L S N R

= o ©

ST U V]

NN NN NN N e

~

Linear Algebra I

1sq.m 1sq.py
T = readmatrix("lsq.csv"); 1| import numpy as np
2| import matplotlib.pyplot as plt
% Get the data out of the table. 3| from numpy.linalg import inv
X = T(:,1); 4
Y = T(:,2); 5/D = np.loadtxt("lsq.csv", delimiter=",
")
% Construct the linear approximation. ¢/X, Y =D[:,0], D[:,1]
P = [ones(size (X)) X1]; 7
p = (P’*P)\(P’*Y); s|# Linear approximation.
9|P = np.array([np.ones(len(D)), X1).T
function y = 1(x, p) olp = inv(P.T @ P) @ (P.T @ Y)
y = p(2)*x + p(1); 11
end 12|def 1(x, p):

13 return p[1l*x + pl[o0]
% Construct the quadratic 14

approximation. 15| # Quadratic approximation.
i|A = [ones(size(X)) X X."2]; 16|A = np.array ([
b = (A’*A)\(A’*Y); 17 np.ones(len(D)), X, X*x*2
18[1).T

function y = q(x, b)
y = b(3)*x.72 + b(2)*x + b(1);

b = inv(A.T @ A) @ (A.T @ Y)

end

-

def q(x, b):
return b[2]*x**2 + b[1]*x + b[O]

w N

% Find the normal matrix (A"T)A.
B = A.’*A;

Find the normal matrix.
B = A.T@A

scatter (X, Y);
hold on

-~

(] [\v] [\v) N [V [\v) N [V [\v)
IS

o]

plt.scatter (X, Y, facecolors="none",
edgecolors="tab:blue")

We construct a system of equations called the normal equations: given our matrix A, the expression
(AT A)~Y(ATy) computes the orthogonal projection from % onto the column span of Az. Equiva-
lently, we are minimizing ||Ab— y||> — this minimizer is the vector b of squared differences between
each entry of y and the closest point in Ax. We’re minimizing something quadratic, so it has a
unique solution given by

Ab =y,
ATAb= ATy,
b= (ATA)1(ATy).
We can construct A with n + 1 columns to get a degree-n polynomial fit. In this case, the data

above were generated by setting an objective function f(z) = 22 — 3z + 1 and constructing a noised
dataset

D= {(xi,f(svi) iN(O,1/4)) L2 = 2if20, i € {0, ... ,20}},

where N(0,1/4) is a normal distribution with standard deviation o = 1/4. The results look like this:

1.0 1

0.5

0.0 1

—0.51

—1.0

=15

7
0.00

T
0.25

T
0.50

T
0.75

T
1.00

T
1.25

T
1.50

T
1.75

