isomorphisms, trees, and algorithms MATH 125-DL1

here's the plan:

1. isomorphisms
2. graph isomorphisms
3. trees and such
4. applications!
5. isomorphisms

isomorphism

a reversible, structure-preserving map between two mathematical objects of the same kind.

an isomorphism of sets is called a bijection.
an isomorphism of a set into itself is called a permutation.

2. graph isomorphisms

graph isomorphism

a bijective, structure-preserving map between two graphs.

graph isomorphism

a bijective, adjacency-preserving map between two graphs.

K_{4}

"the complete graph on 4 vertices"

Theorem. The following properties are preserved (or invariant) under isomorphism:

- number of vertices
- number of edges
- number and length of cycles
- number of vertices of a particular degree
- connectivity

3. trees and such

tree

a connected graph with no cycles.

forest
 a disconnected graph with no cycles.

forest

a graph where each connected component is a tree.

simple path (in a graph G)

a sequence of non-repeating adjacent vertices in G.
tree!

Theorem. Any tree with n vertices has $n-1$ edges.

Theorem. A graph T is a tree if and only if any of these hold:

1. T is connected and maximally acyclic.
2. T has no cycles and is 1 -connected.
3. T is connected, has n vertices, and has $n-1$ edges.
4. there is exactly one path between any two vertices in T.

Theorem. A graph T is a tree if and only if any of these hold:

1. T is connected and maximally acyclic.
2. T has no cycles and is 1 -connected.
3. T is connected, has n vertices, and has $n-1$ edges.
4. there is exactly one path between any two vertices in T.

Theorem (rephrased). If T is a tree, then the path between any vertex u and any vertex v is unique.

Proof strategy. We know that T is a tree, which means it can't have a cycle. We'll use a proof by contradiction: if there are two different paths from u to v, then T has to have a cycle, so T can't be a tree.

Proof (outline).

1. Assume that T is a tree: as T is a tree, it has no cycles.
2. Suppose there are two paths, p and q, from u to v.
3. Because p and q are not the same, they must differ by at least one vertex. If p and q differ by at least one vertex, then T must have a cycle.
4. Suppose p and q start at u, are the same up to the vertex x, then have different vertices, then are the same from the vertex y until terminating at v.
5. The set of vertices starting at x, following p from x to y, then following q from y back to x is a cycle!
6. As T contains the above cycle, T can't be a tree, which contradicts our assumption. Thus, the path from u to v must be unique!

spanning tree (of a graph G)

a tree which contains all vertices of G.

edge-weighted graph

a graph G paired with a function w, called a weighting function, which maps each edge e of G to a real number called the weight of e.

edge-weighted graph

a graph G where every edge is assigned a numerical value.

vertex-weighted graph

a graph G paired with a function w, called a weighting function, which maps each vertex v of G to a real number called the weight of v.

vertex-weighted graph

a graph G where every vertex is assigned a numerical value.

total weight (of a graph G)

the sum of all edge (or vertex) weights of G.

minimum spanning tree

a spanning tree of G with the smallest total weight of all spanning trees of G.

Kruskal's algorithm. Given an edge-weighted graph G,

1. Set $F=\left(V_{F}, E_{F}\right)$ to be a forest with an empty edge set E_{F} and vertex set V_{F} containing all vertices of G.
2. Let S be the set of edges of G sorted by weight, smallest first.
3. While S is nonempty and F is not yet a spanning tree:
(i) retrieve the edge e with smallest weight from S.
(ii) if:

- e connects different subtrees of F, add it to E_{F}.
- e does not connect different subtrees of F, throw it away.

4. Return F.

$$
\begin{aligned}
& V_{F}=\{1,2,3,4\} \\
& E_{F}=\{ \\
& S=\left\{e_{12}, e_{13}, e_{14}, e_{23}, e_{24}, e_{34}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& V_{F}=\{1,2,3,4\} \\
& E_{F}=\left\{e_{12}, e_{13}, e_{14}\right\} \\
& S=\{
\end{aligned}
$$

