Week 13 - Exam Review MATH:113, Recitations 304 and 305

Implicit Differentiation, Related Rates

Names: \qquad SOLUTIONS

For each of the following, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ first by solving directly for y and differentiating directly; then, use implicit differentiation to find $\frac{d y}{d x}$. Check that the derivatives you get are the same.

$$
\begin{aligned}
& \text { ping in to } \\
& x=y^{3}=\sqrt[3]{x}=y \mid y^{3}=1 \\
& \frac{d y}{d x}=\frac{1}{3} \cdot x^{-\frac{2}{3}} \Rightarrow 2 \cdot y^{-3} \\
& \Rightarrow 0=x \cdot-3 y^{-4} \frac{d y}{d x}+y^{-3} \\
& \Rightarrow \frac{d y}{d x}=\frac{y^{-3}}{3 x y^{-4}}=\frac{y}{3 x}
\end{aligned}
$$

$$
\Rightarrow \begin{aligned}
& y^{3}=4-x^{2} \\
& y=\sqrt[3]{4-x^{2}} \\
& x=4
\end{aligned}
$$

$$
y= \pm \sqrt{2-x^{2}}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{2}{3} x\left(4-x^{2}\right)^{-4 / 3} \\
& \frac{d y}{d x}=-\frac{2 x}{3 y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.3 . \frac{d y}{3^{2}}\right) \frac{x^{2}+y^{2}=2}{d x}= \begin{cases}-x\left(2-x^{2}\right)^{-\frac{1}{2}} & y>0 \\
x\left(2-x^{2}\right)^{-\frac{1}{2}} & y<0\end{cases} \\
& 0=2 x+2 y \frac{d y}{d x}
\end{aligned}
$$

$$
\Rightarrow \frac{d y}{d x}=-\frac{x}{y} \leftarrow \frac{\text { plug in to chest! }}{x}
$$

Implicitly determine the derivatives $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for each of the following expressions. If a point is provided, evaluate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at that point.

$$
e^{x}-\cos (y)=x
$$

$$
\begin{aligned}
& \frac{d}{d x} e^{x}-\cos (y)=e^{x}+\frac{d y}{d x} \sin (y) \\
& \Rightarrow e^{x}+\frac{d y}{d x} \sin (y)=1 \\
& \Rightarrow \frac{d y}{d x}=\frac{1-e^{x}}{\sin (y)}
\end{aligned}
$$

$$
x^{2}+y^{2}=4 \text { at }(0,2)
$$

since this is a circle, we can guess that the derivative is 0 Q $(0,2)$. We also $g^{e t}$

$$
\begin{aligned}
0=2 x+2 y \frac{d y}{d x} & \Rightarrow \frac{d y}{d x}=\frac{-x}{y} \\
\frac{-(0)}{2} & =0
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\text { (} \left.x^{2} y^{4}\right)}_{\overbrace{\text { product rule }}^{\text {chain rule }}}=3 x+y^{2} \quad \text { (warning: very gross) } \\
& \begin{aligned}
3+2 y \frac{d y}{d x} & =\sec ^{2}\left(x^{2} y^{4}\right) \cdot \frac{d}{d x}\left(x^{2} \cdot y^{4}\right) \\
& =" \cdot\left(2 x y^{4}+x^{2} \cdot 4 y^{3} \frac{d y}{d x}\right)
\end{aligned}
\end{aligned}
$$

simplifying
gives
$\frac{d y}{d x}=\frac{3-2 x \cdot y^{4} \cdot \sec ^{2}\left(x^{2} y^{4}\right)}{x^{2} \cdot 4 y^{3} \cdot \sec ^{2}\left(x^{2} y^{4}\right)-2 g}$

Complete the following related rates problems.

1. The length of one edge of a cube is increasing at a rate of $8 \mathrm{~cm} / \mathrm{s}$. How quickly is the volume of the cube growing when this edge is 6 cm long?
$x(t)=$ length of edge, volume $=(x(t))^{3}=x^{3}(t)$

$$
\begin{aligned}
\frac{d x}{d t}=8 \Rightarrow \frac{d}{d t}(x(t))^{3} & =3 \cdot x(t)^{2} \cdot \frac{d x}{d t} \\
& =3 \cdot(6)^{2} \cdot 8
\end{aligned} \Rightarrow 864 \mathrm{~cm}^{3} / \mathrm{s}
$$

2. A dinghy carrying a horse (a horse boat, patent Dwight Schrute) is pulled toward a dock by a rope. The dock is 6 feet higher than the top of the boat.
(a) If we pull in the rope at $2 \mathrm{ft} / \mathrm{s}$, how quickly is the boat approaching the dock if 10 feet of rope are out?
(b) How quickly is the angle from the rope to the boat changing when 10 feet of rope are out?

This question is directly from your practice exam, save for a small change. Make sure you're comfortable with the concepts, setup, and computation strategies used in this problem.

(a) let $R(t)$ be the amount of rope; $R(t)=10$ for some t. now, we also know

$$
\frac{d R}{d t}=2 \quad s(t)
$$

$\begin{aligned} & \text { and that the speed of } \\ & \text { the boat should follow }\end{aligned} \Rightarrow \frac{d s}{d t}=\frac{20}{8}=\frac{5}{2} f / s$
(b) treat the angle θ as aft of time :
the Pythagorean th. thus,

$$
\left\{\begin{array}{l}
R(t)^{2}=s(t)^{2}+6^{2} \\
\Rightarrow 2 R(t) \cdot \frac{d R}{d t}=2 s(t) \cdot \frac{d s}{d t}
\end{array}\right.
$$

$\theta(t)=$ "angle Q fire t ". then, we knur that

Plugging in known values, we
get

$$
2(10) \cdot 2=2(8) \frac{d s}{d t}
$$

$$
\sin (\theta(t))=\frac{6}{R(t)}
$$

so

$$
-\cos (\theta(t)) \cdot \frac{d}{d t}(\theta(t))=-\frac{6}{R(t)^{2}} \frac{d R}{d t}
$$

plugging in, we get

$$
\left(\frac{8}{10}\right) \cdot \frac{d \theta}{d t}=\frac{-6}{10^{2}} \cdot 2 \Rightarrow \frac{d \theta}{d t}=-\frac{12}{80}
$$

3. Air is escaping from a perfectly (and impossibly) spherical balloon at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$. When the radius of the balloon is 1 m , how quickly is the surface area of the balloon shrinking?

$$
V(t)=\text { volume }=4 / 3 \pi \cdot r(t)^{3}, r(t)=\text { radius, } S(t)=\text { surface area }=4 \pi \cdot d(t)^{2}
$$

what we know: $\frac{d V}{d t}=2, r(t)=1$ (for some t) 7 we can use the volume what we need to know: $\frac{d r}{d t}, \frac{d S}{d t}$ derivative to find $\frac{d r}{d t}$, then
solve for $\frac{d S}{d t}$!

$$
\begin{aligned}
& \text { finding } \frac{d r}{d t} \text { : } \\
& \frac{d V}{d t}=4 / 3 \pi \cdot 3 r(t)^{2} \cdot \frac{d r}{d t} \\
& \begin{aligned}
\Rightarrow 2 & =4 / 3 \pi \cdot 3(1)^{2} \cdot \frac{d r}{d t} \\
& =4 \pi \cdot \frac{d r}{d t}
\end{aligned} \\
& \text { finding } \frac{d S}{d t} \text { : } \\
& \frac{d S}{d t}=4 \pi \cdot 2 r(t) \cdot \frac{d r}{1 d t} \\
& =4 \pi \cdot 2(1) \cdot \frac{1}{2 \pi} \\
& =4 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

