ASHKAN VAKIL

0 avakil@gmu.edu \sim

Ph.D. candidate

EXECUTIVE SUMMARY

Computer Engineer with experience in Hardware Security, and Physical Design flow of ASIC: Synthesis, PnR, STA, ECO. Interested in PnR, STA, Hardware Trojan detection, and low-power design opportunities.

EDUCATION

May 2021	Ph.D. Computer Engineering GPA so far: 4.00/4.00	George Mason University, Fairfax, VA, USA
December 2015	M.Sc. Electrical Engineering Overall GPA: 4.00/4.00	University of Bridgeport, Bridgeport, CT, USA
April 2013	B.S. Electrical Engineering Overall GPA: 14.63/20.00	University of Mazandaran, Mazandaran, Iran
SKILLS		

SVILLS

EDA Tools: Synopsys Design Compiler, Synopsys IC Compiler, Synopsys Primetime, Synopsis Milkyway, Synopsis StarRC, Synopsys HSPICE, Apache RedHawk, Xilinx Vivado, PSPICE, Cadence Genus, Cadence Innovus Major Python Libraries: Keras, Scikit-learn, Pandas, matplotlib Programming, Scripting and HDL: Python, Matlab, C/C++, Tcl, VHDL/Verilog

EXPERIENCE

2016 -	George Mason University, Fairfax, VA, USA.
Present	• Synthesis, Place and Route different IP cores from IWLS and ISCAS benchmarks and run ECO using Synopsys toolset
	• Developed a Neural Network model using Kares library to man the delay information of Static Timing
	• Developed a Neural Network model using Keras norary to map the delay information of Static Timing Analysis to delay of fabricated IC.
	• Developed a Neural Network model using Keras library to map the impact of aging on timing-paths in a semiconductor chip
	semiconductor cmp.
	• Developed IR-AIA, a dynamic scheme to model the voltage variation and jitter noise on the die
	• Developed a targeted via stack resizing to mitigate the IR drop on high IR spots in a design
	• Developed LASCA, a side-channel analysis scheme for hardware Trojan detection, without a Golden IC.
	• Implemented TETRIS, the game, on MSP430 microcontroller.
	• Teaching "Linear Electronics II Lab", "Digital Electronics Lab", "Signals and Systems II" and "Classical
	Systems and Control Theory" each for 1 semester, and "Electrical Circuit Analysis Lab" for 2 years.
2014 -	University of Bridgeport, Bridgeport, CT, USA.
2015	• Calculated the conductivity of spiral shaped CNT using the Boltzmann transport equation and Schrödinger
	time-independent equation to mathematically model an energy-harvesting -system using CNT based nantenna.
	• Teaching "Analog Electronics Lab" and "Modern Electronics" each for 1 year
AWARDS	& PUBLICATIONS
•	Service Recognition Award from the Great Lakes Symposium on VLSI (GLSVLSI) 2019
•	Awarded with Graduate Assistantship (GA) from the University of Bridgeport, for three tandem semesters.
•	A Vakil, F Behnia, A Mirzaeian, H Homayoun, N Karimi, A Sasan "LASCA: Learning Assisted Side Channel Delay Analysis for Hardware Trojan Detection" ISQED 2020
•	A Vakil, H Homayoun, A Sasan, "IR-ATA: IR Annotated Timing Analysis, A Flow for Closing the Loop Between PDN design, IR Analysis & Timing Closure" ASP-DAC 2019
•	A Vakil, A Alsharani, C Bach, JM Pallis, H Bajwa, "Fabrication and Mathematical Modeling of SWCNT
	Scaffold DNA Spiral Nantenna " Faculty Research Day, University of Bridgeport, Connecticut, March 27, 2015
•	A. Vakil and H. Bajwa, "Energy Harvesting Using Graphene Based Antenna for UV Spectrum", Systems,
	Applications and Technology Conference (LISAT), 2014 IEEE Long Island, USA, 2 May 2014
•	A. Vakil and H. Baiwa, "Analytical Model of Graphene Based Antenna for Energy Harvesting Applications"

Zone 1 Conference for American Society for Engineering Education, University of Bridgeport, Connecticut, April 3-5, 2014