Week 12 Recitation Problems MATH:113, Recitations 304 and 305

Solutions

Critical points and curve sketching

1. Concepts. Discuss the following with your group.
(i) Given a differentiable function on an interval $[a, b]$, a critical point x is a point in $[a, b]$ such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.
(ii) An inflection point is a critical point of the first derivative.
(iii) As the derivative of f at x tells us how quickly f changes its inputs, critical points tell us when f isn't changing its outputs at all. Inflection points tell us the exact spots where the rate at which f changes its inputs slows down or speeds up.
(iv) The extreme value theorem tells us that, if f is continuous on a closed interval $[a, b], f$ achieves a maximum and a minimum on $[a, b]$. The mean value theorem says that, if f is continuous on $[a, b]$ and differentiable on (a, b), then there is some input c in $[a, b]$ such that $f^{\prime}(c)=f(b)-f(a) / b-a$. Think about this as the "average" value theorem, so the derivative (at some point) has to be exactly the average values at the endpoints.
2. Setup.
(i) Simplifying $f(x)$, we get that $f^{\prime}(x)=4 x^{3}-4 x$ and $f^{\prime \prime}(x)=12 x^{2}-4$
(ii) $f^{\prime}(x)$ is a degree-three polynomial, so it has three zeros at $x=1, x=-1$, and $x=0 . f^{\prime \prime}(x)$ is a degree-two polynomial so it has two zeros at $x= \pm 1 / \sqrt{3}$.
3. Computation. Not much to do here!

L'Hôpital's Rule

1. Concepts. Discuss the following with your group.
(i) If the limit of the ratio of two differentiable functions at a point c is $\%$ or ∞ / ∞, L'Hôpital's rule allows us to take the limit of the ratio of derivatives at the point c instead.
(ii) If the limits of the function aren't equal and aren't or ∞ at c; if f and g aren't differentiable; if the derivative of g is 0 everywhere but c; the limit of the ratio of derivatives has to exist or itself be an indeterminate form.
(iii) We're finding the limit of the ratio of the derivatives at the point c.

2. Computation.

(i) First, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{16 n^{2}+2 n}{n^{2}} & \stackrel{H}{=} \lim _{n \rightarrow \infty} \frac{32 n+2}{2 n} \\
& =\frac{H}{=} \lim _{n \rightarrow \infty} \frac{32}{2} \\
& =16
\end{aligned}
$$

Thus $0 \leq c=16<\infty$, so $f \in \mathcal{O}(g)$. Next, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{16 n^{2}+2 n}{n \cdot \ln (n)} & \stackrel{H}{=} \lim _{n \rightarrow \infty} \frac{32 n+2}{1 \cdot \ln (n)+n \cdot 1 / n} \\
& =\lim _{n \rightarrow \infty} \frac{32 n+2}{\ln (n)+1} \\
& \stackrel{H}{=} \lim _{n \rightarrow \infty} \frac{32}{1 / n} \\
& =\lim _{n \rightarrow \infty} 32 n \\
& =\infty
\end{aligned}
$$

so $c=\infty$, and $f \in \Omega(g)$.

3. As a class, let's prove that L'Hôpital's Rule works in the $\%$ case.

Proof. Suppose that, for some number $c, f(c)=0=g(c)$, and $g^{\prime}(c) \neq 0$. Then, we have

$$
\begin{aligned}
\lim _{x \rightarrow c} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow c} \frac{f(x)-0}{g(x)-0} \\
& =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{g(x)-g(c)} \\
& =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{g(x)-g(c)} \cdot \frac{1 / x-c}{1 / x-c} \\
& =\lim _{x \rightarrow c} \frac{\frac{f(x)-f(c)}{x-c}}{\frac{g(x)--g(c)}{x-c}} .
\end{aligned}
$$

But we know that the limit of the denominator is nonzero and exists; we also know that the limits in the numerator and denominator are precisely the limits which define the derivative, so we get

$$
\begin{aligned}
\lim _{x \rightarrow c} \frac{\frac{f(x)-f(c)}{x-c}}{\frac{g(x)-g(c)}{x-c}} & =\frac{\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}}{\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}} \\
& =\frac{f^{\prime}(c)}{g^{\prime}(c)} \\
& =\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\end{aligned}
$$

and we're done.

