Week 13 - Exam Review
 MATH:113, Recitations 304 and 305

Derivatives

Names: SOLUTIONS

Write down the limit definition of the derivative. What does each term represent?
For a function f continuous at the point x, the derivative is $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Write down the general forms of:
(a) The power rule.
(e) The derivatives of $\sin (t), \cos (t)$, and $\tan (t)$.

For a function $f(x)$ and $f^{n}(x)=(f(x))^{n}$,

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(f(x))^{n}=n \cdot(f(x))^{n-1} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x} f(x) .
$$

(b) The product rule.
(f) The derivatives of the inverses of the functions in (e).

$$
\begin{aligned}
& \frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}} \frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{\sqrt{1+x^{2}}}
\end{aligned}
$$

(c) The quotient rule.

> (g) The derivative of $\ln (x)$.
> $\frac{d}{d x}\left(\log _{n}(x)\right)=\frac{1}{x \cdot \ln (n)}$
(d) The chain rule.
(h) The derivative of the exponential function $e^{u(x)}$.

$$
\frac{d}{d x}\left(e^{u(x)}\right)=\underbrace{u^{\prime}(x)}_{\text {chain rule! }} \cdot e^{u(x)}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{6 x^{2}}{2-x}
$$

quotient rule gives

$$
\frac{d}{d x}\left(\frac{6 x^{2}}{(2-x)}\right)=\frac{6\left(4 x-x^{2}\right)}{(2-x)^{2}}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x} e^{1-\cos (x)}
$$

chain rule gives

$$
\begin{aligned}
\frac{d}{d x}\left(e^{1-\cos (x)}\right) & =\frac{d}{d x}(1-\cos (x)) \cdot e^{(-\cos (x)} \\
& =\sin (\pi) \cdot e^{1-\cos (x)}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{\sin (10 x)}{x}
$$

Evaluating at 0 we get $\%$, so apply L'Hôpital's rule:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin (10 x)}{x}=\lim _{x \rightarrow 0} \frac{10 \cdot \cos (10 x)}{1} \\
&=\frac{10 \cdot(1)}{1}=10 \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} \csc (7 t)
\end{aligned}
$$

chain rule gives

$$
\begin{aligned}
\frac{d}{d t}(\csc (7 t)) & =\frac{d}{d t}(7 t) \cdot-\csc (7 t) \cot (7 t) \\
& =7 \cdots \quad \cdots \\
& =-7 \csc (7 t) \cot (7 t)
\end{aligned}
$$

try

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{x}} \cdot x \cdot \ln \left(1+\frac{3}{x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{3}{x}\right)}{1 / x} \text { derivatives simplification! } \\
& =\lim _{x \rightarrow \infty} \frac{\frac{3}{1+3 / x}=3}{\frac{d}{d x} \sin ^{-1}(x+4)} \\
& =\frac{1}{\sqrt{1-(x+4)^{2}}} \cdot \frac{d}{d x}(x+4) \\
& =\frac{1}{\sqrt{1-(x+4)^{2}}}
\end{aligned}
$$

$$
\text { Hlflyfor } \lim _{x \rightarrow 1^{+}} x^{1 / 1-x}=L
$$

$$
\ln (L)=\ln \left(\lim _{x \rightarrow 1^{+}} x^{1 / 1-x}\right)
$$

use the
continuity
In !!!

$$
=\lim _{x \rightarrow 1^{+}} \ln \left(x^{1 / 1-x}\right)
$$

$$
=\lim _{x \rightarrow 1^{+}} \frac{1}{1-x} \cdot \ln (x)
$$

$$
\stackrel{H}{=} \lim _{x \rightarrow 1^{+}} \frac{\frac{1}{x}}{1}=1
$$

