Week 14 Recitation Problems MATH:113, Recitations 304 and 305

Names: ____

Show that, if f'(x) = g'(x), then f(x) = g(x) + C.

What function did we differentiate to get $f(x) = x^4 + 3x - 9$?

If $f(x) = 3x^2 + 8x + 6$ and $g(x) = e^x$, show that:

$\int k \cdot f(x) dx = k \cdot \int f(x) dx$ for k a real number.	$\int f(x) + g(x) \mathrm{d}x = \left(\int f(x) \mathrm{d}x\right) + \left(\int g(x) \mathrm{d}x\right).$

Give two functions f(x) and g(x) such that $\int f(x) \cdot g(x) \, dx \neq \int f(x) \, dx \cdot \int g(x) \, dx$.

- Stop when you reach this point. We'll check in as a class. —

Verify that $y(x) = 2e^{2x}$ is a solution to the differential equation $\frac{dy}{dx} = 2y(x)$.

Find a solution for the initial value problem $\frac{dy}{dt} = -3y(t)$ where $y(t_0) = -3$ for $t_0 = 0$.

Find a solution for the initial value problem $\frac{dy}{dx} = -3x^{-2}$ where $y(t_0) = 1$ for $t_0 = 1$.