be found in

applications involving co-ordinated shape and pattern formation [15, 13, 14, 19], object

coating [12, 6] and the formation of convex-hulls [8]. The model is given a detailed treat-

ment by Daymude et al. [10]. More recently Daymude et al. [11] have also proposed a

deterministic algorithm for distribution of energy within systems of amoebots. All of these

algorithms are deterministic in nature and typically rely on careful state-management and

protocols for inter-particle communication for their success.

The first stochastic algorithm under the amoebot model was given for compression and

expansion of systems of amoebots [5]. The algorithm draws its inspiration from the Ising

model of ferromagnetism [21] to define a Markov chain, on the set of valid system config-

urations, that favours approximately compressed (or expanded) configurations in the long

run. The fact that state transitions can be restricted to correspond to local particle moves

is indeed remarkable and has led to several further successes using this technique. Arroyo

et al. [2] extended this methodology to given an algorithm for the formation of bridges

over gaps in the triangular lattice. Similarly, Savoie et al. [29] demonstrated phototax-

ing in systems of amoebots. In the more recent work of Li et al. [23], the Markov chain

based algorithms for problems of compression, expansion and collective transport were

experimentally verified in a physical setup involving active “cohesive granular robots”.

An abundance of instances of collective maze-solving exist in the natural world. Ants

navigate unfamiliar and complex topologies by depositing a trail of pheromones that is

then picked up by other ants in the colony and the process is repeated, eventually reaching

a state of equilibrium where the entire colony follows the trail with the strongest scent [30].

Slime molds, often considered model organisms for studying biological self-organization,

are known to optimally solve mazes by spreading their mass across the maze and then

pruning any extensions that do not lead to an exit [26, 28]. Within the context of the

amoebot model, the trivial “wall-follower” approach to maze-solving, wherein the system

follows the nearest wall it can find until it finally exits the maze, is yet to be studied. A

major shortcoming of such an algorithm is that in its most basic form, it fails to utilise the

inherent parallelism offered by the amoebot model. The design of efficient deterministic

algorithms for maze-solving under the amoebot model is of independent interest and in
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this work, we restrict ourselves to designing a stochastic algorithm for maze-solving.

1.3 Organization

The remaining text is organized as follows. In Chapter 2 we introduce the geometric amoe-

bot model including the algorithmic techniques used in the design of algorithms under

this model. The stochastic algorithms under the model rely on defining a Markov chain

so an exposition to Markov chains and mixing times is also given. Chapter 3 elaborates

on the algorithms for compression [5] and phototaxing [29] as they form the basis of our

results. We then give the phototaxing verification algorithm in Chapter 4, the algorithm

for collective maze-solving in Chapter 5 and finally end with our concluding remarks in

chapter 6.

1.4 Notation

Throughout the text, we refer to an individual programmable particle by the notation P .

This is different from any allusion to P, the matrix of transition probabilities (see Section

2.4). Particularly, we reserve boldface lettering for matrices (uppercase) and vectors/vector

valued functions (lowercase). When necessary, individual elements of matrices and vectors

are denoted by their corresponding plain, lowercase lettering with appropriate indices.

For instance, consider the scalar valued function g : X →Y for some sets X and Y . We then

define g as the vector corresponding to g(x) applied to every x ∈ X . Similarly, elements of

the matrix P are denoted by pi,j where i and j are the row and column indices respectively.

The lowercase letter n is always used in reference to the size of a system of programmable

particles. Equivalently, it is the number of particles in a given system.
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Chapter 2

Background and the Model

In this chapter we expand on several standard definitions and results under the Geometric

Amoebot model. We also discuss deterministic and stochastic approaches to algorithm

design that have been studied under this model. For an in-depth survey of the topics in

this section, we direct the reader to the book chapter by Daymude et al. [10].

2.1 The Amoebot Model

The geometric amobeot model is an abstract model of self-organizing particle systems.

It consists of individual computational elements (or particles) known as amoebots repre-

sented as unique points on an infinite triangular lattice G∆. An amoebot may exist in a

contracted state (see figure 2.1) or in an extended state wherein the particle occupies two

adjacent locations in the lattice. Particles move via a series of alternating extensions and

contraction steps along the edges, as demonstrated in Figure 2.1 (b). This movement is

reminiscent of the amoeba after which the particles in this model have been named.

P P ′

P

P ′

P ′′

extends

contracts to head

contracts to tail

head

head

tail

tail

head

head

tail

head

head

(a) (b)

Figure 2.1: (a) A contracted amoebot P and an expanded amoebot P ′; and (b) Valid particle
moves for P in a contracted state, and for P ′ and P ′′ in extended states.
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All amoebots must keep track of their port labels that uniquely identify the edges sur-

rounding it. Further, the particles are anonymous in that they lack any global identifier,

however they can locally identify their neighbours by the port labels corresponding to the

connecting edge. It is also assumed that there is no shared co-ordinate system or a global

sense of orientation between particles.

Each particle has a constant amount of local memory that stores its extended/contracted

status, the port labellings and any other state related information directly relevant to the

application at hand. In addition, particles can also communicate with their immediate

neighbours on the account of having read and write access to their local memory stores.

hole

Figure 2.2: A sample configuration G with a hole.

Computations in the model are performed as atomic actions realised by the Async

model of distributed computing. An atomic action for the amoebot model is the activa-

tion of one amoebot. A standard result under this model is that for any concurrent asyn-

chronous execution of atomic actions there exists (subject to conflict resolution) a sequen-

tial ordering of actions that returns the same output. This greatly simplifies analysis of

distributed algorithms under the amoebot model. Additionally, an asynchronous round, or

simply a round, is completed when every particle has activated at least once. This assumes

that all activations are fair, i.e., at any given time, all particles have an equal probability of

activation. In this work, we only consider the end states of the atomic action where parti-

cles have either completed a single move or stayed-put in their position before activation,

thus always remaining contracted. This allows us to define a configuration of a system of
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amoebots as a sub-graph G = (V ,E) of the lattice, where V is the set of all positions occu-

pied by the amoebots relative to the system on G∆ and E is the collection of edges between

two adjacent amoebots in G∆.

The sub-graph G is also typically constrained to remain connected. The justification for

this is that because a disconnected system is unlikely to reconnect via strict local moves,

and because particles can only communicate with other adjacent particles, communication

is severely hindered in such a system. An exception to this constraint is the algorithm pro-

posed by Li et al. [23] where this constraint was recently shown to be superfluous for the

purpose of aggregation of systems of amoebots. All algorithms we discuss assume the con-

nectivity constraint. Algorithms derived from the algorithm compression [5] also require

the introduction of the concept of holes. A hole in a configuration is a maximal connected

component of G∆ \G that is also finite.

A note on random number generation. The limited memory requirement of the model

also limits the number of random bits held by each particle. A particle may therefore only

hold random values of constant precision, although the exact number of bits may be de-

termined based on the application.

2.2 Deterministic algorithms under the amoebot model

The geometric amoebot model was invented, in its most current form, as a theoretical

model for programmable matter with self-organizing capabilities [16]. The need for such a

model was primarily motivated by real world applications in shape and pattern formation

[15, 13, 14] and the coating of objects [12, 6] by systems of programmable matter.

Deterministic algorithms under the geometric amoebot model comprise a class of care-

fully designed distributed, local, asynchronous protocols executed by individual amoebots

to (deterministically) self-organize into a target configuration. These algorithms depend

on such algorithmic primitives as leader election [15, 9] and the spanning forest primitive

[15], for their operational requirements.
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To give a high level idea of how these primitives utilise the full capabilities of the amoe-

bot model, we briefly describe the “improved leader election” algorithm by Daymude et

al. [9]. In leader election, a system of particles elects one particle that declares itself as the

leader and no other particle declares itself the leader. Leader particles are often necessary

to set off the execution of deterministic algorithms, to initialise particle states and ensure

certain application specific conditions are met. To solve leader election, Daymude et al. [9]

propose an asynchronous token passing scheme to create chains of contiguous particles on

the boundary (including those around holes) of a particle system configuration. Progress-

ing through several phases of communication, a particle on the unique outer-boundary

that unequivocally leads the longest such chain declares itself the leader. Since the chains

are initialised by random coin flips, this algorithm provably solves the problem of leader

election with high probability (w.h.p.)1 [9].

In the problem of basic shape formation, a system of amoebots can re-configure, in

number of rounds linear in the size of the system, to form a line, a triangle or a hexagon

on the triangular lattice [15, 13]. A more general version of shape formation [14, 19] allows

for re-configuration of the particle system into a broader class of shapes that can be built

by attaching triangles to some starting shape inO(
√
n) number of rounds w.h.p. The bound

is probabilistic due to its dependence on the leader election primitive. However, once a

leader has been elected, the algorithm for general shape formation is fully deterministic.

The problem of object coating involves covering an object (or a part of an object) with

a layer of programmable matter. An immediate application of this can be seen in the

design of self-repairing paint or construction materials. The universal coating algorithm

[12, 6] correctly solves the object coating problem in O(n) number of rounds in the worst

case, w.h.p. Where once again the randomness comes from the leader election primitive.

Similar to object coating is the problem of wrapping of an object by a convex hull, this

is solved by Daymude et al. [8] in number of rounds linear in the length of the object’s

boundary.

1specifically, with probability 1− 1/nO(1)
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2.3 Stochastic algorithms under the amoebot model

Stochastic algorithms under the geometric amoebot model rely on individual particles

making probabilistic decisions in order to reach some near-optimal state with respect to

a pre-determined objective. The approach here is markedly different from determinis-

tic algorithms discussed in the previous section in that, here, particles carry out minimal

communication and no state management whatsoever. Instead, the standard technique

is to design a Markov chain, defined over the particle-system configuration, whose long

run probabilities favour certain desirable configurations. The notion of a desirable con-

figuration is captured by an energy function that quantifies some measurable aspect of the

system such as the number of edges, triangles, particles on the perimeter of the system etc.

The Markov chain must be designed keeping in mind that the resulting algorithm should

transfer easily in a distributed, local, asynchronous paradigm executed independently on

each particle.

Markov chains are used extensively in statistical physics to sample configurations of

physical systems with the probability of any configuration, σ – at temperature τ , and

whose energy is determined by a Hamiltonian H(σ ) – given by the quantity w(σ )/Z where

w(σ ) = e−H(σ )/τ is the weight of the configuration and Z =
∑
σ ′ w(σ ′) is a normalising con-

stant known as the partition function. The same physical inspiration is extended to design

Markov chains for stochastic algorithms under the amoebot model. The Markov chain

based technique has had remarkable success in several recent objectives including al-

gorithms for compression and expasion [5], phototaxing [29], shortcut-bridging [2], and

seperation [4] in systems of programmable particles.

2.4 Markov chains and mixing times

Markov chains have been the tool of choice in the design of stochastic algorithms under the

geometric amoebot model [5, 29, 2, 4, 23]. In this section, we review the theory of Markov

chains and their mixing times; the analysis of mixing time, or the time to convergence of

Markov chains turns out to be essential in proving that the system does indeed reach the

desired state in the long run. The reader may also refer to the text by Levin, Peres and
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Wilmer [22] for a more complete exposition of Markov chains and their mixing times.

Let Ω be the state space consisting of all particle system configurations. A Markov

chain,M, on Ω is a memory-less random process, i.e., the transitions from one state to an-

other are made independently of time, with the probability of transition depending only

on the current state of the chain. Assuming Ω to be finite and discrete, we may completely

specify M by the use of a transition matrix, P ∈ [0,1]|Ω|×|Ω| defined such that pω,ν is the

probability of transitioning from state ω to state ν in a single step for any ω,ν ∈ Ω. Fur-

ther, the quantity, Pt[ω→ ν] gives the t-step transition probability of reaching state ν from

a state ω in exactly t transitions of the Markov chain, where we once again have ω,ν ∈Ω.

Ergodicity. A Markov chain is irreducible if there is a time-step t0 such that for all

t > t0, Pt[ω→ ν] > 0 for all ω,ν ∈Ω or, in words: it is always possible to get from one state

to any other state through a sequence of transitions. A Markov chain is periodic if its states

can be grouped into n > 1 disjoint subsets S0,S1, . . . ,Sn−1 such that all states in Si transition

into Si+1 (modulo n) for i = 1,2, . . . ,n−1. Then, we may say that the Markov chain is aperi-

odic if such a grouping of states is not possible. More formally, we may say that a Markov

chain is aperiodic if for all ω ∈Ω, gcd
{
t : Pt[ω→ω] > 0

}
= 1. Finally, a Markov chain that

is both irreducible and aperiodic is ergodic.

Stationary distribution of M. A probability distribution π over Ω is the stationary

distribution of a Markov chain if πP = π. The time taken to reach this stationary distribu-

tion is known as the mixing time of the Markov chain. Ergodic Markov chains over a finite

state space have the nice property that they converge to a unique stationary distribution

that, for any ω,ν ∈ Ω, is given by πν = lim
t→∞

Pt[ω → ν]. The uniqueness of the stationary

distribution can be explained intuitively by looking closely at the requirements for ergod-

icity presented above – irreducibility prevents “absorbing states” or states that can not be

escaped, and without aperiodicity stationarity can not be reached.

It is worth noting that finding the mixing time for the Markov chain in the context of

the amoebot model is a non-trivial open problem; it is, however, possible to check that

a distribution π′ is the unique stationary distribution by verifying the, stronger, detailed
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balance condition π′νpν,ω = π′ωpω,ν . In fact, we use detailed balance in Section 3.1, to show

that the Markov chain for the compression algorithm converges to a unique stationary dis-

tribution.

Metropolis filter. We now give a general description of the Markov chain for com-

pression as it broadly applies to all stochastic algorithms under the model while deferring

the task of defining compression in the amoebot model to the next chapter. To that end,

consider a Markov chainMCcompress, with stationary distribution π, over the state space

Ω, comprised of all the possible configurations in a connected particle system of fixed

size. For any ω,ν ∈Ω, state-transitions of the form ω→ ν correspond to a single particle

move that occurs with probability pω,ν = min
{
1, πνπω

}
(and pω,ω can be found by comple-

mentation). We say that ν is in the neighbourhood of ω if pω,ν > 0. This method of setting

transition probablities is known as the Metropolis-Hastings [20] algorithm, that eventually

leads a sampling of states according to the stationary distribution2. It is not immediately

obvious that these transition probabilities can be computed locally by every particle. How-

ever, as we describe in Section 3.1.1, that does turn out to be the case.

2.5 Physical inspiration and the Ising model

In this section, we explain how the stochastic algorithms for the amoebot model derive

their inspiration from the Ising model [21] of statistical physics. This parallelism will

help us see the amoebot model in a new light: as a variant of the Ising model in the 2-

dimensions with fixed boundary conditions.

The design of the Markov chain for stochastic algorithms under the Amoebot model is

motivated by statistical physics with, perhaps, the most direct analogue being the widely

studied Ising model for ferromagnetism [21]. Conceptually, the model consists of a phys-

ical system represented by a lattice with positive or negative (alternatively up or down)

2Historical note: some controversy exists concerning the name of the algorithm; authors Rosenbluth and
Rosenbluth of the original paper [25] maintain that the algorithm is their invention and that Metropolis simply
provided computing time.
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spins assigned to each vertex and an associated temperature. More formally, we consider

a regular lattice graph where [n] = {0,1, . . . ,n− 1} are the vertices that we call sites; and E

is the collection of pairs of sites (i, j) ∈ [n] with non-zero interaction energy, Vij . A config-

uration, σ = {σi}i∈[n] is, then, an assignment of positive/up (σi = +1) and negative/down

(σi = −1) spins to all the sites on the graph, and the energy of a configuration under an

external field B is given by its Hamiltonian H(σ ) = −
∑
{i,j}∈EVijσiσj −B

∑
k∈[n]σk . Observe

here that the first term in the Hamiltonian corresponds to the energy due to inter-site in-

teraction and the second term to the energy due to the external field. The probability that

a system is in a state (or configuration) σ at equilibrium is exp(−βH(σ ))/Z where β > 0 is

inversely proportional to the temperature and Z = Z(Vij ,B,β) =
∑
σ∈{−1,+1}n exp(−βH(σ )) is

the partition function.

In the amoebot model, we consider nodes in the triangular lattice G∆ to have a positive

spin value if it is occupied, and negative otherwise. The amoebot model is then similar

to an Ising model with fixed magnetization, wherein the total number of spins of each

kind does not change. This naturally follows from the fact that the size of the system

remains fixed. We also require the additional constraint that the system of amoebots is

simply-connected, a requirement that is non-standard in the Ising model but necessary for

the proofs of Markov chain convergence in the compression algorithm [5]. For a system

without the simple-connectivity constraint, a mapping to the fixed-magnetization Ising

model is known [23].
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Chapter 3

Stochastic Algorithms

Compression and Phototaxing

Stochastic algorithms under the geometric amoebot model are designed by specifying a

Markov chain over the set of system configurations and then sampling the states based on

the desired objective. This technique was first given by Cannon et al. [5] for an algorithm

for α-compression of SOPS, and has since resulted in stochastic algorithms for several other

objectives under the amoebot model [29, 2, 4, 23].

We now describe the algorithms for compression and phototaxing, as the former is

required for understanding the stochastic approach and the latter motivates both of our

main results. At the end the upcoming section we also comment on the challenges in

proving reasonable bounds on the mixing times for the Markov chain defined under the

compression scheme, and by extension, under the existing class of stochastic algorithms

for the amoebot model.

3.1 Compression

The problem of compression in a system of self-organizing particles is quite simply the

aggregation of all the particles into a ball of the smallest radius in an appropriately defined

space. Aggregation is considered typical swarm behaviour, swarms of insect species such

as ants, cockroaches and mosquitoes are known to aggregate for the purpose of foraging,

reproduction etc. It is remarkable that these co-operative agents are able to accomplish

group level co-ordination through individual action. Compression in general SOPS is a

difficult problem for several reasons, not least because of the complexity of the underlying

inter-particle communication protocols thus involved.
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We now express compression in the context of the geometric amoebot model. Let p(σ )

denote the perimeter of a system configuration σ , then p(σ ) is the sum of the lengths of all

boundaries (including those surrounding holes) of σ . Define pmin ≡ min
{σ∈Ω:|σ |=n}

p(σ ) as the

minimum possible perimeter among all systems of size n. A simply-connected configura-

tion σ is said to be α-compressed if p(σ ) ≤ α · pmin for any α > 1. By simply-connected, we

mean that the configuration σ is connected and it does not contain any holes.

3.1.1 A Markov chain algorithm for compression

The Hamiltonian of a compressing system in configuration σ is defined to be proportional

to the perimeter, p(σ ). As a result, a configuration with smaller perimeter also has lower

overall energy. However, while the goal of compression is to minimize the perimeter (or

equivalently the radius), the following lemma due to Cannon et al. [5] suggests a more

convenient choice of measure

Lemma 3.1.1 (Cannon et al. [5]) A simply-connected particle system configuration with min-

imum perimeter is also a configuration with the maximum number of edges and the maximum

number of triangles.

In Section 2.5 we noted that the Metropolis probabilities can be calculated locally. It

is through Lemma 3.1.1 that this is made possible. Specifically, it allows us to write the

Hamiltonian as H(σ ) = −ε(σ ), where ε(σ ) is the number of edges in a configuration σ

and the weight of the configuration is then w(σ ) = e−H(σ )/τ = λε(σ ) where the parameter

λ controls the relative strength of compression (λ > 1 favours configurations with more

edges).

To correctly analyse the Markov chain, certain necessary constraints must be main-

tained during the execution of the algorithm for compression. The main structural invari-

ants are that (i) connectivity should be maintained at all times; and (ii) particle moves

should not result in new holes. Once simple-connectivity has been reached, the fact that it

is maintained is evident by construction. To maintain these structural invariants, any acti-

vated particle must satisfy one of two properties in moving from some vertex location ` to

an adjacent `′ on G∆. Before specifying the properties, some notation must be established.
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For a particle P at location `, let N (`) denote the set of particles in the neighbourhood of

`. For adjacent locations ` and `′, let U and S denote the sets {N (`)∪N (`′)} \ {`,`′} and

N (`) ∩N (`′) respectively. Note that |S| can be one of 0,1 or 2. The properties are then

stated as follows:

Property 1. |S| ∈ {1,2} and every particle in U is connected to a particle in S by a path

through U.

Property 2. |S| = 0, ` and `′ each have at least one neighbour, all particles in N (`) \ {`′}

are connected by paths within this set, and all particles in N (`′) \ {`} are connected by

paths within this set.

Intuitively, Property 1 is preventing certain new holes, Property 2 is preventing the

system from disconnecting, and together these conditions ensure eventual ergodicity of

the resulting Markov chain. With this background, we now describe the compression

algorithm as given by Cannon et al. [5].

Assuming a uniform probability of activation across all particles in a configuration,

the Markov chainMCcompress can now be formally defined as in Algorithm 1 for a single

particle P .

Algorithm 1 (Cannon et al. [5]) A Markov chain compression algorithm for particle P .
Given: the compression parameter λ.

1: Particle P , at location ` of G∆, chooses a location `′ uniformly at random from all its
six neighbouring locations.

2: if (i) `′ is unoccupied, (ii) Property 1 or Property 2 hold, and (iii) a move from ` to `′

does not create a hole then
3: P generates a random number q ∈ (0,1).
4: Let ε be the number of edges of a configuration incident on P at position `, and

similarly ε′ the number of edges incident on P if it were at `′.
5: if q < λε

′−ε then
6: P moves to `′.
7: else
8: P stays at `.

Observe here that locally checking if a number q drawn uniformly from (0,1) is less

than λε
′−ε is exactly the Metropolis filter we discussed in Section 2.4. We reproduceMCcompress
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(see figure 3.1) and confirm that for sufficiently large λ, the Markov chain leads to α-

compression of any initially connected configuration. We demonstrate a sample result

from our simulations in Figure 3.1 using only a constant number of bits for q.

Figure 3.1: A simulation of the compression algorithm for 55 particles over approximately
3 million iterations.

A distributed, local, asynchronous algorithm for compression . A central feature of

the amoebot model is that individual particles are able to distribute computation and ex-

ecute local algorithms asynchronously. TransformingMCcompress into a distributed, local,

asynchronous algorithm, Acompress, for compression requires two major changes, namely,

introducing asynchronous particle activations, and decoupling particle extension and con-

traction during a move into separate activations. The latter being necessary because the

amoebot model only permits one move per activation.

Asynchronous activation of particles, by itself, does not suggest uniform probability

of activation across all particles; a property that is useful in the analysis of MCcompress,

explicitly allowing us to compute its stationary distribution. To overcome this, each par-

ticle is given its own Poisson clock with mean 1. After having completed an activation, a

particle will next activate after a time-delay, t, drawn with probability e−t, i.e., the Poisson

distribution with mean 1. This guarantees that, at any given time, activation probabili-

ties are drawn from the same exponential distribution, and all updates can be performed

locally. In addition, each particle also stores a local flag variable that stores the exten-

sion/contraction status of its neighbourhood.

By enforcing stronger conditions on particle movement, the asynchronous algorithm

Acompress is shown to correctly emulate MCcompress. All analysis in the next section is

restricted to the Markov chain algorithm MCcompress, and the extension to Algorithm

Acompress follows. The main theorem of α-compression is now given.
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Algorithm 2 (Cannon et al. [5]) A distributed, local, asynchronous compression algorithm
for particle P .

Given: the compression parameter λ.

When P is contracted:
1: Particle P , at location ` of G∆, chooses a location `′ uniformly at random from all its

six neighbouring locations.
2: if (i) `′ is unoccupied and (ii) no other particles in P ’s neighbourhood are extended

then
3: P extends to occupy ` and `′.
4: if the neigbourhood U does not have any extended particles then
5: P sets its flag to true.
6: else
7: P unset its flag to false.

When P is extended:
8: if (i) `′ is unoccupied, (ii) Property 1 or Property 2 hold, (iii) a move from ` to `′ does

not create a hole, and (iv) flag is set then
9: P generates a random number q ∈ (0,1).

10: Let ε be the edges of a configuration incident on P at position `, and similarly ε′

the edges incident on P if it were at `′.
11: if q < λε

′−ε then
12: P contracts to `′.
13: else
14: P contracts back to `.

Theorem 3.1.1 (Cannon et al. [5]) For any λ > 2 +
√

2, and for any constant

α > log2+
√

2λ/(log2+
√

2λ−1) there exists and n∗ ≥ 0 and ζ < 1 such that for all n ≥ n∗, a random

sample σ drawn according to the stationary distribution π ofMCcompress satisfies

Pσ∼π [p(σ ) ≥ α · pmin] < ζ
√
n .

Proof sketch.

The first step is to show that the Markov chain is reversible. This can be proved by first

observing that since all state transitions correspond to a single particle move, a move is

reversed when the particle moves back to its initial position. Now, since particles only

move to adjacent locations and both Property 1 and Property 2 are symmetric for adjacent

locations, with positive probability a move can be reversed.

Cannon et al. [5] also show that any configuration can be turned into a straight-line
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configuration in a sequence of valid steps. Then, by reversibility, the straight-line config-

uration can be turned into any other hole free configuration in Ω∗. Clearly, MCcompress

is irreducible. Further, by design, there is positive probability that an activated particle

does not move – also known as self-loop transition – and so MCcompress is also aperiodic.

Therefore, it is ergodic on Ω∗. Now, since the Markov chain is ergodic and finite, it must

be unique.

Next, it must be shown that the Gibbs distribution according to w(σ ) is indeed the

unique stationary distribution of the Markov chain MCcompress. This can be proved by

verifying the detailed balance conditions and individually considering cases where, in one

step of the Markov chain, the number of edges either decreases or strictly increases.

The remaining part of the proof hinges on establishing a sufficiently tight upper bound

on
∑
σ πσ , the probability that the Markov chain is in some configuration σ whose perime-

ter is at least α ·pmin at stationarity. This requires analysing the geometry of the triangular

lattice and thus appropriately bounding the number of such configurations.

A short note on mixing time ofMCcompress

The analysis of mixing time ofMCcompress uses much of the same machinery as the Ising

model given their similarities. In fact, for the Ising model with local update dymanics and

fixed-boundary coundition, the best known upper bound is quasipolynomial [24]. Simi-

lar challenges in proving tighter upper bounds seem to appear for the Markov chain for

compression [5]. While rigorous bounds for convergence are not known, Cannon et al.

[5] have speculated that compression may happen well before the Markov chain has fully

mixed. With that, Cannon et al. [5] conjecture that α-compression occurs between Ω(n3)

and O(n4) rounds ofMCcompress, and equivalently between Ω(n2) and O(n3) asynchronous

rounds of Acompress.
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3.2 Phototaxing

The probability of movement in Algorithm MCcompress is uniform across all legal direc-

tions for all particles. By disturbing this symmetry, one might expect to induce displace-

ment of the system in a desired direction. Savoie et al. [29] demonstrate that this is indeed

the case.

(a) (b)

1/2

1/2

1/2

1/2

1/2 1/2

1/81/8

h1(a) = 0 h1(b) = 3/32

Figure 3.2: Two possible configurations, unique up to rotation and translation, in a system
of size two. The red line marks the source of the signal and the arrows indicate direction.
The probability of movement, obtained according to Algorithm 3, in the marked directions
(bold black lines) are indicated for each particle assuming that it activates next.

In the phototaxing set-up, all edges of the lattice graph G∆ are assumed to be of unit

length; and a fixed, continuous line of point sources on the vertices of G∆ broadcasts rays

along the lattice line, in a fixed vertical direction toward a connected particle system. A

particle is unoccluded from light if it is the first particle to receive the ray on its vertical

lattice line. A particle that is not unoccluded is occluded from light by another particle.

Particles are sensitive to the signal and can locally determine whether they are in an oc-

cluded or unoccluded state upon activation. Further, the y co-ordinate of the center of

mass of a particle system starting in some initial configuration, σ0, is referred to as its

height, y0, with respect to the fixed jagged line of point sources itself at height 0 or −1/2. It

is important to note that all height related calculations are done with respect to this fixed
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reference line.

y0 =
3+5/2

2
=

11

4

3 5/2

fixed reference line

location ℓ

location ℓ′

Case I:

P1

P2

P1moves to ℓ

Case II:

y1 =
3+2

2
=

5

2

3

2

P2

P1

P2

P1

y1 =
3+7/2

2
=

13

4

3
7/2

w.p. 1/2 P1moves to ℓ′w.p. 1/2or

Figure 3.3: One step transition of particle P1 to ` or `′ and the corresponding heights of
the resulting system with respect to the fixed reference line.

Figure 3.3 illustrates the phototaxing setup for the two-particle case. An activating

P1, in some configuration at starting height y0, moves to one of the two locations ` and `′

resulting in the height of the system respectively increasing and decreasing to y1.

With this background, the phototaxing algorithm is quite simply the execution of the

subroutine described in Algorithm 3 by each activated particle. For a system of pro-

grammable particles, phototaxing is said to provably occur if after a finite number of ac-

tivations, the height of the particle system has strictly increased in expectation. This is

a slight simplification of termi nology by the original authors as phototaxing only occurs

Algorithm 3 (Savoie et al. [29]) Phototaxing subroutine of each particle P .
1: if P is unoccluded then
2: Execute AlgorithmMCcompress
3: else
4: Execute AlgorithmMCcompress with probability 1/4.

in expectation and from this point on we state is as such. For small systems, we have the

following theorem due to Savoie et al.

Theorem 3.2.1 (Savoie et al. [29]) For systems of two and three particles, phototaxing occurs

in expectation.

In figures 3.2 and 3.4 we see the set of possible states unique up to translation and

reflection for two- and three-particle systems respectively, along with the probabilities
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1/(2λ)

1/(2λ)

1/(2λ)

1/(2λ)

1/(8λ)
1/(8λ)

1/2

1/21/2

1/2

1/2

1/2

1/21/2

1/8 1/8

1/2

1/2 1/2

1/21/2

1/21/2

1/81/2

1/2

1/2

1/2

1/2

1/2

1/21/2

1/81/8

h1(a) = 0 h1(b) = 0 h1(c) = 1/24 h1(d) = 0 h1(e) = 1/48 h1(f) = 0 h1(g) = 1/24

(a) (b) (c) (d) (e) (f) (g)

Figure 3.4: Seven possible configurations in a system of size three and the corresponding
one-step expected change in height values.

of individual particle movement that are obtained according to Algorithm 3. It should be

noted that the quantity λ in the transition probabilities is the same compression parameter

as in the previous section. We now show how to express the expected change in height

algebraically.

For anyω,ν ∈Ω, let Pr(ω→ ν) be the probability of reaching configuration ν fromω in

one step. Also, starting in some configuration σ0 at height y0, let σ1,σ2, . . . be the sequence

of state transitions for σ0,σ1, . . . in the state space, and let y1, y2, . . . be the corresponding

height according to each transition. For t ∈N, define ht : Ω→ Q
+ as the t-step expected

change in height for a given starting configuration. Accordingly, the one-step expected

change in height is

h1(σ0) ≡ E[∆1y | σ0] =
∑
σ1∈Ω

(y1 − y0)Pr(σ0→ σ1) (3.1)

where ∆1y represents the change in the height going from σ0 to any σ1 in one step. In

other words, h1(σ0) is the expected change in height in one state transition, starting in a

configuration σ0. Likewise, in two steps
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h2(σ0) ≡ E[∆2y | σ0] = E[y2 − y0 | σ0] = E[y2 − y1 + y1 − y0 | σ0]

=
∑
σ1

E[(y2 − y1) + (y1 − y0) | σ0,σ1]Pr(σ0→ σ1)

=
∑
σ1

(E[(y2 − y1) | σ0,σ1] +E[(y1 − y0) | σ0,σ1])Pr(σ0→ σ1)

=
∑
σ1

(E[∆1y | σ1] + (y1 − y0))Pr(σ0→ σ1)

=
∑
σ1

h1(σ1)Pr(σ0→ σ1) +
∑
σ1

(y1 − y0)Pr(σ0→ σ1)

=
∑
σ1

h1(σ1)Pr(σ0→ σ1) + h1(σ0)

For the purpose of illustration, we also note the expression in three steps.

h3(σ0) ≡ E[∆3y | σ0] =
∑
σ1

∑
σ2

h1(σ2)Pr(σ1→ σ2) + h1(σ1)

︸                                    ︷︷                                    ︸
h2(σ1)

Pr(σ0→ σ1) + h1(σ0)

That is, in the general case of t ≥ 2 state transitions starting in σ0 can be written as the

following recurrence

ht(σ0) ≡ E[∆ny | σ0] =
∑
σ1

ht−1(σ1)Pr(σ0→ σ1) + h1(σ0) (3.2)

The proof of Theorem 3.2.1 involves separately calculating the expected change in

height in an iterative manner until, for some positive integer N , hN (·) > 0 for every in-

dividual configuration. Note that this is only possible in the case of two and three par-

ticles where the expected change in height in one step is either positive or zero for all

configurations as seen in figures 3.2 and 3.4, and is not generally true for systems of larger

sizes. It should also be mentioned that the Markov chain for Algorithm 3 is exactly the

Markov chain for compression and the same results concerning convergence and mixing

times apply here as well.
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Chapter 4

Phototaxing Verification

Experimental evidence suggests the phototaxing occurs in systems of arbitrary sizes [29].

With the goal of finding a general proof for phototaxing, we study the amoebot system

of four particles. In order to do that, we first generalise the proof technique of Savoie et

al. [29] and then give an algorithm for verifying that phototaxing occurs in expectation.

Using this algorithm, we extend Theorem 3.2.1 to systems of four particles.

4.1 The algorithm for verification

Let P ∈ [0,1]|Ω|×|Ω| denote the transition matrix with entries pij for i, j ∈ {1,2, . . . , |Ω|} such

that for all ωi ,ωj ∈ Ω, pij = Pr(ωi → ωj ), and Y ∈ Q|Ω|×|Ω| be the matrix with entries δij

defined as

δij =


y(ωj ) − y(ωi ) if Pr(ωi →ωj ) > 0 ∀ωi ,ωj ∈Ω

0 otherwise

where y(ωj ) is the height of configuration ωi with respect to the reference line. It is eas-

ily verifiable that the diagonal elements of the matrix resulting from the product P ·YT are

h1(ω0),h1(ω1), . . . ,h1(ω|Ω|) respectively. Defining the vector of length |Ω| from these diago-

nals as h1 = diag(P ·YT) and by comparing with equation (3.2), we arrive at the following

recurrence

h2 = P ·h1 + h1 = (P + I) ·h1

h3 = P ·h2 + h1 = (P2 + P + I) ·h1



24

and more generally,

ht = P ·ht−1 + h1 = (Pt−1 + . . .+ P + I) ·h1 =
t−1∑
k=0

Pk ·h1 (4.1)

Finding the expected change in height in t ≥ 1 steps for a general system of parti-

cles starting in any configuration is then a simple matter of iteratively calculating matrix-

vector products. As we commented in Section 3.2, for the two- and three-particle case,

having that for some N ∈N the vector hN contains all positive values – a relation that we

denote by hN � 0 – suffices. This is because P and its positive integer powers are row-

stochastic matrices so that once hN = P ·hN−1 + h1 � 0, hm � 0 for all m ≥N .

However, and as we previously noted, in the general case, merely having that some

vector hN contains all positive values does not guarantee that the same will hold for hm

for all m > N . Rather, we need to verify that ht(σ0) goes to infinity in the limit t→∞ for

all starting configurations σ0 ∈Ω. This brings us to our main lemma.

Lemma 4.1.1 Let π be stationary distribution of the Markov chain corresponding to Algorithm

3. There exists an N ∈N such that hm+1−hm � 0 for all integersm ≥N if and only if π ·h1 � 0.

Proof.

To prove the forward direction assume that such an N exists. Expanding the given in-

equality according to equation (4.1),

hm+1 −hm =
(
Pm + Pm−1 + . . .+ I

)
·h1 −

(
Pm−1 + Pm−2 + . . .+ I

)
·h1 = Pm ·h1 � 0

Now recall that P is a (positive) row-stochastic matrix. So, left multiplying the above

equation with powers of P, we must also have Pm+1 ·h1 � 0, Pm+2 ·h1 � 0, . . . and so in the

limit m→∞ we get lim
m→∞

Pm ·h1 = π ·h1 � 0.

For the other direction, suppose that π · h1 � 0. Then, using equation (4.1) and the

definition of the stationary distribution we have
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lim
m→∞

(hm+1 −hm) = π ·h1 � 0

So there exists Ni ∈ N such that for all m ≥ Ni , for all configurations ωi ∈ Ω, (i =

1,2, . . . , |Ω|) and for every ε > 0, the following is true

∣∣∣hm+1(ωi)− hm(ωi)−πωih1(ωi)
∣∣∣ < ε

or equivalently,

πωih1(ωi)− ε < hm+1(ωi)− hm(ωi) < πωih1(ωi) + ε

Since by assumption, πωih1(ωi) > 0, we choose ε =
πωi h1(ωi )

2 > 0. By going further

enough out in the sequence, we must still have a natural number N ′i with m ≥ N ′i satis-

fying,

hm+1(ωi)− hm(ωi) > πωih1(ωi)− ε = πωih1(ωi)−
πωih1(ωi)

2
> 0

Re-writing in vector form, for all m ≥N we have hm+1 −hm � 0 for N = maxiN ′i .

�

Given the conditions of Lemma 4.1.1, we obtain the following corollary

Corollary 4.1.1 If π ·h1 � 0, then starting in any configurations σ0 ∈Ω, lim
t→∞

ht(σ0).

Proof.

From equation (4.1), ht =
∑t−1
k=0 Pk ·h1. So, in the limit t→∞,

lim
t→∞

ht =
∞∑
k=0

Pk ·h1

Now suppose that stationarity is reached at some step, T <∞
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lim
t→∞

ht =
∞∑
k=T

π ·h1 +
T−1∑
k=0

Pk ·h1 (4.2)

According to Lemma 4.1.1, π ·h1 � 0. So the first sum in equation (4.2) goes to (a vector

with all values) infinity. Therefore, lim
t→∞

ht(σ0) =∞ for all σ0 ∈Ω.

�

Figure 4.1: Phototaxing simulation in a system of four amoebots.

This leads us to a simple algorithm for verifying phototaxing in arbitrarily large sys-

tems. Using Algorithm 4, obtain an estimate P̃ for the staionary distribution π and verify

whether P̃ ·h1 = P̃ ·diag(P ·YT) � 0. If the answer is yes, then from Corollary 4.1.1 we know

that phototaxing occurs in expectation; if the answer is no, then we would have disproved

the conjecture of [29] regarding expected phototaxing in the general case.

Algorithm 4 Approximating the stationary distribution π
Given: P as defined in Section 4.1

1: P′← P
2: P̃← P
3: ε← 10−4 . error tolerance
4: while

{
|p̃ij − p′ij | ≥ ε : p̃ij ∈ P̃,p′ij ∈ P′

}
do

5: P′← P̃
6: P̃← P̃ ·P
7: return P̃
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4.2 Expected phototaxing for the four particle system

a1 a2 a3 a4 a5 a6

b1 b2 c1 c2 c3

d1 d2 e1 e2 f1 f2 f3

g1 g2 g3 g4 g5 g6

Figure 4.2: All unique states in a four-particle system and the valid moves for each config-
uration. Colour of the particles indicate the class to which the configuration belongs.

Following the steps described in the previous section, we are able to verify expected pho-

totaxing for two- and three-particle systems. Figure 4.2 illustrates all the unique states

for the four-particle system. We divide the configurations into seven equivalence classes

that are indicated by the colour of the particles in the figure and also by the alphabet of

their labels. All configurations in the same equivalence class are obtained by rotation with

respect to G∆. It should be noted that these configurations are unique upto rotation and

translation, and in fact, any two configurations in the same equivalence class and with

the same probabilities of transition (with respect to the direction of external signal) are

mutually indistinguishable. In Figure 4.3, we see two configurations from class c that are
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indistinguishable with respect to the external signal.

c2 c2
′

Figure 4.3: c2 and c′2 are indistinguishable with respect to the signal.

As we demonstrate in Figure 4.4, the height of the system becomes positive in a finite

number of transitions for λ = 4,5,6 in two-, three- and four-particle systems. Phototaxing

is also experimentally observed (see figure 4.1) for the four-particle case. As a result, we

have the following theorem:

Theorem 4.2.1 For systems up to size four, phototaxing occurs in expectation.

Further, Figure 4.6 gives all the possible transitions from fixed states, along with corre-

sponding transition probabilities and h1(·) values. The computation of these values can be

done manually by referring to the figure; an example is also provided in Subsection 4.2.1.

The proof follows from correctness of our verification algorithm that allows us to check

that P̃ ·h1 � 0 for the four-particle case for all λ ≥ 4. We note that the phototaxing verifi-

cation algorithm requires pre-calculating the transition matrix P and the change in height

Y. Given that the number of configurations grows exponentially with the size of the sys-

tem [31], this turns out to be a non-trivial requirement and prevents the algorithm from

scaling. Any formal proof of phototaxing in the general case is therefore unlikely to be

obtained directly from this technique. Instead, it offers a concise definition of phototaxing

in terms of the stationary distribution of its corresponding Markov chain.
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Figure 4.4: The t-step expected change in height values plotted for all possible configura-
tions in the four-particle case. Configurations corresponding to the highest (d1) and lowest
(a6) overall values are also shown.
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4.2.1 Calculating the function h1

The function h1 : Ω→ Q gives the one-step change in height for a system configuration

of given size. We briefly explain how to calculate this value for a general system using

equation (3.1) and Figure 4.6. For any given star graph, multiply the probability corre-

sponding to the colour on an edge with the label on the edge representing the change in

height for that edge/transition. Repeat this for every edge, including double edges. The

resulting sum is the value
∑
σ1∈Ω(y1 − y0)Pr(σ0 → σ1) = E[∆1y | σ0]. An example is given

for configuration b2 in Figure 4.5.
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Figure 4.5: Calculation of h1(b2) starting from the top-most edge and proceeding clock-
wise.
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Figure 4.6: All possible state transitions, in the direction of the arrow, with respect to
the configurations shown in Figure 4.2. colours indicate the probability of transition (see
legend) and labels give the resulting change in height due to that transition. Double arrows
to a configuration indicate that there are two ways to reach it. y0 gives the center-of-height
of the system and h1(·) its expected change in height in one step.
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Chapter 5

Stochastic Maze Solving

The nearly-stateless nature of stochastic algorithms for the amoebot model makes it a

highly desirable approach for solving a variety of problems of movement and configura-

tion within the model. This is a useful property to have for maze-solving where determin-

istic algorithms might require careful definitions for system behaviour based on the obsta-

cles encountered by the particles. In this chapter we describe the problem of maze-solving

and propose a Markov chain based algorithm for maze-solving under the geometric amoe-

bot model. Our algorithm exploits the results from phototaxing concerning asymmetric

activation of particles and introduces adaptive variation in the compression parameter to

control the system’s behaviour as it drifts through the maze.

Maze solving. In automated maze-solving, we are given a maze or a network of paths,

with one or more paths leading to a (typically) unique exit. While there are multiple ways

of stating the problem, we say that a maze is solved when an agent, starting at any location

in the maze, is able to find a path to the exit. Within the context of the amoebot model,

we consider mazes to be made up of a collection of vertices forming an open-polygon on

the triangular lattice, with the opening forming the exit. We call such vertices, walls of the

maze. It must also be ensured that a particle does not expand onto a wall.

5.1 An Algorithm for Maze Solving

Our first step will be to extend the ability of individual particles to send a ray (or signal)

up to a fixed distance, d along the lattice lines. Rays from a particle are reflected back by

the walls, allowing the particle to calculate its distance from that wall. Since the particles
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themselves do not reflect the rays but only generate them, they are virtually indistinguish-

able and the anonymity property is not violated. Further, the restriction on the distance

d allows us to bound the memory required by individual particles – any signal that is

not reflected within distance d simply vanishes – even though the triangular lattice may

theoretically be unbounded.

At a high level, the algorithm behaves in the following manner. Each particle carries

an internal temperature τ . Rays reflected by walls at a (edge) distance k ≤ d from the emit-

ting particle, upon returning, transfer an additional τ0γ
−k amount of heat to the particle

for parameters τ0 (unbounded) and γ ∈ (0,1]. On activation, each particle in the config-

uration, σ , will choose a direction, uniformly at random, to move. The particle will then

send a ray up to at most a distance d in the chosen direction and adjust its probability of

movement in proportion to the weight function,

w(σ,k) =
(
e1/T (k)

)ε(σ )

where T (k) = τ + τ0γ
−k is the temperature function, and ε(σ ) gives the number of edges in

the current configuration σ . We set the parameters such that when an activating particle

is closer to the walls, lower values for the temperature function are achieved and the sys-

tem performs net compression, and conversely when it is farther away, higher temperature

results in net expansion of the system. In this manner we replace the compression param-

eter λ with the exponential function e1/T (k) that depends on the particle’s distance from

the wall. Figure 5.1 plots the evolution of the exponential function for different values of

k.

Algorithm 5 Maze-solving subroutine of each particle P .
Given: d, τ0, τ and γ

1: P picks a direction uniformly at random.
2: It then sends a ray up to a maximum distance d in the chosen direction.
3: if ray returns to P after travelling a total distance of 2k then

4: P sets λ← exp
(

1
τ+τ0γ−k

)
.

5: else . ray does not return to P
6: P sets λ← 1.
7: It executes steps 2–8 of AlgorithmMCcompress with parameter value λ.
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Figure 5.1: The exponential function e1/T (k) plotted for a range of values of γ , τ0 and τ
while keeping the other two values constant.
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As in the phototaxing algorithm [29], if we were to set the particle activation rates

(which are currently uniform) with respect to the distance from the walls instead of the

weights, maze-solving algorithm for each particle would simply be AlgorithmMCcompress

with the new activation rates.

5.2 Pymoebots: demonstrable compression and phototaxing

To experimentally test our algorithm, we developed a virtual simulation environment. The

Pymoebots simulator exposes a JavaScript based graphical-interface (figure 5.2) hosted on

a local server running a Python back-end. The minimalistic interface provides some basic

controls for setting up custom experiments by placing model objects (walls and amoe-

bots) on the triangular lattice, loading and saving experiments and controlling playback

of loaded experiments.

Interactive frame object for G∆

Edit panel Playback control panel

Open an existing configuration file

Place grid objects (click to cycle)

Save a configuration file

Back Play Pause Forward

Set playback speed

Figure 5.2: The Pymoebots simulator’s graphical user interface.
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While the software project continues to be under development, the Pymoebots simu-

lator is currently capable of running, in addition to our maze-solving algorithm, the algo-

rithms for compression [5] and phototaxing [29] as we have shown in figures 3.1 and 4.1.

Although, the software-package is intended to provide functional modules for stochastic

algorithms under the geometric amoebot model, it is written with a more general SOPS

framework in mind. With an eye towards creating a self-contained software-package for

SOPS algorithms, we present a preliminary version of our project: pymoebots-base.

As an alternative, Daymude et al. [7] have open-sourced a deterministic algorithms

simulator with the ability to add custom experimental modules including those for stochas-

tic algorithms. While Pymoebots was developed independently of there simulator, we cite

them here for completeness.

5.3 Experiments

We now provide evidence through simulations that systems of amoebots demonstrate

maze-solving in three classes of mazes and certain combinations thereof. We also show

specific instances where Algorithm 5 does not lead to a path to the exit. Analysing these

instances helps us understand the shortcomings of the proposed algorithm and suggests

an alternative direction to consider for the problem of maze-solving within the amoebot

model.

We look at three basic classes of mazes that are illustrated in Figure 5.3. Namely, these

are forks, bends and cavities. The bottleneck width, or simply width, of a maze is the width

of the narrowest part of the maze. The length of the shortest path over G∆ starting from

the particle system’s center-of-height to the exit gives the system’s exit distance. The size

of a system, the bottleneck width of a maze and the exit distance are parameters that

characterise each experiment. Having a uniform set of experimental parameters allows us

to talk about different types mazes in a consistent way.

https://github.com/aayux/pymoebots-base
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starting y0

exit

width

width

(b) (d) (f)

width

width

width

width

(a) (c) (e)

Figure 5.3: Examples of the three classes of mazes: (a and b) forks; (c and d) bends; and (d
and e) cavities. The bold black lines indicate the shortest path to the exit for each maze.

5.3.1 Results

We observe in Figure 5.4 that each of the three types of mazes is solved by a system of

amoebots. The top-most simulation comprises of a system of 15 particles in a fork-shaped

maze of width 7, exit distance 50. The simulation in the middle is performed in a bend-

shaped maze of width 6, exit distance 25 by a system of 7 particles, and the bottom-most

simulation has the same parameters for a cavity.

We also performed experiments on various combinations of the three classes of mazes.

As seen in Figure 5.5, the system eventually solves the two combinations of mazes as well.

As we previously stated, Algorithm 5 does not always find a path to the exit. Now

consider the two setups in Figure 5.6. In both cases the system remains trapped in the

circled regions even after running each simulation for 3 million iterations. Compare the

simulations in figures 5.4 (b) and 5.6 (b): while the former was successfully solved, a

system of 15 particles could not solve the latter of the two bend-shaped mazes of width

7, exit distance 50 over repeated simulations. The flaw in our maze-solving algorithm is

that it relies on the maze to guide the system to the exit. We speculate that, because a

system in the circled region is at the same distance from the opposite walls of the maze,
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(a) (b) (c)

Figure 5.4: Each of the three types of mazes solved by a particle system. (a) A fork solved
by a system of 15 amoebots in approximately 100,000 iterations.(b) a bend solved by a
system of 7 amoebots in approximately 30,000 iterations; and (c) a cavity solved by a
system of 7 amoebots in 60,000 iterations.

(a) (b)

Figure 5.5: Examples of combinations of mazes solved by particle systems. We see (a)
a combination of a bend and cavity solved by a system of 7 amoebots in approximately
20,000 iterations; (b) a combination of bends solved by a system of 7 amoebots in approx-
imately 45,000 iterations.

the random-walk is effectively trapped and the effect gets more pronounced as the exit

distance is increased.

(a) (b)

Figure 5.6: Instances where the maze-solving algorithm fails.
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Recall the example of navigation by ants from Section 1.2 – to navigate unfamiliar terri-

tories, ants create a network of chemical trails that lead to the destination through gradual

reinforcement of the optimal path [30]. In contrast, our algorithm for maze-solving is

memory-less in that a system has no way of knowing if it has been at a certain location

before. This motivates us to consider a more general, ant-inspired algorithm for maze-

solving wherein the particles are able to leave trails on the triangular lattice to help guide

other particles to a path out of the maze. We continue to develop an optimal approach to

stochastic maze-solving in the geometric amoebot model and list this as a possible direc-

tion in our future work.
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Chapter 6

Conclusion

In this work we gave an algorithm for verifying that phototaxing occurs in expectation. We

then used this algorithm to extend the previous result of expected phototaxing from par-

ticle systems of size three to those of size four. The algorithm for phototaxing verification

gives us a way to think about the phenomenon of phototaxing in terms of the stationary

distribution of the associated Markov chain. It would be interesting to see if this intuition

can be utilised to arrive at a general proof or a counter-example for expected phototaxing

in systems of all sizes.

We also defined the problem of maze-solving under the geometric amoebot model and

proposed an algorithm that solves certain types of mazes. Our algorithm for maze-solving

works by varying the compression parameter based on the distance to the walls, as a result

the individual particles oscillate between compression and expansion to navigate the maze

via a random-walk. Using a simulator that we developed, we then experimentally demon-

strated maze-solving ability of amoebot systems for various special types of mazes and

combinations thereof. Through experimentation, we also identified instances of mazes

where the amoebot system does not solve the maze, often getting trapped the same re-

gion. Noting the shortcomings of our maze-solving algorithm, an ant-inspired algorithm

seems to be a plausible approach to collective maze-solving in the amoebot model. Unlike

amoebots in the compression algorithm (and its variants), ants are not tethered to each

other. The recent work of Li et al. [23] presents a new algorithm for compression that

does not require the connectivity constraint. This opens up several exciting possibilities

for ant-inspired algorithms in the amoebot model.

Most new work in stochastic algorithms for the amoebot model has evolved from the
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algorithms for compression and expansion. It would therefore be in our interest to iden-

tify a more principled approach to adjust the Markov chain parameters, specifically the

objective function, such that the system oscillates between compression and expansion,

allowing for phototaxing and maze-solving to be viewed as emergent behaviour.

The geometric amoebot model provides a rigorous theoretical framework for the study

of self-organizing particle systems. Considering that this is a relatively new model, there

are several unexplored problems to be solved in both theoretical as well as applied do-

mains.
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