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Introduction

The Geometric Amoebot Model
[Dolev et al., 2013, Derakhshandeh et al., 2014]

I An abstract model of self-organizing particle systems.

I It consists of individual computational elements (or particles) known as
amoebots represented as points on an infinite triangular lattice G∆.

I There is no shared co-ordinate system or a global sense of orientation
between particles.
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(a) An amoebot may exist in a contracted state, like P, or in an expanded state
wherein the particle occupies two adjacent locations in the lattice like P′.

(b) Particles move via a series of alternating expansion and contraction steps
along the edges.



The Geometric Amoebot Model (contd.)

I Each amoebot must keep track of their port labels that uniquely identify the
edges surrounding it

I The particles are anonymous in that they lack any global identifier, however
they can locally identify their neigbors by the port labels corresponding to the
connecting edge.

I Each particle has a constant amount of local memory and may perform
bounded amount of local computation.

I Particles can also communicate with their immediate neighbors on the
account of having read and write access to their local memory stores.



Deterministic Algorithms

Deterministic algorithms under the geometric amoebot model comprise a class of
carefully designed distributed, local, asynchronous protocols executed by individual
amoebots to self-organize into a target configuration.



Example: Shape formation

Figure: Much of the early motivation behind the geometric amoebot model can be found
in applications involving shape and pattern formation.1

1Figure source: [Derakhshandeh et al., 2015]



Example: Convex hull formation

Figure: Figure demonstrates the formation of a convex hull.2

2Figure source: [Daymude et al., 2020]



Stochastic Algorithms

In contrast to deterministic algorithms, stochastic algorithms under the geometric
amoebot model rely on individual particles making probabilistic decisions in order
to reach some goal state with respect to a pre-determined objective.



General Design Scheme

Idea
Define a Markov chain over the particle-system configuration and sample with
probabilities favouring the desired configuration(s).



Ising model

[Ising, 1925] Consider a regular lattice-graph ([n] , E) where:

I [n] = {0, 1, . . . ,n− 1} are the vertices that we call sites; and

I E is the collection of pairs of sites (i, j) ∈ [n] with non-zero interaction
energy, Vij.

A configuration, σ = {σi}i∈[n] is, then, an assignment of positive/up (σi = +1)

and negative/down (σi = −1) spins to all the sites on the graph. Further, the
energy of a configuration under an external field B is given by its Hamiltonian

H(σ) = −
∑

{i,j}∈E

Vijσiσj − B
∑
k∈[n]

σk



Ising model: Partition Function

The probability that a system is in a state (or configuration) σ at equilibrium is
exp(−βH(σ))/Z where β > 0 is inversely proportional to the temperature and

Z = Z(Vij,B,β) =
∑

σ∈{−1,+1}n

exp(−βH(σ))

is a normalizing factor known as the partition function.
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Compression in the Amoebot model

Problem definition

Let p(σ) denote the perimeter of a system configuration σ, then p(σ) is the sum
of the lengths of all boundaries (including those surrounding holes) of σ.

pmin := min
{σ∈Ω:|σ|=n}

p(σ)

is the minimum possible perimeter among all systems of size n. A simply
connected configuration σ is said to be α-compressed if pmin < α · p(σ) for any
α > 1.



Markov chain for Compression

Consider a Markov chain M, with stationary distribution π over the state space Ω.

For any ω,ν ∈ Ω, state-transitions of the form ω→ ν correspond to a single

particle move that occurs with probability pω,ν = min
{

1, πν
πω

}
.

These transition probabilities can be calculated locally by each activating particle
by counting only neighbouring edges!



Stochastic Algorithm for Compression

Let ε(σ) be total number of edges in a configuration σ ∈ Ω

Then the Hamiltonian, H(σ) = −ε(σ); accordingly each configuration is sampled
in proportion to its weight w(σ) = e−H(σ)/τ = λε(σ).

The transition probability pω,ν is

min

{
1,
πν

πω

}
= min

{
1, λε(ν)−ε(ω)

}

Where ε(ν) − ε(ω) can be calculated locally by counting the change in the
number of edges around the moving particle.



Phototaxing in the Amoebot model

The setup

I Assume all edges of the lattice graph G∆ are of unit length.

I A fixed, continuous line of point sources on the vertices of G∆ broadcasts
rays along the vertical lattice line towards the system.

I The y co-ordinate of the center of mass of a particle system starting in some
initial configuration, σ0, is referred to as its height, y0, with respect to the
fixed jagged line of point sources itself.

I A particle may be occluded from the light. Particles are sensitive to the
signal and can locally determine whether they are in an occluded or
unoccluded state.



Algorithm for Phototaxing

Algorithm 1 [Savoie et al., 2018] Phototaxing subroutine of each particle P.

1: if P is unoccluded then
2: Perform compression.
3: else
4: Perform compression with probability 1/4.



Phototaxing in the Amoebot model
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Figure: An activating particle P1 , in some configuration at starting height y0 (with
respect to the fixed reference line), moves to one of the two locations ` or `′, resulting in
the height of the system respectively increasing or decreasing to y1.



Phototaxing in Expectation

Theorem [Savoie et al., 2018]

For systems of two and three particles, phototaxing occurs in expectation.

Proof sketch. Separately calculate the expected change in height in t-steps,
ht(·), for each configuration in an iterative manner until hN(σ0) > 0 for some
positive integer N and for every starting configuration σ0 ∈ Ω. Then observe that
in the case of two and three particles where the expected change in height in one
step is either positive or zero for all configurations.



Calculating the expected change in height
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Figure: The one step expected change in height calculated for a two particle case.
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Phototaxing Verification

Goal

I Generalise the proof technique of [Savoie et al., 2018]; and

I give an algorithm for verifying that phototaxing occurs in expectation.



Phototaxing Verification

For all valid configurations3 ωi ∈ Ω for i = 1, 2, . . . , |Ω|, the transition matrix is

P =


pω1,ω1

pω1,ω2
· · · pω1,ω|Ω|

pω2,ω1
pω2,ω2

· · · pω2,ω|Ω|

...
...

. . .
...

pω|Ω|,ω1
pω|Ω|,ω2

· · · pω|Ω|,ω|Ω|


where each pωi,ωj = Pr[ωi → ωj].

3The ordering is arbitrary but must be maintained once fixed.



Phototaxing Verification

Similarly define the one-step change in height matrix

Y =


0 δω1,ω2

· · · δω1,ω|Ω|

δω2,ω1
0 · · · δω2,ω|Ω|

...
...

. . .
...

δω|Ω|,ω1
δω|Ω|,ω2

· · · 0


where

δωi,ωj =

{
y(ωj) − y(ωi) if Pr[ωi → ωj] > 0 ∀ωi,ωj ∈ Ω
0 otherwise.



Phototaxing Verification

The vector of expected change in height in one step

h1 =


h1(ω1)
h1(ω2)

...
h1(ω|Ω|)


is then given by the vector made of diagonal elements of P ·YT .



Phototaxing Verification

Lemma
Let π be stationary distribution of the Markov chain for phototaxing. There exists
an N ∈ N such that hm+1 − hm � 0 for all integers m > N if and only if
π · h1 � 0.



Phototaxing Verification

Lemma
Let π be stationary distribution of the Markov chain for phototaxing. There exists
an N ∈ N such that hm+1 − hm � 0 for all integers m > N if and only if
π · h1 � 0.

Corollary

If π · h1 � 0, then starting in any configurations σ0 ∈ Ω, lim
t→∞ht(σ0).



Algorithm for Phototaxing Verification

I Obtain a “reasonable” estimate P̃ for the staionary distribution π.

I Verify whether P̃ · h1 = P̃ · diag(P ·YT) � 0.

I If the answer is yes, then from the previous Corollary we know that
phototaxing must occur in expectation.

Caveat: the set of valid free configurations and their equivalence classes with
respect to the signal source must be known.



Phototaxing in the four-particle system

a1 a2 a3 a4 a5 a6

b1 b2 c1 c2 c3

d1 d2 e1 e2 f1 f2 f3

g1 g2 g3 g4 g5 g6



Phototaxing in the four-particle system



Demo: Phototaxing in the four-particle system
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Maze Solving Phenomenon

I To navigate unfamiliar topologies, ants create a network of fading chemical
trails that lead to the destination through gradual reinforcement of the
optimal path.

I Slime molds – often considered model organisms for studying biological
self-organization – are known to optimally solve mazes by spreading their
mass across the maze and then pruning any extensions that do not lead to an
exit.



Stochastic Maze Solving

I We consider mazes to be made up of a collection of vertices forming an
open-polygon on the triangular lattice. We call such vertices, walls of the
maze.

I A particle may not expand onto a wall.

I A maze is solved when an agent, starting at any location in the maze, is able
to find a path to the exit created by the open face of the polygon.



Three classes of mazes
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An Algorithm for Maze Solving

Idea
Perform a random-walk through the maze guided by the walls such that a system
far away from a wall expands (λ 6 1) and a system close to the wall compresses
(λ > 1).



An Algorithm for Maze Solving
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Figure: Signalling system for the maze solving algorithm. Particles P and P′ send a ray in
a randomly chosen direction and calculate their probability of movement according to
their distance from the wall).



An algorithm for maze-solving

Algorithm 2 Maze-solving subroutine of each particle P.

Given parameters d, τ0, τ and γ

1: P picks a direction uniformly at random.
2: It then sends a ray up to a maximum distance d in the chosen direction.
3: if ray returns to P after travelling a total distance of 2k then

4: P sets λ← exp
(

1
τ+τ0γ−k

)
.

5: else . ray does not return to P

6: P sets λ← 1.
7: P performs compression with parameter value λ.



Demo: Stochastic Maze Solving



Diagnosing Deficiencies in the Model

I The random-walk is effectively trapped in regions where all walls are roughly
at the same distance, and the effect gets more pronounced as the exit
distance is increased.

I By its very nature, the algorithm maze-solving is memory-less in that a
system has no way of knowing if it has been at a certain location before.
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Concluding remarks

Contributions:

I We propose a stochastic algorithm for collective maze-solving under the
geometric amoebot model of self-organizing particle systems; and

I give an algorithm to verify phototaxing in arbitrarily large systems given the
set of possible configurations is known.

Future direction:

Recently [Li et al., 2020] proposed another Markov chain based algorithm for
compression/expansion that does away with the connectivity constraints of the
original algorithm. Combining their algorithm with the ant-inspired approach is a
possible future direction of this work.



Open problems

The mixing-time of the Markov chain for the Ising model – and by extension
for the compression algorithm – is believed to be polynomial but a proof is
not known. Current best upper-bound is quasipolynomial
[Martinelli and Toninelli, 2010].

It is not known whether phototaxing occurs in a general system of n-particles.



Compression without connectivity
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