Week 14 Recitation Problems
 MATH:113, Recitations 304 and 305

Names: \qquad

Show that, if $f^{\prime}(x)=g^{\prime}(x)$, then $f(x)=g(x)+C$.

What function did we differentiate to get $f(x)=x^{4}+3 x-9$?

If $f(x)=3 x^{2}+8 x+6$ and $g(x)=e^{x}$, show that:
$\int k \cdot f(x) \mathbf{d} x=k \cdot \int f(x) \mathbf{d} x$ for k a real number.

$\int f(x)+g(x) \mathbf{d} x=\left(\int f(x) \mathbf{d} x\right)+\left(\int g(x) \mathbf{d} x\right)$.

Give two functions $f(x)$ and $g(x)$ such that $\int f(x) \cdot g(x) \mathbf{d} x \neq \int f(x) \mathbf{d} x \cdot \int g(x) \mathbf{d} x$.

Verify that $y(x)=2 e^{2 x}$ is a solution to the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 y(x)$.

Find a solution for the initial value problem $\frac{\mathrm{d} y}{\mathrm{~d} t}=-3 y(t)$ where $y\left(t_{0}\right)=-3$ for $t_{0}=0$.

Find a solution for the initial value problem $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3 x^{-2}$ where $y\left(t_{0}\right)=1$ for $t_{0}=1$.

