Week 13 - Exam Review
MATH:113, Recitations 304 and 305
Curves
Names: SOLUTIONS

Write the expression for the linearization of a function $f(x)$ at $x=a$. What does each term represent?
For a function f differentiable at a point α, the linear approximation $L(x)$ of f is $\underbrace{\text { "slope" at a }}$

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

What does the extreme value theorem say? What assumptions do we make?
For a function f continuous on the closed interval $[a, b]$, there are numbers $c, d \in[a, b]$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in[a, b]$.

What does the mean value theorem say? What assumptions do we make?
For a function f continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), there is a point $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Write the definitions for critical points and inflection points.
For a function f differentiable on (a, b) and cont's on $[a, b]$, a critical point is a point $x^{*} \in(a, f)$ such that $f^{\prime}(x)=0$. An in flection point is a critical point for $f^{\prime}(x)$.

Problem 1. Consider the function $f(x)=\ln \left(4-x^{2}\right)$. Find:
(a) the domain.
(e) all inflection points.
(b) the range (or image).
(f) intervals where the function is increasing and decreasing.
(c) and simplify $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(g) intervals where the function is concave-up or
(d) all critical points. concave-down.

Using the information above, sketch $f(x)$.
This question is directly from your practice exam, save for a small change. Make sure you're comfortable with the concepts, setup, and computation strategies used in this problem.
(d) $4-x^{2}=0 @ 2,-2$ so domain is $(-2,2)$.
(b) max is at $x=0 \Rightarrow \ln (4)$, \min is $-\infty$, so image is $(-\infty, \ln (4))$
$(d)(e)$ critical points $@ 0$, no inflection points
(f) increasing on $(-2,0)$, decrecesing
on $(0,2)$
(g) always concave -down

Problem 2. Find two positive numbers x and y whose sum is 300 and whose product $x y$ is as large as possible.
a square bottom,
Problem 3. Because we're cheap, we'd like to construct a box that has no top and has volume $216 \mathrm{in}^{3}$. What should the width and height of the box be to minimize its surface area?
let x be width of base, y be height of box. then,

$$
\text { Surface area }=A(x)=4 x y+x^{2} \text {, Volume }=x^{2} y=216 \text { in }^{3}
$$

now we have $y=216 / x^{2}$, so

$$
\begin{aligned}
A(x) & =4 x\left(\frac{216}{x^{2}}\right)+x^{2} \\
& =864 / x+x^{2}
\end{aligned}
$$

$A^{\prime}(x)=-864 / x^{2}+2 x$, but x can't $=0$, so x must be $\sqrt[3]{432}=6 \sqrt[3]{2}$. This is the only defined critical point - plugging in for $S(x)$, we $\operatorname{get} y=3 \sqrt[3]{2}$

