Week 14 Recitation Problems
 MATH:113, Recitations 304 and 305

Solutions

Show that, if $f^{\prime}(x)=g^{\prime}(x)$, then $f(x)=g(x)+C$.
Let $f^{\prime}(x)=g^{\prime}(x)$. Then, we have

$$
\int f^{\prime}(x) \mathrm{d} x=\int g^{\prime}(x) \mathrm{d} x
$$

Going by our definition of the indefinite integral, we then have

$$
\int f^{\prime}(x) \mathrm{d} x=f(x)+C_{f} \quad \text { and } \quad \int g^{\prime}(x) \mathrm{d} x=g(x)+C_{g}
$$

where C_{f} and C_{g} are constants. But because we know that the integrals are the same, we must have that

$$
f(x)+C_{f}=g(x)+C_{g},
$$

so

$$
f(x)=g(x)+C_{g}-C_{f} .
$$

If we let $C=C_{g}-C_{f}$, then we have

$$
f(x)=g(x)+\left(C_{g}-C_{f}\right)=g(x)+C \Longrightarrow f(x)=g(x)+C
$$

as desired.

What function did we differentiate to get $f(x)=x^{4}+3 x-9$?

Using our definition of the indefinite integral, we get

$$
\int x^{4}+3 x-9 \mathrm{~d} x=\frac{1}{5} x^{5}+\frac{3}{2} x^{2}-9 x+C
$$

where C is a constant.
$\int k \cdot f(x) \mathbf{d} x=k \cdot \int f(x) \mathbf{d} x$ for k a real number.

$$
\begin{aligned}
\boxed{\int k \cdot f(x) \mathrm{d} x} & =\int k \cdot 3 x^{2}+k \cdot 8 x+k \cdot 6 \mathrm{~d} x \\
& =k \cdot x^{3}+k \cdot 4 x^{2}+k \cdot 6 x+C \\
& =k\left(x^{3}+4 x^{2}+6 x+C / k\right) \\
& =k \cdot \int 3 x^{2}+8 x+6 \mathrm{~d} x \\
& =k \cdot \int f(x) \mathrm{d} x
\end{aligned}
$$

$$
\begin{aligned}
& \int f(x)+g(x) \mathbf{d} x=\left(\int f(x) \mathbf{d} x\right)+\left(\int g(x) \mathbf{d} x\right) \\
& \begin{aligned}
\int f(x)+g(x) \mathrm{d} x & =\int 3 x^{2}+8 x+6+e^{x} \mathrm{~d} x \\
& =x^{3}+4 x^{2}+6 x+e^{x}+C \\
& =\left(x^{3}+4 x^{2}+6 x+C_{f}\right)+\left(e^{x}+C_{g}\right) \\
& =\int 3 x^{2}+8 x+6 \mathrm{~d} x+\int e^{x} \mathrm{~d} x \\
& =\int f(x) \mathrm{d} x+\int g(x) \mathrm{d} x
\end{aligned}
\end{aligned}
$$

Give two functions $f(x)$ and $g(x)$ such that $\int f(x) \cdot g(x) \mathbf{d} x \neq \int f(x) \mathbf{d} x \cdot \int g(x) \mathbf{d} x$.
Suppose $f(x)=x$ and $g(x)=x^{2}$. Then, we have

$$
\begin{aligned}
\int f(x) \cdot g(x) \mathrm{d} x & =\int x \cdot x^{2} \mathrm{~d} x \\
& =\int x^{3} \mathrm{~d} x \\
& =\frac{1}{4} x^{4}+C
\end{aligned}
$$

but

$$
\begin{aligned}
\int f(x) \mathrm{d} x \cdot \int g(x) \mathrm{d} x & =\int x \mathrm{~d} x \cdot \int x^{2} \mathrm{~d} x \\
& =\left(\frac{1}{2} x^{2}+C_{f}\right) \cdot\left(\frac{1}{3} x^{3}+C_{g}\right) \\
& =\frac{1}{6} x^{5}+C_{f} \cdot \frac{1}{3} x^{3}+C_{g} \cdot \frac{1}{2} x^{2}+C_{f} C_{g}
\end{aligned}
$$

These improper integrals are polynomials of differing degree, and so they cannot be the same.

Verify that $y(x)=2 e^{2 x}$ is a solution to the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 y(x)$.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} y(x) & =\frac{\mathrm{d}}{\mathrm{~d} x} 2 e^{2 x} \\
& =\left(\frac{\mathrm{d}}{\mathrm{~d} 2} x\right) \cdot 2 e^{2 x} \\
& =2 \cdot 2 e^{2 x} \\
& =2 \cdot y(x)
\end{aligned}
$$

Find a solution for the initial value problem $\frac{\mathrm{d} y}{\mathrm{~d} t}=-3 y(t)$ where $y\left(t_{0}\right)=-3$ for $t_{0}=0$.
What function $y(t)$ has first derivative -3 times itself? The function $y(t)=-3 e^{-3 t}+C$ works, as

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} y(t) & =\frac{\mathrm{d}}{\mathrm{~d} t}-3 \cdot e^{-3 t}+C \\
& =-3 \cdot \frac{\mathrm{~d}}{\mathrm{~d} t} e^{-3 t}+C \\
& =-3 \cdot-3 e^{-3 t} \\
& =-3 y(t)
\end{aligned}
$$

We also have to satisfy the initial value condition. Right now, we have $y(t)=-3 e^{-3 t}+C$, so

$$
y\left(t_{0}\right)=-3 e^{-3 \cdot 0}+C=-3
$$

and, solving for C, we get

$$
-3=-3+C \Longrightarrow 0=C,
$$

so our solution is

$$
y(t)=-3 e^{-3 t}
$$

Find a solution for the initial value problem $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3 x^{-2}$ where $y\left(x_{0}\right)=1$ for $x_{0}=1$.
What function $y(x)$ has first derivative $-3 / x^{2}$? If we use our inverting-the-power-rule strategy, we find that

$$
\int \frac{-3}{x^{2}} \mathrm{~d} x=\frac{3}{x}+C
$$

which (as you can check by taking the first derivative with respect to x) satisfies the differential equation given. However, we need to satisfy the initial condition as well: right now, we have

$$
y\left(x_{0}\right)=\frac{3}{1}+C=1
$$

and, solving for C, we get

$$
1=3+C \Longrightarrow-2=C,
$$

so our solution is

$$
y(x)=\frac{3}{x}-2
$$

