
Week 15

isomorphisms, trees, and algorithms
MATH 125-DL1



2

1.  isomorphisms

2.  graph isomorphisms

3.  trees and such

4.  applications!

here’s the plan:



3

1. isomorphisms



4

isomorphism

a reversible, structure-preserving map between 
two mathematical objects of the same kind.



5

A 
B 
C 
D

1 
2 
3 
4



5

A 
B 
C 
D

1 
2 
3 
4

an isomorphism of sets is called a bijection.

an isomorphism of a set into itself is called a permutation.



6

2. graph isomorphisms



7

graph isomorphism

a bijective, structure-preserving map between two graphs.



8

graph isomorphism

a bijective, adjacency-preserving map between two graphs.



11

K4
“the complete graph on 4 vertices”

1

2

3

4

A

B

C

D



12

Theorem. The following properties are preserved (or invariant) 
under isomorphism:

‣ number of vertices 

‣ number of edges 

‣ number and length of cycles 

‣ number of vertices of a 
particular degree 

‣ connectivity



13

3. trees and such



14

tree

a connected graph with no cycles.



15

a disconnected graph with no cycles.

forest



16

a graph where each connected component is a tree.

forest



17

simple path (in a graph G)

a sequence of non-repeating adjacent vertices in G.



18

tree!



19

leaf

internal or branchcut edge



20

Theorem. Any tree with n vertices has n-1 edges.



21

Theorem. A graph T is a tree if and only if any of these hold:
1. T  is connected and maximally acyclic.
2. T  has no cycles and is 1-connected.
3. T  is connected, has n vertices, and has n-1 edges.
4. there is exactly one path between any two vertices in T.



22

Theorem. A graph T is a tree if and only if any of these hold:
1. T  is connected and maximally acyclic. 
2. T  has no cycles and is 1-connected. 
3. T  is connected, has n vertices, and has n-1 edges. 
4. there is exactly one path between any two vertices in T.



23

Proof strategy. We know that T is a tree, which means it can’t have a cycle. 
We’ll use a proof by contradiction: if there are two di!erent paths from u to 
v, then T has to have a cycle, so T can’t be a tree.

Theorem (rephrased). If T is a tree, then the path between any vertex u and 
any vertex v is unique. 



24

1. Assume that T is a tree: as T is a tree, it has no cycles.

2. Suppose there are two paths, p and q, from u to v. 

3. Because p and q are not the same, they must di!er by at least one vertex. If 
p and q differ by at least one vertex, then T must have a cycle.

4. Suppose p and q start at u, are the same up to the vertex x, then have 
di!erent vertices, then are the same from the vertex y until terminating at v.

5. The set of vertices starting at x, following p from x to y, then following q 
from y back to x is a cycle!

6. As T contains the above cycle, T can’t be a tree, which contradicts our 
assumption. Thus, the path from u to v must be unique!

Proof (outline).



25

… …

…

…

u v

x

y

p1 pk

q1 qj

…

…

…

…



26

a tree which contains all vertices of G.

spanning tree (of a graph G)



28

1

2

3

4



31

a graph G paired with a function w, called a weighting function, which 
maps each edge e of G to a real number called the weight of e.

edge-weighted graph



32

a graph G where every edge is assigned a numerical value.

edge-weighted graph



33

a graph G paired with a function w, called a weighting function, which 
maps each vertex v of G to a real number called the weight of v.

vertex-weighted graph



34

a graph G where every vertex is assigned a numerical value.

vertex-weighted graph



35

the sum of all edge (or vertex) weights of G.

total weight (of a graph G)



36

a spanning tree of G with the smallest total 
weight of all spanning trees of G.

minimum spanning tree



37

1. Set F = (VF , EF) to be a forest with an empty edge set EF and vertex set VF 
containing all vertices of G.

2. Let S be the set of edges of G sorted by weight, smallest first.

3. While S is nonempty and F is not yet a spanning tree:

(i) retrieve the edge e with smallest weight from S.

(ii) if:

‣ e connects different subtrees of F, add it to EF.

‣ e does not connect di!erent subtrees of F, throw it away.

4. Return F.

Kruskal’s algorithm. Given an edge-weighted graph G,



39

1

2

3

4

3 6

4

5

5

7

VF = { 1, 2, 3, 4 } 
EF = { e12,  e13,  e14 }

S = { e12,  e13,  e14,  e23,  e24,  e34 }



51

1

2

3

4

3 6

4

5

5

7

VF = { 1, 2, 3, 4 } 
EF = { e12,  e13,  e14 }

S = { e12,  e13,  e14,  e23,  e24,  e34 }


